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Abstract
Diffusion-weighted imaging (DWI), a key component in multiparametric MRI (mpMRI), is useful for tumor detection and 
localization in clinically significant prostate cancer (csPCa). The Prostate Imaging Reporting and Data System versions 2 
and 2.1 (PI-RADS v2 and PI-RADS v2.1) emphasize the role of DWI in determining PIRADS Assessment Category in each 
of the transition and peripheral zones. In addition, several recent studies have demonstrated comparable performance of 
abbreviated biparametric MRI (bpMRI), which incorporates only T2-weighted imaging and DWI, compared with mpMRI 
with dynamic contrast-enhanced MRI. Therefore, further optimization of DWI is essential to achieve clinical application of 
bpMRI for efficient detection of csPC in patients with elevated PSA levels. Although DWI acquisition is routinely performed 
using single-shot echo-planar imaging, this method suffers from such as susceptibility artifact and anatomic distortion, which 
remain to be solved. In this review article, we will outline existing problems in standard DWI using the single-shot echo-
planar imaging sequence; discuss solutions that employ newly developed imaging techniques, state-of-the-art technologies, 
and sequences in DWI; and evaluate the current status of quantitative DWI for assessment of tumor aggressiveness in PC.
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Introduction

It has been estimated that about 248,530 new cases of pros-
tate cancer (PCa) will be diagnosed in the United States 
during 2021, and this disease is the second-leading cause 
of cancer death for men in most Western countries [1, 2]. 
Accordingly, early detection of PCa with accurate assess-
ment of tumor aggressiveness and local staging is essen-
tial to improve mortality rates as well as patient prognosis. 
Multiparametric MRI (mpMRI) comprising T2-weighted 
imaging (T2WI), diffusion-weighted imaging (DWI), and 
dynamic contrast-enhanced MRI (DCE-MRI) prior to pros-
tate biopsy, followed by MR-guided prostate biopsy (such as 
MRI–ultrasound fusion-guided prostate biopsy), is the rec-
ommended protocol to replace standard systematic prostate 
biopsy for detection of PCa in patients with elevated PSA 

levels [3–6]. mpMRI, especially DWI, has already made a 
strong contribution to the accumulation of research results 
with regard to the detection and localization of primary clin-
ically significant PCa (csPCa) and local recurrence, assess-
ment of tumor aggressiveness by such as Gleason score (GS) 
and Gleason grade (GG), local staging, active surveillance 
(AS), and standardization of prostate MRI diagnosis [the 
Prostate Imaging Reporting and Data System version (PI-
RADS)] [7–21]. Furthermore, in recent years, numerous 
studies regarding biparametric MRI (bpMRI), which does 
not include DCE-MRI, have reported comparable diagnostic 
accuracy between bpMRI and mpMRI for detecting csPCa 
[22–28]. Therefore, the role of DWI in csPCa detection is 
becoming increasingly important, and its optimization is 
an urgent issue. In this review article, we discuss the prob-
lems of standard DWI with single-shot echo-planar imaging 
(ssEPI) and their countermeasures, as well as the possibility 
of clinical application of quantitative DWI, and the latest 
DWI technology. * Tsutomu Tamada 
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New technology to overcome problems 
in standard DWI

Susceptibility artifact and geometric anatomic 
distortion

Currently, clinical DWI acquisition is routinely performed 
using two-dimensional (2D) ssEPI technique. DWI with 
2D ssEPI (ssEPI DWI) has high signal-to-noise ratio 
(SNR) and is minimally affected by motion artifact due to 
its rapid acquisition. However, the image quality of ssEPI 
DWI suffers from susceptibility artifact caused by gas 
within the adjacent rectum and by hip implants, and from 
marked geometric anatomical distortion resulting from 
factors such as the very rapid acquisition, B0- and B1-field 
inhomogeneities, and eddy currents [29, 30]. These effects 
become more pronounced at higher field strength of 3T, 
which is widely used in prostate mpMRI. Therefore, we 
need to continue to verify the usefulness of bowel prepa-
ration techniques and develop MRI techniques that can 
improve image quality.

The basic countermeasures against susceptibility arti-
fact and geometric anatomical distortion in ssEPI DWI 
include dietary restrictions and administration of hyos-
cine N-butylbromide to reduce intestinal peristalsis before 
the MRI examination. Schmidt et al. have reported that 
among hyoscine N-butylbromide, microenema, and die-
tary restrictions for artifact reduction and image quality 
in prostate mpMRI, only microenema appeared to signifi-
cantly improve the image quality of DWI and the whole 
mpMRI image set of the prostate [31]. A review article 
that compared the effectiveness of antispasmodics and 
rectal enemas concluded that intravenous hyoscine butyl-
bromide was the optimum patient preparation method 
for improving T2W and DWI image quality in prostate 
mpMRI, and did not recommend the use of a preparatory 
rectal enema [32]. Therefore, it is necessary to take active 
measures to improve image quality of ssEPI DWI using 
MRI techniques while continuing to verify the clinical 
usefulness of bowel preparation techniques.

