
Vol.:(0123456789)1 3

Magnetic Resonance Materials in Physics, Biology and Medicine (2022) 35:365–373 
https://doi.org/10.1007/s10334-021-00965-6

RESEARCH ARTICLE

Reproducibility of MRI‑based white matter tract estimation using 
multi‑fiber probabilistic tractography: effect of user‑defined 
parameters and regions

Irène Brumer1,2 · Enrico De Vita2 · Jonathan Ashmore1,3 · Jozef Jarosz1 · Marco Borri1 

Received: 3 June 2021 / Revised: 31 August 2021 / Accepted: 1 October 2021 / Published online: 18 October 2021 
© The Author(s) 2021

Abstract
Objective  There is a pressing need to assess user-dependent reproducibility of multi-fibre probabilistic tractography in order 
to encourage clinical implementation of these advanced and relevant approaches. The goal of this study was to evaluate both 
intrinsic and inter-user reproducibility of corticospinal tract estimation.
Materials and methods  Six clinical datasets including motor functional and diffusion MRI were used. Three users performed 
an independent tractography analysis following identical instructions. Dice indices were calculated to quantify the reproduc-
ibility of seed region, fMRI-based end region, and streamline maps.
Results  The inter-user reproducibility ranged 41–93%, 29–94%, and 50–92%, for seed regions, end regions, and streamline 
maps, respectively. Differences in streamline maps correlated with differences in seed and end regions. Good inter-user 
agreement in seed and end regions, yielded inter-user reproducibility close to the intrinsic reproducibility (92–97%) and in 
most cases higher than 80%.
Discussion  Uncertainties related to user-dependent decisions and the probabilistic nature of the analysis should be considered 
when interpreting probabilistic tractography data. The standardization of the methods used to define seed and end regions is a 
necessary step to improve the accuracy and robustness of multi-fiber probabilistic tractography in a clinical setting. Clinical 
users should choose a feasible compromise between reproducibility and analysis duration.

Keywords  Diffusion magnetic resonance imaging · Reproducibility of results · Magnetic resonance imaging · Brain 
neoplasms

Introduction

The use of magnetic resonance imaging (MRI) for preop-
erative assessment and guidance during surgical procedures 
is becoming increasingly widespread in modern clinical 
settings. In the context of surgical interventions close to 

eloquent areas of the brain, functional magnetic resonance 
imaging (fMRI) combined with tractography are particularly 
valuable [1]. fMRI detects the areas of the brain activated 
during specific tasks, while tractography exploits the effect 
of tissue microstructure on the diffusion of water molecules 
to depict white matter fibers [2]. Tract estimation can be 
performed using different types of mathematical models, 
and with deterministic or probabilistic approaches [3, 4]. 
The classic diffusion tensor model [5] considers a unique 
diffusion direction for each voxel, and therefore makes 
the crude approximation that all fibers within a voxel are 
oriented in the same direction. Multi-fiber approaches can 
account for the presence of multiple fiber orientations within 
each voxel and thus yield a more accurate estimate of white 
matter tracts, especially in regions of complex fiber archi-
tecture [6–8]. Furthermore, probabilistic algorithms are 
able to account for the inherent uncertainty in the estimate 
of fiber orientation and provide superior sensitivity for 
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reconstructing fiber bundles [9–11]. Neurosurgeons would 
benefit from more sensitive reconstructions to conserva-
tively estimate the tract extent and proximity to pathology, 
as well as the degree of tract infiltration and involvement. 
This would serve as additional information to locate areas of 
risk that need attention or additional probing during surgery.

Commonly adopted presurgical planning systems almost 
exclusively implement diffusion tensor based deterministic 
tractography [9, 12] arguably because this is a more straight-
forward approach to the analysis, particularly for a clinical 
user.

Advanced preoperative evaluations with more sophisti-
cated tractographic reconstructions are resource intensive 
and require collaboration between different clinical roles 
and expertise. At our neuroimaging centre, the complex 
image processing is performed by a medical physicist, and 
can take up to a few hours per case. The results are then 
reviewed with a radiologist, who reports the images, and the 
preoperative findings are finally discussed with the neurosur-
geon before planning the surgery (and ideally are reviewed 
postoperatively). These logistics put time constraints on the 
process, with often a timescale of less than a week between 
image acquisition and surgery.

