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Abstract
Background There is increasing appreciation of the association of obesity beyond co-morbidities, such as cancers, Type 2 
diabetes, hypertension, and stroke to also impact upon the muscle to give rise to sarcopenic obesity. Phenotypic knowledge 
of obesity is crucial for profiling and management of obesity, as different fat—subcutaneous adipose tissue depots (SAT) 
and visceral adipose tissue depots (VAT) have various degrees of influence on metabolic syndrome and morbidities. Manual 
segmentation is time consuming and laborious. Study focuses on the development of a deep learning-based, complete data 
processing pipeline for MRI-based fat analysis, for large cohort studies which include (1) data augmentation and preproc-
essing (2) model zoo (3) visualization dashboard, and (4) correction tool, for automated quantification of fat compartments 
SAT and VAT.
Methods Our sample comprised 190 healthy community-dwelling older adults from the Geri-LABS study with mean age 
of 67.85 ± 7.90 years, BMI 23.75 ± 3.65 kg/m2, 132 (69.5%) female, and mainly Chinese ethnicity. 3D-modified Dixon 
T1-weighted gradient-echo MR images were acquired. Residual global aggregation-based 3D U-Net (RGA-U-Net) and 
standard 3D U-Net were trained to segment SAT, VAT, superficial and deep subcutaneous adipose tissue depots (SSAT and 
DSAT). Manual segmentation from 26 subjects was used as ground truth during training. Data augmentations, random bias, 
noise and ghosting were carried out to increase the number of training datasets to 130. Segmentation accuracy was evalu-
ated using Dice and Hausdorff metrics.
Results The accuracy of segmentation was SSAT:0.92, DSAT:0.88 and VAT:0.9. Average Hausdorff distance was less than 
5 mm. Automated segmentation significantly correlated R2 > 0.99 (p < 0.001) with ground truth for all 3-fat compartments. 
Predicted volumes were within ± 1.96SD from Bland–Altman analysis.
Conclusions DL-based, comprehensive SSAT, DSAT, and VAT analysis tool showed high accuracy and reproducibility and 
provided a comprehensive fat compartment composition analysis and visualization in less than 10 s.

Keywords Obesity · Subcutaneous adipose tissue · Visceral adipose tissue · Deep subcutaneous adipose tissue · Magnetic 
resonance imaging · Machine learning · Deep learning · Segmentation · Quantification · Dashboard
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Introduction

World Health Organization defines obesity or overweight 
as abnormal body fat accumulation, which is harmful to 
health. Improper diet, lack of physical activities, or hered-
ity lead to obesity [1]. Globally, obesity is growing rapidly, 
about 15% of the world population (adults and children 
in developing and underdeveloped countries) is obese or 
overweight [2]. Obesity-related chronic condition manage-
ment can be expensive, annually US healthcare spends 
about 21% (~ 190 billion) of its expenditure on obesity-
related illnesses. Overweight and obesity are associated 
with a wide range of co-morbidities, such as cancers, type 
2 diabetes, hypertension, stroke, Heart Failure, depression, 
sleep disturbances, renal failure, asthma, chronic back 
pain, osteoarthritis, pulmonary embolism, gallbladder 
disease, and increased risk of disability. Obesity is consid-
ered the world’s most preventable leading cause of death, 
accounting for more than three million deaths worldwide 
annually [3] and 14% of premature deaths in Europe [4].

In the recent years, there is increasing attention about 
the geriatric syndrome of sarcopenic obesity, whereby 
synergistic complications from both sarcopenia and obe-
sity lead to negative health impacts such as loss of inde-
pendence, disability, reduced quality of life, and increased 
mortality [5]. With the increasing prevalence of obesity 
and its tremendous health effects, it is important to invest 
time and effort into the research of obesity and its associ-
ated diseases to develop better care and prevention [6, 8]. 
Worldwide there are many clinical trials, such as GEN-
YAL (prevention of obesity in childhood); SWITCH (com-
munity-based obesity prevention trial); and clinical trials 
exploring exercise intervention on obese women Similarly, 
in Singapore, pertinent studies include SAMS (Singapore 
adult Metabolism Study) [6] where it was identified that 
different body fat compartments have varied influence in 
metabolic syndrome as well differential body fat partition-
ing and abnormalities in muscle insulin signaling asso-
ciated with higher levels of adiposity [7]; and GUSTO 
(Growing towards a healthy outcome in Singapore) [8] 
showed association of early life weight gain with abdomi-
nal fat compartments in different sex, ethnicity [9], and 
Longitudinal Assessment of Biomarkers for characteriza-
tion of early Sarcopenia and predicting frailty and func-
tional decline in community-dwelling Asian older adults 
Study” (Geri-LABS) which highlighted the deleterious 
impact of sarcopenic obesity on muscle performance [5]. 
Many countries, such as Singapore have declared war on 
obesity. Understanding the phenotypes of obesity is crucial 
for the risk profiling and management of the condition.