Turbo spin‑echo DWI (TSE DWI)

SsTSE DWI combines TSE readout with a single-shot 
acquisition. TSE readout is not sensitive to susceptibil-
ity artifact, whereas single-shot acquisition can shorten 
the scan time and is not sensitive to motion effect. Ini-
tially, signal loss and artifact were drawbacks of ssTSE 
DWI, because the refocusing pulses after DW preparation 
violate the Carr–Purcell–Meiboom–Gill (CPMG) condi-
tion. Imperfect 180° refocusing of RF pulses will generate 

both spin echoes (SEs) and stimulated echoes (STEs). If 
the signal phase after the excitation RF pulse aligns with 
the phase of subsequent refocusing pulses, STE does not 
occur. However, as spins are left with unpredictable mag-
netization phases after DW preparation and this condition 
is significantly worsened by the presence of tissue motion 
during DW preparation, STEs are generated. Therefore, the 
combination of imperfect refocusing RF pulses and ran-
dom signal phase after DW preparation leads to destruc-
tive interference between SEs and STEs, inconsistent sig-
nal losses, and consequent image artifacts. Alsop proposed 
a method that applies a 90° pulse, dephasing gradient, and 
rephrasing gradient to eliminate non-CPMG (i.e., STE) 
components [33]. The CPMG condition, which requires 
alignment of the initial transverse magnetization with the 
axis of the refocusing pulses, is violated due to random 
phase error accumulated during the diffusion preparation, 
which is termed non-CPMG condition. The non-CPMG 
component of the signal is effectively “hidden” along the 
longitudinal axis by a 90° pulse prior to the echo train. 
Because the non-CPMG component that causes artifacts 
is not acquired, SNR is reduced.

Split acquisition of fast spin-echo signals for diffusion 
imaging (SPLICE) [34] has been developed to overcome 
low SNR in ssTSE DWI. This sequence acquires the SE 
and STE components separately using unbalanced readout 
gradient and then reconstructs each k-space separately to 
avoid destructive phase interference. SPLICE with high SNR 
could be a new option against severe distortion. Figure 1 
shows a clinical case in which prostate imaging was obtained 
using ssEPI DWI, ssTSE DWI, and SPLICE.

Reduced field‑of‑view DWI

A recently introduced technology for EPI acquisition termed 
“reduced field-of-view” (rFOV)-DWI has potential for 
improving image quality, including issues associated with 
standard ssEPI DWI such as anatomic distortion and sus-
ceptibility artifact. rFOV-DWI can be acquired using com-
mercially available sequences such as ZOOM DWI (Philips), 
ZOOMit (Siemens), and FOCUS (GE), and employs 2D 
spatially selective excitation pulses instead of the 1D exci-
tation pulse of standard EPI DWI; therefore, it allows excita-
tion of only a small inner volume along the phase-encoding 
direction and reduces the number of phase-encoding steps 
[35–37]. This 2D excitation prolongs the time required for 
the initial radiofrequency pulse. However, the more recent 
use of parallel transmission (pTx) with independent radi-
ofrequency transmitter channels enables acceleration of 
the 2D spatially selective excitation pulse, thus improving 
the practicality of rFOV-DWI within clinical protocols [38, 
39]. Several clinical studies have already investigated the 
impact of rFOV-DWI for optimizing prostate imaging [36, 
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37, 40–44]. These studies have reported substantial improve-
ment in image quality with rFOV-DWI, including reduced 
anatomical distortion and artifacts. However, two previous 
studies (using b values of 50 and 800–1000 s/mm2 and FOV 
of 104 × 64  mm2 and 88 × 148  mm2) that assessed tumor 
detection in PCa reported no improvement in diagnostic 
performance for rFOV-DWI compared with standard DWI 
[36, 44]. Tamada et al. considered that the lack of improve-
ment in tumor detection ability using rFOV-DWI may be 
related to the lower SNR of rFOV-DWI, and the impact of 
this lower SNR on image contrast such as contrast-to-noise 
ratio (CNR), if the acquisition time of rFOV-DWI is the 
almost the same as that of standard DWI [36, 37]. Therefore, 
further technical optimization of the acquisition method is 
required to improve SNR and image contrast and thus sta-
bilize image quality in rFOV-DWI. Hausmann et al. has 
reported that reduced FOV in high b value DWI (b value of 
2000 s/mm2) in combination with T2WI could be useful for 
detecting csPCa [45].