The robustness of the tractographic evaluation is a vital 
aspect in this process. Currently, there is a lack of published 
data on the user-dependent reproducibility of clinically 
applied probabilistic tractography, and a pressing need to 
assess this aspect in order to encourage clinical implementa-
tion of these advanced and relevant techniques. Probabilis-
tic approaches both contain intrinsic variability at each run, 
due to the statistical nature of the analysis and the results, 
and multiple user-dependent decisions which can influence 
the final streamline distribution. The tractography seed and 
inclusion regions can be manually defined using anatomical 
landmarks, and in some cases can be informed by fMRI data 
[13, 14]. The use of fMRI data for the definition of seed and 
inclusion regions has been shown to increase the accuracy 
of tractography analysis [15, 16] and to allow separation of 
different tract components such as the hand and foot fibers of 
the corticospinal tract [1]. However, the variability of fMRI 
data is an additional factor to consider for the reproducibility 
of the tractography analysis.

In this work we evaluate both the intrinsic (run/re-run) 
and the inter-user reproducibility of corticospinal tract 
(CST) estimation using multi-fiber probabilistic tractog-
raphy. We consider several factors influencing the repro-
ducibility: the number of streamlines, the streamline den-
sity threshold used to determine the final streamline map, 
and the definition of the seed region and fMRI-based end 
regions.

Materials and methods

Subjects and MRI sequence protocol

Retrospective analysis of patient examinations was carried 
out with the approval of the institutional Clinical Audit 
Committee. Six clinical datasets acquired before tumor 
(N = 3) or epilepsy (N = 3) surgery close to the motor cortex 
were employed. Images were acquired at 1.5 T on a Sie-
mens Magnetom Aera scanner (Siemens AG, Erlangen, Ger-
many) using a 20-channel head/neck receive coil. The MRI 
sequence protocol consisted of a 3D T1-weighted MPRAGE 
for anatomy (TE/TR = 3.02/2200 ms, voxel size = (1 mm)3, 
FA = 8°, parallel imaging acceleration GRAPPA = 2), a gra-
dient echo EPI sequence for fMRI (TE/TR = 40/3000 ms, 
voxel size = 2.5 × 2.5 × 3 mm3), and a spin echo EPI 
sequence for diffusion tractography (TE/TR = 86/9500 ms, 
voxel size = (2.5 mm)3, 6 baseline images at b = 0 s/mm2 
and 64 diffusion directions at b = 1500 s/mm2). fMRI data 
were acquired for 6 cycles of alternating rest and activation 
periods of 30 s each, during the following motor tasks: finger 
tapping, foot rocking and lip pouting.

Data analysis

The data were first visually checked for motion and Gibbs 
ringing artefacts, which were found to be limited. The analy-
sis workflow made use of publicly available, advanced soft-
ware packages and included recommended options and stand-
ards. fMRI data were processed using an in-house developed 
batch processing pipeline based on SPM12 (Wellcome Trust 
Centre for Neuroimaging, University College London, UK). 
Image pre-processing of fMRI data consisted of small motion 
correction (rigid body spatial transformation and least square 
algorithm, SPM12), non-linear co-registration with the ana-
tomical volume (mutual information, SPM12) and isotropic 
Gaussian kernel smoothing (8 mm full width at half maxi-
mum). Diffusion data were reconstructed using constrained 
spherical deconvolution [17] (CSD) and probabilistic trac-
tography in MRtrix3 [18] (version 0.3.14, http://​www.​mrtrix.​
org/). A single b-value (single-shell) response function of 
single-fiber white matter was computed [19] and a second-
order integration over fiber orientation distributions (iFOD2) 
streamline generation algorithm was employed [20].

Three users (medical physicists) with different experi-
ence in MR image processing and tractography analysis 
(user A: in training, less than a year for both; user B: 9 and 
8 years, respectively; user C: 10 and 2 years, respectively) 
performed a blind and independent data analysis with the 
following instructions:

http://www.mrtrix.org/
http://www.mrtrix.org/
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1)	 For each motor fMRI task, apply a threshold to the acti-
vation map, in order to spatially isolate the area corre-
sponding to the highest activation in the relevant cortical 
area and convert it into an activation mask (Fig. 1a).

2)	 Combine the masks from all motor tasks to form a single 
mask encompassing the motor activation area.