Advanced cross-sectional imaging like Computed 
Tomography (CT) and Magnetic resonance (MRI) are now 

part of large cohort studies, allows in vivo visualization 
and quantification of fat compartments, helps in monitor-
ing interventional changes, and characterization of inter- 
and intrasubject differences. Anatomically, abdominal fat 
depots are broadly classified as Subcutaneous Adipose Tis-
sue (SAT) and Visceral Adipose Tissue (VAT) depots. SAT 
and VAT depots are the two major anatomic distributions 
with unique anatomic, metabolic, or endocrine properties. 
SAT region is defined as the region that is superficial to 
the abdominal wall musculature, whereas visceral fat is 
deep to the muscular wall and includes the mesenteric, 
subperitoneal, and retroperitoneal components.

Abdominal SAT is further subdivided into superficial 
and deep SAT (SSAT and DSAT) separated by a fascial 
plane (fascia superficialis). SAT segmentation is easier 
than VAT as it is a continuous region and is enclosed 
between the internal and external abdominal boundaries, 
whereas VAT is distributed around the organs, and is dis-
continuous (with small and large regions).

Literature indicates that each fat compartment has dif-
ferent risk profiles for obesity-related comorbidities [10]. 
To understand the influence of each fat compartment on 
the body, accurate quantification of abdominal fat regions, 
such as VAT, DSAT, and SSAT becomes essential. Large 
cohort studies generate a large number of imaging data-
sets, and the time needed for quantitative analysis data 
increases accordingly. Labor-intensive manual segmenta-
tion and intra-/interobserver variability are other common 
pain points. Manual quantification by an expert will be 
accurate and; therefore, ideal, but with large datasets, this 
becomes impractical and expensive. There is a need for an 
accurate, precise, robust, automated, or at least, a semi-
automated framework that performs segmentation and 
quantification in a timely and consistent fashion. Various 
methods listed in the literature for abdominal fat compart-
ments (like SAT and VAT) segmentation are based on the 
fuzzy clustering [11, 12], morphology [13], registration 
[14, 15], deformable model [16], and graph cuts [17] have 
limited scalability options. Advancements in deep learn-
ing-based methods [18] have brought feasibility for quanti-
fication of fat compartments either using 2D/3D CT or MR 
images. Estrada and colleagues [19], proposed FATSegNet 
using 2D-competitive dense fully convolutional networks 
(CDFNet), segmenting the images in axial, coronal, and 
sagittal planes and reported an accuracy of 97% for SAT 
and 82% for VAT in 641 subjects from Rhineland Study, 
where only 38 datasets were annotated by the experts. 
Most literature reports a new segmentation technique 
for SAT and VAT, but not for all the 3 fat compartments 
(SSAT, DSAT, and VAT). In addition, a comprehensive 
tool that (1) accurately segments SAT (SSAT and DSAT) 
and VAT, rapidly with high reproducibility; (2) visualizes 
data and statistics; and (3) corrects for errors, is lacking.
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Study proposition

In this paper, we propose a Residual Global Aggregation-
based 3D U-Net (RGA-U-Net) for segmentation of fat com-
partments (SSAT, DSAT, and VAT) and evaluate its perfor-
mance and suitability for automated analysis in future large 
cohort studies.