Blurring

Another drawback in ssEPI DWI is blurring due to T2* 
attenuation, which shows an increasing tendency at higher 
field strengths [46–48]. Although parallel imaging enables a 

dramatic reduction in blurring [49, 50], it remains a problem 
in ssEPI DWI, especially in high-resolution images.

DWI with multishot EPI

Multi-shot EPI (msEPI) DWI, in which k-space data are 
acquired in multiple excitations, can reduce blurring due 
to shorter shot length, but is sensitive to motion caused by 
phase differences between shots [51, 52]. msEPI DWI can 
be acquired using commercially available sequences such as 
image reconstruction using the image-space sampling func-
tion (IRIS) in Philips, read-out-segmented EPI multi-shot 
(RESOLVE) in Siemens, and multiplexed sensitivity encod-
ing (MUSE) in GE [52–54]. In msEPI DWI, multiple excita-
tion is performed in the phase direction for IRIS and MUSE 
and in the frequency direction for RESOLVE. Regarding 
the application of msEPI DWI to prostate imaging, a recent 
study at 3T has reported that subjective image quality taking 
into account artifacts, delineation of anatomic structures and 
borders, overall sharpness, contrast, and overall subjective 
impression; and CNR of PCa and benign tissue, were all 
higher for msEPI DWI than for ssEPI DWI, but that SNR 
was lower for msEPI DWI than for ssEPI DWI [55] (Fig. 2). 
Because distortion and blurring are reduced in msEPI DWI 
compared with ssEPI DWI, we would expect msEPI DWI 
to contribute to improved diagnostic performance in local 

Fig. 1  A 40-year-old male without prostate cancer. ssEPI DWI image 
(a) shows distortion of the prostate due to air in the rectum. In com-
parison, ssTSE DWI (b) and SPLICE (c) are less affected by such 
distortion. Note the higher signal-to-noise ratio of the prostate with 

SPLICE (c) than with ssTSE DWI (b). ssEPI single-shot echo-planar 
imaging, DWI diffusion-weighted imaging, ssTSE single-shot turbo 
spin-echo; SPLICE, split acquisition of fast spin-echo signals for dif-
fusion imaging
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staging for such as extracapsular extension (Fig. 3). How-
ever, acquisition time is much longer in msEPI DWI than in 
ssEPI DWI, which must be improved before msEPI DWI can 
be applied for clinical prostate MRI.

Image contrast between benign and malignant 
tissues

Ultra‑high b value DWI (uhDWI)

In prostate mpMRI, high b value DWI (hDWI) with b val-
ues of 1500–2000 s/mm2 is commonly used in daily clini-
cal practice [20, 21]. However, even hDWI shows insuffi-
cient image contrast between benign and malignant tissues. 
Therefore, it would be useful to determine whether higher 
b value DWI could improve the clinical performance of 
PCa detection. As one possible solution, computed DWI 
obtained as a calculation image using standard b values 
such as 800–1000 s/mm2 may be useful for improving the 
image contrast [20, 21, 56]. A study that used a wide range 
of computed b values (1000–5000 s/mm2) has demonstrated 
that those in the range of 1500–2500 s/mm2 are optimal for 
PCa detection; and that computed b values of 1000 and 
3000–5000 s/mm2 exhibit lower performance related to 
insufficient signal suppression at the low b value and exces-
sive signal suppression leading to diminished anatomic clar-
ity at the higher b values, respectively [57]. A recent study 
showed that PCa detection rates in computed DWIs with 
b values of 2000 and 2500 s/mm2 were similar to that of 
native-acquired DWI with b value of 2000 s/mm2 [58]. Vural 
et al. showed that lesion detection rates were the same for 
computed b values of 2000 and 3000 s/mm2, both of which 
were better than for a computed b value of 1500 s/mm2 [59]. 
Therefore, the clinical application of computed uhDWI with 
high b value such as 3000 s/mm2 may not be realistic for 
improving PCa detection ability. In addition, computed DWI 
requires dedicated post-processing software as well as extra 
post-processing time. As a second solution in the acquisi-
tion of higher b value DWI that may have potential for the 
clinical application of uhDWI, improvement in SNR may 
be gained by state-of-the-art 3T MRI with extremely high 
gradient waveform fidelity (≈100%), achieved by improved 

eddy current calibration with maximum gradient strength 
and maximum slew rate due to precisely calculated coil 
design and high cooling efficiency. In the study of Zang 
et al. that evaluated the efficacy of native-acquired uhDWI 
for PCa detection, native-acquired uhDWI with a b value of 
3000 s/mm2 had higher area under the curve (AUC) for PCa 
tumor detection compared with native-acquired DWIs with 
b values of 1000 and 2000 s/mm2 [60] (Fig. 4). Thus, such 
diagnostic performance of uhDWI for PCa detection should 
be further confirmed in prospective multi-institutional clini-
cal trials with a larger number of patients.