3)	 On an axial slice of the fractional anisotropy map, manu-
ally draw the CST seed region on the posterior limb of 
the internal capsule (PLIC) in the hemisphere of inter-
est, including only voxels with predominant diffusion 
in a superior-inferior direction (Fig. 1b). Additionally, 

define an exclusion region by positioning a sagittal plane 
through the inter-hemispheric fissure (midline), to avoid 
streamlines crossing over to the opposite hemisphere.

4)	 Generate streamlines using only the seed region (unre-
stricted streamlines) and using both the seed region and 
the fMRI-based activation mask as end region (restricted 
streamlines) [21] (Fig. 1c).

The algorithm generated streamlines from the seed region 
until 100,000 streamlines had been selected considering both 
inclusion and midline exclusion regions. User-dependent 

(a)

(b)

(c)

(d)

Fig. 1   Workflow for generation of streamlines using fMRI and diffusion MRI data (a–c) and subsequent inter-user comparison (d)
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inputs which can affect the final streamline distribution 
included the definition of the seed and end regions. The spa-
tial extent of the end regions is affected by both the choice of 
threshold and the selection of the activated area in the fMRI 
maps. Figure1d shows the region and streamline results 
obtained by two different users for the same patient.

Reproducibility assessment

Streamline density maps (tractograms representing the 
number of streamlines per voxel) were generated using 
the streamlines produced by the probabilistic tractography 
analysis. To assess the reproducibility of probabilistic trac-
tography at a set streamline density, the streamline density 
maps were thresholded and binarized by applying a density 
threshold [22]. Pairs of binarized maps (α and β) were then 
compared using the Dice index (DI) [23]:

Initially, the streamline density threshold was set to 
2 × 10–4 (i.e. 20 over 100,000 selected streamlines for a voxel 
size of 1mm3), matching the value used clinically at our 
institution.

For the intrinsic reproducibility resulting from the proba-
bilistic nature of the tract estimation (run/re-run), four anal-
ysis runs with identical parameters and specified regions 
were performed for each patient-user combination (Fig. 2a). 
Results were then compared across the four runs, resulting 
in a total of six DIs, which were averaged to yield a mean 
DI for each patient-user combination.

To evaluate the inter-user reproducibility, the binarised 
streamline density masks obtained by the three different 
users were compared pair-wise for each patient (Fig. 2b). 
DI analysis was also applied to the seed region and fMRI-
based activation masks, in order to evaluate the influence 
of these components separately. Pearson’s correlation coef-
ficients (PCCs) were calculated to investigate the correlation 

(1)DI =
2 ∗ (� ∩ �)

� + �

between different sets of DIs. Multiple linear correlation was 
also performed using the seed and end regions’ DIs as pre-
dictors for the DIs of restricted streamlines in order to deter-
mine the combined effect of seed and end regions.

Finally, run/re-run reproducibility analysis was repeated 
for all patients and users varying both the streamline density 
thresholds (range 1–40 × 10–4) and the number of selected 
streamlines (range 10,000–250,000), to assess the depend-
ence of the intrinsic reproducibility on these parameters as 
well as the duration of the analysis in different conditions. 
Intrinsic reproducibility DIs were also simulated using 
downsampled data generated by extracting subsets randomly 
choosing a selection of streamlines from a 1,000,000 stream-
line dataset in a representative case (patient 1, user A).

All correlations were calculated in MATLAB Version 
R2018a (The MathWorks Inc, Natick, Massachusetts) and 
the significance level was set to p < 0.05.

Results

Intrinsic reproducibility (run/re‑run, 100,000 
streamlines, 2 × 10–4 threshold)

DIs obtained for each patient-user combination ranged 
0.92–0.94 and 0.92–0.97 for the unrestricted and restricted 
streamline maps, respectively (Fig. 3). Intrinsic reproducibil-
ity was generally higher for restricted streamline maps than 
for unrestricted ones, probably due to the fact that additional 
constraints limit the number of possible pathways.