In addition, we built a Comprehensive Abdominal Fat 
(Analysis) Tool (CAFT) around the proposed deep learning 
algorithm that includes:

• Deep learning model zoo: (1) a standard U-Net (2) RGA-
U-Net;

• Dashboard for the data presentation and analytics, which 
allows automatic lumbar-based quantification and analy-
sis—3D visualization, percentage analysis of the whole 
abdomen (volumetric) or lumbar level-based (cross-sec-
tional area);

• Interactive correction tool that allows manual editing 
of contours (between background and outer abdominal 
boundary, between SSAT and DSAT—correction of Fas-
cia Superficialis, and inner abdominal boundary which 
separates SAT and VAT) for correction of segmentation 
errors.

which facilitates expanding the repository of models, 
allows correction of the results, and presents a complete 
visualization of fat depots quantification.

Materials and methods

MR data acquisition

The “Longitudinal Assessment of Biomarkers for charac-
terization of early Sarcopenia and predicting frailty and 
functional decline in community-dwelling Asian older 
adults Study” (Geri-LABS) is a prospective cohort study 
involving cognitively intact and functionally independent 
adults aged 50 years and older residing within the commu-
nity [20]. We acquired 190 abdominal MRI scans from these 
subjects using a 3 T MRI scanner (Siemens Magnetom Trio, 
Germany) and a 6-channel body matrix external phased-
array coil. Written consent was obtained by all subjects 
and the study was reviewed and approved by the National 
Healthcare Group institutional review board. The cohort’s 
mean age was 67.85 ± 7.90 years, BMI 23.75 ± 3.65 kg/
m2, and predominantly female (69.5%) and Chinese (91.6%) 
in ethnicity. Common comorbidities, include hypertension 
(46.8%), hyperlipidemia (65.8%), and Type II diabetic mel-
litus (21.1%).

3D-modified Dixon T1-weighted gradient-echo images 
(dual-echo VIBE with T2* correction) images were acquired 

for each patient. Axial HASTE was also acquired as a rou-
tine structural scan in the study, but the images from this 
sequence were not used for any computations. Scans of the 
abdomen and pelvis spanning the diaphragm to the perineum 
were acquired. Each pulse sequence was completed in a sin-
gle breath hold of 20 s, with subjects in supine position and 
arms placed at the sides. Selected images of the abdomen 
between L1-L5 and T10-L3 levels of the lumbar spine were 
extracted for analysis based on which regions were imaged.

In each patient, 60–80 axial slices in the abdominal 
region, 20–30 in thoracic–abdominal cavity of 5 mm slice 
thickness, with no interslice gaps, and 1.56 × 1.56 mm 
in-plane resolution was acquired. For the T1-weighted 
sequence, settings were: TR 6.62 ms, TE 1.225 ms, FA  10o, 
and acquisition bandwidth 849 Hz/pixel respectively. Water-
only and fat-only images were generated by a linear com-
bination of in-phase and out-phase images. Fat–water swap 
distortions in the acquired images were corrected during the 
reconstruction processes. The dataset had a mix of different 
age groups, fat-mass, thoracic, and lumbar spine regions, 
and variations in dimensions. Out of the 190 datasets, only 
26 datasets had manually drawn ground truth which was 
considered for model training. The data augmentation was 
performed using 26 original datasets to increase the total 
number to 130 datasets, as described in the data augmenta-
tion section.

Data augmentation

MR data acquisition relevant data augmentation was per-
formed on the fly using the Torchio library [21]. Four dif-
ferent data augmentations performed were (1) Random-
Biasfield artifacts—generated by randomly changing the 
intensity of very low frequency across the whole image (2) 
Blur artifacts- using random-sized Gaussian filter and vary-
ing standard deviations (3) Random Ghosting artifacts—
along the phase-encode direction, modeled by choosing the 
number of ghosts in the image (4) Random Noise—by add-
ing Gaussian noise under normal distribution with random 
mean and standard derivation. Data augmentation provided 
a total number of 130 datasets = 26 (original) + 4 (augmenta-
tions) × 26. The datasets were randomly (blinded) divided 
into training (~ 80%) and testing (~ 20%) datasets, i.e., 104 
for training/validation and 26 for testing. Further 104 data-
sets were divided for training and validation using a ratio of 
80: 20 [22]. In our study, data augmentation was done only 
once before the training, whereas the framework provides 
option for augmentation on the fly in each epoch of training. 
Care was taken to ensure that datasets used for testing were 
not included in the training. From each subject about 7000 
patches were generated and in total, we had about 700 K 
patches from the thoracic and lumbar regions for training 
the model.
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Data segmentation

Fat compartments, segmentation was performed in 3 stages: 
Preprocessing—removal of imaged arms and other nonab-
dominal/thoracic regions; and data augmentation; Segmen-
tation—using 3D U-Net or RGA-U-Net for SAT/VAT (two 
class), and SSAT/DSAT/VAT (three class) region segmenta-
tion, and Postprocessing—for spine positions based quanti-
fication of fat compartments.