Quantitative DWI for assessment of tumor 
aggressiveness in PCa

Clinical impact of accurate assessment of tumor 
aggressiveness in PCa

PCa can be classified as csPCa, for which curative therapies 
such as radical prostatectomy are indicated, or as clinically 
insignificant PCa (cisPCa), for which AS using serum pros-
tate-specific antigen (PSA) is indicated. Therefore, accurate 
pre-treatment risk stratification of PCa is essential in deter-
mining the treatment strategy. In general, csPCa is defined 
based on histopathology as Gleason score (GS) ≥ 3 + 4, and/
or tumor volume ≥ 0.5 cc, and/or extracapsular extension 
[20]. Among these determining elements of pre-treatment 
risk stratification in PCa, a tumor GS that reflects tumor 
aggressiveness would be strongly associated with signal 
intensity change on DWI and ADC map, as in the DWI 
scoring system in PI-RADS v2.1 [21] (Table 1). Systematic 
ultrasonography-guided prostate biopsy, which is a stand-
ard method for histopathological evaluation of PCa before 
treatment in patients with elevated PSA levels has several 
limitations, including underestimation of indicators of tumor 
aggressiveness such as the GS of PCa [61, 62]. Therefore, 
clinical study using quantitative parameters of DWI such 
as ADC is being actively performed to discriminate PCa 
aggressiveness.

DWI with standard mono‑exponential model

DWI reflects the Brownian movement of water molecules 
mainly within extracellular space and is influenced by 
changes in the relative volumes of glandular, epithelial, 
and stromal components, as occurs in malignancy [63, 64]. 
DWI is a key method for tumor detection in prostate mpMRI 
and also for assessment of tumor aggressiveness in patients 
with PCa [9, 65]. Previous studies that have employed ADC 
calculated using a mono-exponential model from DWI 
acquisitions could discriminate between low-risk and mod-
erate-to-high-risk PCa [9]. However, because there is much 

Fig. 2  An 80-year-old male with prostate cancer (PSA level, 
13.69 ng/mL; Gleason score, 3 + 4) in the transitional zone. A homo-
geneous hypointense lesion is seen on T2-weighted imaging (a) 
(arrow). A focal hyperintensity is depicted clearly on ssEPI DWI (b) 
and msEPI DWI (c) (arrow) DWI. SNR is higher in ssEPI DWI (b) 
than msEPI DWI (c), whereas sharpness is better in msEPI DWI (c) 
than ssEPI DWI (b). CNR between prostate cancer and benign pros-
tate is comparable between the two DWI sequences (b and c). PSA 
prostate-specific antigen, DWI diffusion-weighted imaging, ssEPI sin-
gle-shot echo-planar imaging, msEPI multi-shot echo-planar imaging, 
SNR signal-to-noise ratio, CNR contrast-to-noise ratio

◂
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overlap between the ADC values of low- and high-grade 
tumors [66–70], further optimization of DWI methodology 
is needed to improve the diagnostic performance of diffusion 
measurements.

The ADC computation assumes Gaussian behavior of 
water diffusion, whereby water molecules are treated as 
moving freely and a simple mono-exponential fitting model 
is applied to characterize the signal decay (Fig. 5). ADC is 
calculated for a pair of b values (e.g., 0 and 1000 s/mm2) 
using the following equation:

Sb = S0 ·exp{-b·ADC}.

ADC histogram analysis

ADC histogram analysis is noteworthy as a measure for 
improving the diagnostic performance of standard ADC, and 
includes metrics such as the mean, median, various percen-
tile values, skewness as a measure of the asymmetry of the 
distribution, entropy as a measure of the randomness of the 
distribution, and kurtosis as a measure of the sharpness of 
the peak of the distribution [16]. ADC parameters such as 
the 10th percentile derived from ADC histogram analysis 
have been found to have higher discrimination ability for 
tumor aggressiveness compared with the mean ADC value 
[71, 72]. Lower tumor ADC regions such as the 10th percen-
tile of ADC derived from the ADC histogram analysis may 
be related to its sensitivity to more aggressive sub-regions 