Inter‑user reproducibility (100,000 streamlines, 
2 × 10–4 threshold)

DIs obtained for each user pair across all patients are 
shown in Fig. 4 for seed region, fMRI-based end region, 
unrestricted and restricted streamline maps. DIs ranged 
0.41–0.93 for the seed region, 0.29–0.94 for the fMRI-
based end region, 0.58–0.92 for the unrestricted streamline 

(a) (b)

Fig. 2   (a) For the intrinsic reproducibility, a mean Dice index was 
calculated for each patient-user combination by averaging over the 
Dice indices DIij obtained for all possible comparisons between the 
four runs performed (with i, j indices indicating the run number, and 

DIij being equivalent to DIji). (b) For the inter-user reproducibil-
ity, the results obtained by different users were compared pair-wise, 
resulting in three Dice indices Dkw for each patient (with k, w indices 
indicating the ‘user’, and DIkw being equivalent to DIwk)
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maps, and 0.50–0.92 for the restricted streamline maps. 
Figure 4 shows that the DIs had a spread of values across 
patients, and this was dependent on the user pair. Compari-
sons between users B and C have DIs with higher value and 
smaller variation, indicating greater overlap and consistency. 
Larger variations in seed and end region DIs (Fig. 4a and b) 
corresponded to larger variations in streamline DIs (Fig. 4c 
and d). This suggests that smaller differences in user-defined 
regions lead to improved reproducibility.

Unrestricted streamline maps showed a high correlation 
with seed regions (PCC = 0.90). For restricted streamline 
maps, there was a significant correlation for both seed and 
end regions individually (PCCs were 0.73 and 0.57, respec-
tively) and the correlation found with the multiple linear 
regression model, which considered both seed and end 
regions, was also significant (PCC = 0.87). This verifies that 
the inter-user reproducibility of restricted streamline maps 
has a dependence on the definition of seed and end regions.

Fig. 3   Intrinsic reproduc-
ibility of (a) unrestricted and 
(b) restricted streamline maps 
quantified by DIs averaged over 
four identical analysis runs for 
the three users for each of the 
six patients. The epilepsy and 
tumor patients are represented 
with dashed and solid lines, 
respectively

Fig. 4   Inter-user reproducibil-
ity of (a) seed region, (b) end 
region, (c) unrestricted stream-
line maps and (d) restricted 
streamline maps quantified by 
Dice indices calculated for all 
user pairs and for each of the 
six patients. The epilepsy and 
tumor patients are represented 
with dashed and solid lines, 
respectively. Note the range of 
the y axis, which is different 
than in Fig. 3
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Regarding the seed regions, only the two-dimensional 
overlap between the regions defined by different users 
was considered. It was found that the seed regions were 
defined in different slices in four out of six patients, a fac-
tor which might contribute to reduced overlap. The correla-
tion between DIs and the difference in seed region position 
(defined as the number of slices separating the two regions) 
was investigated, and a significant negative correlation for 
seed regions, unrestricted, and restricted streamline maps 
was found (PCCs were − 0.73, − 0.75, and − 0.72, respec-
tively). This indicates that a larger separation between seed 
region slices yielded a lower inter-user reproducibility.

Intrinsic reproducibility as a function of number 
of streamlines and density threshold

The DI curves in Fig. 5a were averaged over all patients and 
users and show the dependence of DIs on the streamline den-
sity threshold for different number of selected streamlines. 
In all curves, DIs increased for threshold values between 1 
and 10 × 10–4, while at higher thresholds they either reached 
a plateau or showed a slow decrease for values higher than 
30 × 10–4 (blue and yellow curves in Fig. 5a). In all condi-
tions, restricted streamline maps yielded higher DIs, as also 
found in Fig. 3. For low thresholds and number of stream-
lines, DIs can reach suboptimal values (< 0.75). Increas-
ing the number of streamlines increased analysis time and 
reproducibility, and decreased differences across users and 
patients (represented by the standard deviation). The rela-
tionship between number of streamlines, reproducibility, 
and analysis duration is shown in Fig. 5b and c using the 
simulated data. Figure 5b and c illustrate the fact that, for 
a chosen threshold, users need to find a clinically feasible 
compromise between reproducibility and analysis time.

Discussion

Accurate and reproducible tract estimation obtained from 
advanced image processing such as tractography is crucial 
for presurgical planning. In this work we investigate the fac-
tors influencing the reproducibility of white matter tracto-
grams generated using multi-fiber probabilistic tractography. 
In particular, we highlight that this analysis requires two 
considerations:

1) Different runs of the same analysis with identical seed 
and end regions will produce similar, but not identi-
cal, streamline density maps. The degree of similarity 
between the produced maps is affected by the chosen 
minimum number of streamlines selected.
2) The appearance of the streamline density map that a 
clinical user (e.g. neuroradiologist, neurosurgeon) sees, 

and particularly its spatial extent, depends on the lowest 
density displayed (density threshold). The reproducibil-
ity of the maps thus has a dependence on the streamline 
density threshold.