Preprocessing

Quality assurance was performed to make sure that every 
scan is free of artifacts like fat–water swaps, and motion 
artifacts from heavy breathing or patient movements. The 
number of slices in each training dataset was matched with 
the marked ground-truth slices and the extra slices were 
removed from the original datasets. Arm regions-based arti-
facts were automatically removed using the projection-based 
method, with morphological and connected-component 
analysis (supplementary notes and figures).

Network models

As a proof-of-concept, we have used (1) 3D U-Net and (2) 
modified U-Net with residual global aggregation for global 
information fusion. These modifications overcome the limi-
tations of U-Net and avoid an increase of depth which is 
computationally expensive with delayed convergence [23].

U‑Net

A popular semantic segmentation network has convolu-
tional layers similar to FCN [24] and SegNet [25]. U-Net 
[26] has symmetric architecture where the encoder extracts 
spatial image features and decoder reconstructs output seg-
mentation map. The encoder uses a convolutional network, 
i.e., a sequence of MxM convolutions, followed by max-
pooling operation with stride parameters. A convolutional 
sequence is generally repeated four times, with filter size 
doubled after each down-sampling, and the output of the 
encoding section’s fully connected layer connected to the 
input of the decoder at the same level. The decoding sec-
tion up samples the feature map using transposed convolu-
tion [27]. In the last layer, a 1 × 1 convolution operation 
is performed to generate the final semantic segmentation 
map. At each convolutional layer ReLU (rectified lin-
ear unit) is used as the activation function [28], except 
at the final one where the sigmoid activation function is 
employed. U-Net uses skip connections in all the levels 
that allow the network to retrieve the spatial information 
lost due to pooling operations. In our study, the standard 
3D-UNet available in Tensorflow was considered as the 
first model to test its efficacy for the segmentation of dif-
ferent abdominal fat depots. Recently, a PyTorch imple-
mentation based on the state-of-the-art NN-UNet has been 
proposed and tested on diversified biomedical opensource 
datasets [29] (Fig. 1).

Fig. 1  Schematic representation of different components of the proposed tool for cohort studies
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Residual global aggregation (RGA‑U‑Net)

We employed a modification of 3D U-Net with residual 
global aggregation that allows attention on targeted fat com-
partments, fascial plane, and its varying shapes and sizes 
to improve semantic segmentation. Short-range residual 
connections (skip connections with summation) were intro-
duced in encoding as in ResNet [30] which facilitates bet-
ter performance. Attention modules act like an up-sampling 
residual connection ensuring relevant spatial information to 
be brought across in the skip connection and reduced the 
number of redundant filters in the network. Residual Global 
Aggregation U-Net (RGA-U-Net) architecture used in the 
study is illustrated in Fig. 2, consists of a regular residual 
block with two consecutive 3 × 3 × 3 convolutions with a 
stride of 1, along with batch normalization   [31] and Rec-
tified Linear Units (ReLU) [32]. The residual block func-
tions as an input block, followed by down-sampling blocks 
with increased filter size to extract spatial information at 
each convolutional layer. The latent space at the end of the 
encoder network contains fully connected features which 
are transferred to the decoder network. The decoder network 
uses three up-sampling blocks [33] followed by an output 
1 × 1 × 1 convolution block with a stride of 1, output dropout 
rate [34] of 0.5 before the final 1 × 1 × 1 convolution, and a 
weight decay [35] of 2e−6 . Each up-sampling decoder block 
(Fig. 3) contains enriched feature maps with prominent input 
features, due to the global aggregation of information. Gat-
ing signal, g , is created using feature maps, which are used 

as a reference while pruning irrelevant feature responses. 
The low-level feature map from the decoder path xl, under-
goes a stride-based convolution to match the dimensions of 
g . The two signals are summed elementwise, where relevant 
weights found in both signals become accentuated. The out-
put is passed through a RELU layer and undergoes a 1 × 1 × 1 
convolution to have the same number of feature maps as 
xl. The output is then passed through a sigmoid layer to 
generate attention coefficients �

i
∈ [0, 1] , where relevant 

weights in filters contain larger attention coefficients. These 
coefficients are up-sampled through trilinear interpolation 
and multiplied element-wise with the original signal xl to 
scale xl and retain only relevant feature maps. This tech-
nique is known as additive attention. Since SSAT and DSAT 
have broken fascia superficialis in some slices with no clear 
boundary, incorporating self-attention prevents the network 
from creating too many false positives in the separation of 
SSAT, DSAT, and VAT.