within a heterogeneous tumor in PCa [71, 73] that might 
not be appreciated using conventional metrics such as mean 
value by volume averaging. A study by Tamada et al. using 
PCa patients under AS have reported that the mean 0–10th 
percentile value of 3D whole-lesion ADC histogram analysis 
in the baseline MRI examination had the best performance 
for predicting lesion growth on serial MRI examinations, 
and the change in lesion volume on serial examinations was 
associated with tumor aggressiveness on follow-up targeted 
biopsy [16]. Furthermore, histogram analysis can be applied 
to various other Gaussian and non-Gaussian fitting models 
as well as to standard ADC. ADC histogram analysis has 
recently been performed using a simple region of interest 
(ROI) placement technique on standard Picture Archiving 
and Communication System (PACS), without using dedi-
cated software such as non-Gaussian fitting models.

Bi‑exponential model and non‑Gaussian fitting 
model

It is considered that because water molecule diffusion is 
obstructed by microstructural complexity (including cel-
lular membranes) in PCa tissues, more complex Gaussian 
and non-Gaussian models may better reflect the diffusion 
behavior in PCa, which is characterized by tissue het-
erogeneity within the tumor [74]. The bi-exponential and 
non-Gaussian fitting models for which there are abundant 

Fig. 3  An 83-year-old male with prostate cancer (PSA level, 6.6 ng/
mL; Gleason score, 3 + 4) in the peripheral zone. No lesion is appar-
ent on ssEPI DWI (a) or msEPI DWI (b), both of which show distor-
tion of the prostate due to rectal air. msEPI DWI (b) is less affected 

by distortion induced by rectal gas compared with ssEPI DWI (a). 
PSA prostate-specific antigen, DWI diffusion-weighted imaging, 
msEPI multi-shot echo-planar imaging, ssEPI single-shot echo-planar 
imaging
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research results mainly include intravoxel incoherent motion 
(IVIM), stretched exponential model, and diffusion kurtosis 
imaging (DKI).

The bi-exponential fitting and non-Gaussian behavior of 
diffusion can be investigated using DWI with high b values 
and with a relatively large number of b values, following 
recent advances in hardware and software that have enabled 

the use of higher b values such as 2000 s/mm2 and advanced 
DWI acquisition and modeling methods [75]. In IVIM and 
the stretched exponential model, it is desirable to use a large 
number of b values ranging from very low to high, which 
might be a more reliable and reproducible method for assess-
ing tumor aggressiveness compared with the mono-exponen-
tial model [76–78].

Fig. 4  A 79-year-old male with prostate cancer (PSA level, 8.01 ng/
mL; Gleason score, 4 + 3) in the posterior left region of the peripheral 
zone. A homogeneous hypointense lesion with mass effect is seen 
on T2-weighted imaging (a) (arrow). Signal intensity of the benign 
whole prostate is lower in DWI with b values of 0 and 3000 s/mm2 

(c) than in DWI with b values of 0 and 2000 s/mm2 (b). The lesion 
is depicted clearly as a focal hyperintensity (arrows) in DWI with b 
values of 0 and 3000 s/mm2 (c), compared with DWI with b values of 
0 and 2000 s/mm2 (b). PSA prostate-specific antigen, DWI diffusion-
weighted imaging



540 Magnetic Resonance Materials in Physics, Biology and Medicine (2022) 35:533–547

1 3

IVIM

IVIM is a bi-exponential fitting model that separately evalu-
ates extravascular molecular diffusion and microcirculation 
of blood within the capillaries [76, 77] (Fig. 5). It is cal-
culated using bi-exponential fitting with multiple b-values, 
with the following equation:

where D* and F are the perfusion-related diffusion coeffi-
cient and microvascular volume fraction, respectively; and 
D is the molecular diffusion coefficient.

S
b
= S0{F ∙ exp(−bD∗) + (1 − F) ∙ exp(−bD)}

Numerous previous investigations of IVIM DWI have 
reported comparable diagnostic performance of PCa risk 
stratification between IVIM (mainly D) and mono-expo-
nential model ADC [70, 79–84], whereas only one study 
has observed better performance of D in IVIM compared 
with mono-exponential model ADC [85]. Among these 
studies, two assessed IVIM DWI using b values of 2000 s/
mm2 or higher [80, 84]. In contrast, many previous stud-
ies have shown insufficient diagnostic performance of f 
in IVIM [70, 81, 83, 85].