Fig. 5   (a) Dependence of the Dice index on the streamline density 
threshold chosen to visualize the final tractogram for different number 
of selected streamlines. The values shown are the mean Dice indices 
obtained by averaging over all eighteen available patient-user combi-
nations. The error bars indicate the standard deviation of the mean 
Dice index distributions. (b) Dependence of the intrinsic reproduc-
ibility of unrestricted streamline maps on the number of selected 
streamlines, the streamline density threshold and the duration of the 
analysis. (c) Dependence of the intrinsic reproducibility of restricted 
streamline maps on the number of selected streamlines, the stream-
line density threshold and the duration of the analysis. The white dot 
in (b) and (c) correspond to the case of 100,000 selected streamlines 
and a streamline density threshold of 2 × 10–4 (setting used for evalu-
ating the inter-user reproducibility)
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Although higher streamline densities indicate higher 
confidence in the presence of a fiber bundle and are more 
reproducible (Fig. 5), in a clinical setting the map provided 
to the neurosurgeon should have conservatively larger mar-
gins (i.e. it should contain voxels at lower density). In CST 
evaluations at our institution we set this threshold to 2 × 10–4. 
This provides a good compromise between removing false 
positive streamlines whilst still minimizing any false nega-
tive pathways [12] which can have serious clinical implica-
tions [13].

The intrinsic reproducibility of probabilistic tractogra-
phy is purely due to the statistical nature of the analysis, 
and represents the upper limit of reproducibility. Although 
increasing the number of selected streamlines progressively 
reduces statistical variability [24], users should find a good 
compromise between the duration of the processing and the 
achievable reproducibility (Fig. 5). For the values adopted 
in this analysis for the CST (100,000 streamlines, 2 × 10–4 
threshold), the intrinsic reproducibility is > 92%, but it can 
be as low as 75% for 10,000 streamlines. The analysis with 
100,000 streamlines requires 20 min per case when includ-
ing both restricted and unrestricted streamlines (iMac, 
Processor 3.3 GHz Intel Core i5, RAM 32 GB 1867 MHz 
DDR3), which is a sensible trade-off when results need to 
be both accurate and prompt. For interactive modifications 
of the analysis 10,000 streamlines (2 min, 75%-90% repro-
ducibility) can facilitate a dynamic discussion whilst still 
maintaining acceptable streamline map reproducibility. Such 
discussions would not be possible for 1,000,000 streamlines 
(3 h, > 97% reproducibility) particularly since imaging is 
often undertaken just days prior to surgery.

Although increasing the number of streamlines (keeping 
all other conditions constant) also generally increases inter-
user reproducibility, this is significantly affected by the defi-
nition of seed and end regions (Fig. 4), with values as low as 
58% for unrestricted streamline maps and 50% for restricted 
ones. However, where users have good agreement (users B 
and C), the inter-user reproducibility is higher than 80% and 
close to intrinsic reproducibility. Users B and C are more 
experienced in tractography processing and this might have 
led to more coherent choices, highlighting the importance 
of standardizing the region definitions.

In our analysis, the comparison between unrestricted 
and restricted streamline maps shows the effects of further 
inclusion criteria on intrinsic and inter-user reproducibility. 
We have considered both unrestricted and restricted stream-
lines as they provide complementary information in clinical 
evaluations: while restricted streamlines are able to differen-
tiate hand, foot, and lips CST branches, unrestricted stream-
lines are less specific but very sensitive for investigation of 
potential infiltration by the tumor. However, the unrestricted 
streamlines include all possible streamlines originating from 
the seed region, and, therefore, an expert user is needed to 

disregard potentially spurious streamlines, especially in 
clinical evaluations.

In this paper we show that several factors affect the final 
streamline map, however, uncertainty remains regarding 
which generated tractogram represent the ground truth as we 
did not compare results to a gold standard. Complete valida-
tion via subcortical mapping [9] or comparison to cytoarchi-
tectonic maps [12] was outside the scope of this research.