Network training

Fat-only image (single contrast) was used as input, which 
was randomly cropped into 16 × 16 × 16 patches to have 
sufficient training data. 1500 epochs, batch size of 16, and 
ADAM optimizer [36] with a learning rate of  1e−3 was used 
for the gradient-descent algorithm with cross-entropy loss 
function [37]. To avoid overfitting, weighted decay of  2e−6 
and a dropout rate of 0.5 were employed to train the model 
with patience, i.e., the number of epochs to wait before early 

Fig. 2  Proposed network architecture: Residual Global Aggregation Network with self-attention block at the decoder to aggregate global features



210 Magnetic Resonance Materials in Physics, Biology and Medicine (2022) 35:205–220

1 3

stop if no progress on the validation was 5 epochs. The neu-
ral network was trained on NVIDIA GPU Titan X 24 GB 
with 128 GB RAM in Ubuntu-18.04 LTS, using python-3.6 
and Tensorflow-2.2 [38] with the on-premises computing 
device. The patch size was based on the average number of 
slices available in the datasets. Most subjects had about 60 
slices whereas some of the subjects had about 30 slices in 
their thoracic–lumbar region scans. Hence, we decided to 
consider a 16 × 16 × 16 patch size with an overlap of 8. In 
addition, we considered balancing between discontinuous 
smaller VAT regions and continuous SAT regions repre-
sentations in patch size. Different batch sizes (16, 32, 64) 
were evaluated over 250 epochs for their computation time, 
accuracy, and entropy loss before putting the model for full 
training. We found the batch size of 16 was most efficient in 
terms of accuracy, time, and entropy loss and hence selected 
it for full model training.

Ground‑truth generation

Ground truth is important, especially for supervised learn-
ing. However, the generation of ground truth with enough 
abdominal/thoracic scans becomes laborious. Hence, we 
combined a semi-supervised method for ground-truth 

generation. We selected datasets from 50 subjects out of 
datasets the total cohort of 190 subjects based on BMI (low-, 
medium-, and high-fat subjects) and visual inspection of dif-
ferent fat compartments. From the 3 different groups, we fur-
ther selected 26 of them with almost equal representations 
from low-fat, medium-fat, and high-fat groups. Ground truth 
was established by manually segmenting the boundaries of 
the fat compartments by a trained technician (C.W.X), and 
reviewed by an experienced abdominal radiologist (C.H.T.). 
For VAT, we included omental, mesenteric, and retroperito-
neal fat. Small depots of intermuscular fat within the psoas 
and abdominal wall musculature were disregarded. Using the 
ground truth, we calculated the total fat volume (TFV) and 
average SSAT, DSAT, and VAT per slice to distribute them 
into different groups, i.e., SSAT + DSAT + VAT and classi-
fied as low if TFV < 3000 cc; medium 3000 ≥ TFV < 6000; 
and high if TFV ≥ 6000 cc, respectively. The in-house tool 
allowed clinicians (with experience greater than 10 years) 
to correct and draw the fat compartments that were saved 
as ground truths [39]. The training set had the following 
characteristics:

• Age matched to the study data: 69.42 ± 6.82
• Gender matched: M: 8 and F: 18

Fig. 3  Illustration of automatic slice extraction a sagittal plane input image. b Output of RGA-U-Net semantic segmentation. c Results of Spine 
extraction (d) Spine disc position extraction results
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• BMI—23.92 ± 5.78
• Anatomy: Thoracic and abdominal regions and their mix.
• Low BMI data sets—6; Medium: 9 and High: 11 propor-

tional to the total cohort.
• Good mix of clean and artifact images of various kind—

bias field inhomogeneities, motion artifacts, skin folding 
etc. (Fig. 6A–D).