Table 1  Scoring system of diffusion-weighted imaging for assessment of transition zone and peripheral zone in PI-RADS v2.1

PI-RADS Prostate Imaging Reporting and Data System, ADC apparent diffusion coefficient, DWI diffusion-weighted imaging

Score PI-RADS v2.1

1 No abnormality (i.e., normal) on ADC map and DWI
2 Linear/wedge-shaped hypointense on ADC and/or linear/wedge-shaped hyperintense on high b value DWI
3 Focal (discrete and different from the background) hypointense on ADC and/or focal hyperintense on high b value 

DWI; may be markedly hypointense on ADC or markedly hyperintense on high b value DWI, but not both
4 Focal markedly hypointense on ADC and markedly hyperintense on high b value DWI; < 1.5 cm in greatest dimension
5 Same as 4 but ≥ 1.5 cm in greatest dimension or definite extraprostatic extension/invasive behavior

Fig. 5  Mathematical models 
employed in diffusion-weighted 
imaging. ADC, apparent diffu-
sion coefficient; K, diffusional 
kurtosis; IVIM, intravoxel 
incoherent motion; f, perfu-
sion fraction; D*, perfusion-
related diffusion coefficient, D, 
molecular diffusion coefficient, 
ɑ, stretching parameter; DDC, 
distributed diffusion coefficient
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Stretched exponential model

The stretched exponential model reflects the deviation 
of the curve from mono-exponential behavior (Fig. 5). It 
is performed with multiple b values, using the following 
equation:

where DDC is the distributed diffusion coefficient, which 
shows the rate of signal decay with increasing b values; and 
α is the stretching parameter, which characterizes the devia-
tion of the signal attenuation from the mono-exponential 
model. A value close to one indicates high homogeneity 
in apparent diffusion, whereas a low-value result from the 
non-exponential model is caused by the addition of multiple 
components.

The diagnostic performance of the stretched exponential 
model (mainly DDC) for risk stratification of PCa tends to 
be similar to that of mono-exponential ADC [78, 86, 87]. 
These studies regarding the stretched exponential model 
were performed using high b value DWI with multiple b 
values such as 1500 s/mm2 or higher [78, 86, 87]. Sev-
eral investigators have reported that the similar diagnostic 
capabilities for assessment of tumor aggressiveness among 
mono-exponential ADC, IVIM, and the stretched exponen-
tial model may be due to strong correlations between these 
models, or between GS and these models, which may sug-
gest that these models individually provide similar informa-
tion in PCa [78, 80–82, 86].

DKI

DKI is a non-Gaussian DWI fitting model that is believed 
to better reflect the microstructural complexity of bio-
logic tissue compared with mono-exponential ADC [88]. 
Like IVIM and the stretched exponential model, DKI also 
requires higher b values during acquisition, such as 2,000 s/
mm2, and quantifies the deviation of tissue diffusion from 
a Gaussian pattern as diffusional kurtosis (K) [89] (Fig. 5). 
An elevation in K indicates greater tissue complexity and 
deviation from Gaussian behavior, and the K value has been 
reported to be higher in various malignant tumors than in 
normal tissues. DKI is calculated with multiple b values, 
using the following equation:

where K has no units and represents excess kurtosis relative 
to a mono-exponential fitting, being 0 for perfectly Gauss-
ian diffusion, and increasing for greater deviation from the 
Gaussian pattern; and D is an analog of ADC that is adjusted 
for non-Gaussian diffusion behavior.

S
b
= S0 ∙ exp{−(bDDC)

�}

(1)S = S0 ⋅ exp
(

−b ⋅ D + b2 ⋅ D2
⋅ K∕6

)

Among numerous studies with relatively small sample 
size that have compared mono-exponential ADC and DKI 
for assessing PCa aggressiveness [78, 88–93], some have 
observed better performance of either DKI or mono-expo-
nential ADC [88–90, 93], whereas others have reported sim-
ilar diagnostic performance [78, 91, 92]. A previous large 
study at 3 T that included 285 PCa patients compared the 
discrimination ability of PCa tumor aggressiveness using 
radical prostatectomy as reference standard between mono-
exponential ADC (with three b values of 0, 500, and 1000 s/
mm2) and DKI (with five b values of 0, 500, 1000, 1500, and 
2000 s/mm2) for characterization of PCa [74]. ADC and K 
were highly correlated (r = –0.82), with similar diagnostic 
performance for GS ≤ 3 + 3 tumors vs. GS ≥ 3 + 4 tumors 
(AUC 0.744 for ADC and 0.715 for K) and for GS ≤ 3 + 4 
tumors vs. GS ≥ 4 + 3 tumors (AUC 0.720 for ADC and 
0.694 for K) [75]. In addition, a recent DWI study that used 
11 b values (0, 50, 100, 200, 900, 1100, 1400, 1800, 2200, 
2500, and 3000 s/mm2) at 3T has reported diagnostic perfor-
mance of the IVIM and DKI models comparable to that of 
mono-exponential ADC for prediction of PCa tumor aggres-
siveness (GS ≤ 3 + 4 tumors vs. GS ≥ 4 + 3 tumors; AUC 
0.744 for ADC, 0.732 for D, and 0.766 for K) [80]. There-
fore, these metrics appear to be providing, to some extent, 
overlapping information for the measures of diffusivity and 
kurtosis [74, 88, 90]. Furthermore, it should be noted that 
analysis with the non-Gaussian fitting models requires dedi-
cated post-processing software and longer post-processing 
time than that required for mono-exponential ADC.