Previous studies have looked into the inter-user reproduc-
ibility of tractography, noting that user performance is an 
important limiting factor. However, most studies assessed 
reproducibility in relation to apparent diffusion coefficient, 
fractional anisotropy, mean diffusivity, turning angle thresh-
old, and streamline or voxel count [25–29]. More recently, 
a study looked at optimizing the number of selected stream-
lines through mathematical models aiming to reduce the 
reproducibility of probabilistic tractography but did not con-
sider the influence of user-dependent choices [30]. Another 
recent work looked at whole brain streamline reproducibility 
between users by comparing binarized streamline volumes, 
but using deterministic and atlas-driven approaches [31]. 
Automated pipelines for generation of white matter fib-
ers have been proposed [32, 33]. These approaches based 
on automatic segmentation do not require user input, and 
therefore do not suffer from intra- or inter-user variability. 
However, they mostly rely on image registration and pre-
determined atlases, and are therefore strongly affected by 
abnormal anatomy (e.g. the presence of a large lesion) [34]. 
As a result, they are generally applied to cases where struc-
tural alteration due to pathology is absent or minimal [24]. 
Furthermore, such approaches require tools and resources 
that are normally not available in a clinical setting. Another 
recent study assessed the reproducibility of bundle segmen-
tation and found a large variability across and within pro-
tocols, highlighting the lack of standardization in this type 
of analysis [10].

Our paper considers the practical choices that a clinical 
user makes to reconstruct the CST in a typical setting, and 
focuses on assessing how these choices influence the vari-
ability of the visual information presented for presurgical 
planning. Our results demonstrate that this variability can 
be quite substantial, but also that it can be minimized with 
appropriate choices.

Limitations of this study are the small number of clini-
cal datasets for which the analysis from three users was 
available, and evaluation of the CST only. Nevertheless, 
this pilot dataset is sufficient to illustrate how streamline 
map reproducibility is affected by a range of parameters in 
a representative number of situations. Furthermore, as we 
have shown for the intrinsic reproducibility, it is possible to 
extend the analysis to any streamline density threshold or 
number of streamlines. However, for clarity, in this paper 
we have only reported the inter-user reproducibility values 
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for the parameters we are currently using in our clinical set-
ting [12]. No pre-processing steps (denoising, eddy current 
distortion correction, Gibbs ringing artefact reduction) were 
applied to the data presented here as not available in the 
software packages used at the time of analysis. Users are 
encouraged to apply these steps to improve the quality of 
the data. Finally, when correlating the Dice indices, we did 
not correct for multiple comparisons as it is not trivial in this 
setting. Although the single tractograms/regions are used 
more than once in the analysis, each Dice index quantifies 
the overlap between two of them, and is therefore unique.

fMRI-based end regions substantially contribute to the 
final streamline distribution, and their spatial extent is affected 
by arbitrary user choices, like the statistical activation thresh-
old and the identification of the activated areas. Future work 
should aim at standardizing, or, ideally, automating these 
choices, as this would significantly improve the reproducibil-
ity of the restricted streamline maps. Furthermore, we plan to 
extend this work to larger cohorts and other tracts, as well as 
evaluate the impact of reproducibility on surgery-related deci-
sions and use intraoperative findings for validation.

Conclusions

In this work, we assessed the inter-user and intrinsic repro-
ducibility of white matter tract estimation using multi-fiber 
probabilistic tractography. This work emphasizes that inter-
user differences in seed and end regions should be mini-
mized to improve the reproducibility of the estimation of 
unrestricted and restricted streamline maps. However, 
despite the influence of these factors, it was shown that in 
most cases streamline map reproducibility was higher than 
60% and it was possible to reach optimal reproducibility 
(70–90%) between users for good agreement of seed and 
end regions. Furthermore, this paper, through representa-
tive examples, offers guidance towards reaching a feasible 
compromise between duration of analysis and achievable 
reproducibility in a clinical setting.

This study demonstrates that the uncertainties related to 
the user-dependent choices (threshold for fMRI activation 
mask and position of seed region), the streamline density 
threshold chosen to visualize the streamline maps, and 
the probabilistic nature of the analysis should be consid-
ered when interpreting probabilistic tractography data. The 
standardization of the methods to define the seed region 
(particularly the slice chosen) and the fMRI end regions is a 
necessary step to improve the robustness of the visual infor-
mation provided by multi-fiber probabilistic tractography for 
presurgical planning in the clinical routine.
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