Thus, at the present time, it can be considered that no 
non-Gaussian and bi-exponential fitting models have diag-
nostic capabilities that clearly outperform mono-exponential 
ADC. In the clinical setting, the use of simple mono-expo-
nential ADC with histogram analysis may be appropriate 
for assessing PCa tumor aggressiveness. In addition, recent 
investigations have reported the potential of mpMRI includ-
ing mono-exponential ADC-based radiomics models, as a 
machine-aided approach, for predicting PCa aggressiveness 
[94–96].

Microstructural MRI

An advanced imaging technique based on DWI 
for mpMRI‑invisible csPCa

Although mpMRI is a well-established imaging method that 
is widely used in conjunction with a standardized reading 
method (PI-RADS) in prostate imaging, a certain percentage 
of csPCas are missed as mpMRI-invisible tumors [97–100]. 
To address this unmet clinical need, microstructural MRI 
has been newly developed as a quantitative technique that 
focuses on structural change in three typical microstructures 
of prostatic tissue: epithelial cells, stroma, and glandular 
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lumen [101]. Diffusion-based microstructural MRI includes 
restriction spectrum imaging (RSI), Vascular, Extracellular 
and Restricted Diffusion for Cytometry in Tumors (VER-
DICT), hybrid multidimensional MRI (HM MRI), and dif-
fusion-time dependent diffusion MRI (dMRI) using oscillat-
ing and pulsed gradient spin-echo sequences (OGSE) [102, 
103]. A summary of these diffusion-based microstructural 
MRI methods is provided in Table 2 (Fig. 6).

RSI

RSI is a novel diffusion-based technique initially developed 
for neuroimaging. It uses the data obtained from a broad 
range of multiple b values obtained in multi-directional 

diffusion images to model a distribution or a spectrum of 
isotropic and anisotropic water compartments in tissue [104, 
105]. This method might possibly enable isolation of sig-
nal from intracellular restricted water, and simultaneously 
minimize signals from extracellular hindered and free water, 
which currently hinders conventional DWI [106]. Therefore, 
as an indicator of signal arising primarily from intracellu-
lar water (in other words, cellular components) RSI high-
lights highly cellular tumors [102]. In a recent study that 
included a large number of patients with suspected PCa, 
comparable PCa detection ability was found for RSI and 
conventional DWI; however, RSI had superior specificity 
for transition zone (TZ) lesions [107]. Such improvement in 
diagnostic specificity for TZ lesions by RSI could contribute 

Table 2  Diffusion-based microstructural imaging

RSI restriction spectrum imaging, VERDICT Vascular, Extracellular and Restricted Diffusion for Cytometry in Tumors, HM MRI hybrid multidi-
mensional MRI, dMRI diffusion-time dependent diffusion MRI, OGSE oscillating and pulsed gradient spin-echo sequences, PCa prostate cancer, 
GS Gleason score

Sequence Imaging technique Target microstructural component Characterization in PCa

RSI Multi-directional diffusion-based imaging 
technique

Cellular component Highly cellular index

VERDICT Diffusion-based imaging technique with a 
mathematical model

Microvascular, extracellular-
extravascular and intracellular 
space

Increased intracellular and microvascular 
volume and decreased extracellular-
extravascular volume

HM MRI Combination of both diffusion and 
T2-relaxation technique

Stroma, epithelium, and lumen Increased epithelium volume and decreased 
lumen and stroma fractional volume

dMRI using OGSE Diffusion-based imaging technique, 
extremely shortened diffusion time

Various indices such as intracel-
lular fraction and cellularity

Increase of intracellular fraction and cel-
lularity with increased GS

Fig. 6  Representation of prostate histopathology in benign tissue (a) 
and prostate cancer (b). Microstructural MRI focuses on change in 
four types of prostatic microstructure, represented here as follows: 

epithelial cells (dark gray areas), stroma (gray area), glandular lumen 
(white areas), and microvasculature (small black circles)
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to prediction of csPCa in PI-RADS category 3 equivocal 
lesions, which are associated with a low detection rate of 
csPCa in the TZ [28, 108].

VERDICT

VERDICT is a diffusion-based imaging technique that 
combines a DWI acquisition with a mathematical model 
and assigns the diffusion signal to three separate water 
compartments: microvascular, extracellular–extravascular, 
and intracellular space [101, 109]. PCa is typically char-
acterized by an increase in the volume of intracellular and 
microvascular space and a decrease in the volume of extra-
cellular–extravascular space [102]. In a study of 70 patients 
with suspected PCa or undergoing AC, intracellular volume 
fraction obtained from VERDICT MRI using b values of 
90, 500, 1500, 2000, and 3000 s/mm2 (total imaging time, 
12 min 25 s) had a higher AUC for discriminating PCa with 
a Gleason 4 component from benign tissue and/or PCa with 
GS = 3 + 3 compared with ADC obtained with standard 
ADC using b values of 90, 500, 1500, 2000, and 3000 s/
mm2 (total imaging time, 5 min 16 s) (AUC 0.93 vs. 0.85, 
respectively) [110].

HM MRI

Previous studies have shown that T2 and ADC are strongly 
interdependent, and that distinct populations of water mol-
ecules in each voxel with specific paired T2 and ADC values 
can be identified [104, 105]. HM MRI measures change in 
ADC and T2 as a function of echo time (TE) and b value, 
respectively, and uses these changes as a source of informa-
tion about underlying tissue microstructure components such 
as stroma, epithelium, and lumen change [102, 111]. HM 
MRI is acquired using a spin-echo module with diffusion-
sensitizing gradients placed symmetrically about the 180° 
pulse, followed by ssEPI readout and different combinations 
of TE and b values (TE of 47, 75, and 100 ms; and b values 
of 0, 750, and 1500 s/mm2) (total imaging time, 8–15 min) 
[102, 111]. Investigation into the use of HM MRI for the 
prostate is being actively conducted at the University of 
Chicago [111–113]. In this method, microstructure tissue 
component volumes are calculated by fitting the HM MRI 
data to the three-compartment signal model. Distinct paired 
ADC and T2 values are associated with each compartment, 
using the following equation:

PCas are characterized by increased epithelium volume 
and reduced lumen and stroma fractional volumes by HM 
MRI [111]. In addition, it is noteworthy that correlation 

(2)
S

S0

=
∑n=3

n=1
V
n
× exp

(

−ADC
n
× b −

TE

T2
n

)

coefficients were higher between the fraction volumes of 
tissue components and tumor GS than between T2 values 
and tumor GS and between ADCs and tumor GS [113].

Thus, the findings of previous studies indicate that 
VERDICT MRI and HM MRI are expected to improve 
characterization in PCa, but that continued technical opti-
mization of these advanced MRI sequences is required to 
shorten the acquisition time before they can be considered 
for broader clinical application.

dMRI using OGSE

dMRI using OGSE is a novel DWI technique with 
extremely shortened diffusion time that enables the cal-
culation of microstructural components such as cellularity 
in prostate tissue, using a mathematical model. The total 
acquisition time is around 5 min [103]. A recent prelimi-
nary study has demonstrated that intracellular fraction and 
cellularity obtained from dMRI using OGSE had a posi-
tive correlation with GS, and AUC of the cellularity for 
discriminating between low-grade PCa and intermediate-
to-high-grade PCa was 0.964 [103]. Although dMRI using 
OGSE acquired with a clinically acceptable imaging time 
is expected to have clinical application for PCa charac-
terization, this method suffers from low spatial resolution, 
which requires improvement; in addition, it is necessary 
to verify the association between the microstructural MR 
findings and the pathological findings.

Conclusion

The role of prostate DWI is continuing to increase in the 
clinical management of PCa in patients with elevated PSA 
levels, in such as tumor detection, localization, and char-
acterization. Technological innovations in MRI have led 
to the proposal of various DWI sequences and post-pro-
cessing technologies as alternatives to standard ssEPI for 
optimizing qualitative visual assessment in DWI. Regard-
ing the clinical application of quantitative DWI in the risk 
stratification of PCa, there appears to be no DWI method 
with bi-exponential fitting model and non-Gaussian fitting 
model that outperforms mono-exponential ADC with his-
togram analysis at the present time. In the future, we can 
expect state-of-the-art technologies and sequences in DWI, 
including microstructural MRI, to play a more important 
role in evaluating csPCa.
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