Postprocessing: SPINE disc‑based fat compartment analysis

Discs were segmented using the sagittal plane image by 
thresholding, morphological operations, and connected 
component analysis (Fig. 3) to automatically localize and 
associate the fat regions to disc-based regions (refer to sup-
plementary notes for the algorithm).

Evaluation metrics

Multiclass Dice ratio (DR) and 3D-Hausdorff distance (3D-
HD) and averaged Hausdorff distance (AVD) [40] were used 
for evaluating segmentation/classification results at two 
levels—(1) Total fat region and (2) individual subregions 
– C1:SSAT, C2:DSAT, and C3:VAT. Binary masks of the 
Total-fat region and class-based subregions were generated 

for evaluation metric computations. Fat sub-region volumet-
ric analysis Vr was computed using Eq. 1,

where TPsat represent predicted voxel count of C1, TPdsat 
for C2, TPvat for C3, and Vxyz represent voxel resolution of 
each subject as shown in Table 1.

Percentage subregion volumes %Vc was calculated using 
Eq. 2, where TPv is the true positive volume of a class and 
∑

TPi is the total volume of the fat region.

Dashboard and visualization

Clinical management and large cohort studies need a dash-
board for data analysis and visualization. The proposed 
dashboard (Fig. 4) populates the whole abdomen, and lum-
bar position-based fat distribution information required for a 
clinician, or a researcher which is useful in investigating fat 
depots, analyze their possible effects, understand the effects 
of interventions on fat compartments, etc.

(1)Vr =
(

TPssat + TPdsat + TPvat
)

× Vxyz × 1000

(2)Vc =
TPv
∑

TPi
× 100

Table 1  Dice indices-based performance comparison of models (U-Net and RGA-U-Net) for 2-class and 3-class based fat segmentation and 
Hausdorff distance metrics of U-Net and RGA-U-Net for 2-class and 3-class-based fat segmentations

SAT VAT Total fat

DSI score for training (2 class)
 U-Net 0.9597 ± 0.0232 0.9068 ± 0.0450 0.9342 ± 0.0950
 RGA-U-Net 0.9711 ± 0.012 0.9136 ± 0.042 0.9427 ± 0.027

DSI score for testing (2 class)
 U-Net 0.9599 ± 0.022 0.8947 ± 0.0245 0.9302 ± 0.0209
 RGA-U-Net 0.9712 ± 0.010 0.9015 ± 0.044 0.9336 ± 0.033

SAT HD (mm) VAT HD (mm) Average HD (mm)

Hausdorff distance for SAT and VAT segmentation—2 class
 U-Net 4.2164 ± 0.4271 4.6363 ± 0.3437 4.4263 ± 0.351
 RGA-U-Net 4.1867 ± 0.4292 4.6007 ± 0.4998 4.3937 ± 0.4370

SSAT DSAT VAT Total Fat

DSI score for training (3 class)
 U-Net 0.9090 ± 0.023 0.8727 ± 0.035 0.8048 ± 0.113 0.8781 ± 0.062
 RGA-U-Net 0.9181 ± 0.021 0.8824 ± 0.038 0.9266 ± 0.032 0.9494 ± 0.022

DSI score for testing (3 class)
 U-Net 0.9071 ± 0.021 0.8660 ± 0.043 0.7426 ± 0.140 0.8534 ± 0.088
 RGA-U-Net 0.9148 ± 0.013 0.8802 ± 0.038 0.9048 ± 0.028 0.9412 ± 0.024

SSAT HD (mm) DSAT HD (mm) VAT HD (mm) Average HD (mm)

Hausdorff distance for SSAT, DSAT and VAT segmentation—3class
 U-Net 4.8385 ± 0.023 4.5830 ± 0.4202 5.5176 ± 0.113 4.9797 ± 0.4015
 RGA-U-Net 4.6960 ± 0.5052 4.4963 ± 0.3616 4.5990 ± 0.3231 4.5971 ± 0.3494
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The tool developed using python can be deployed on any 
platform, has the following features (Fig. 4B).

• Visualization of different fat regions—SSAT, DSAT and 
VAT—2D slice-wise and 3D volume

• Total fat Analysis—Profile, Percentage and Volume

• Subregion fat analysis—slice-based distribution and 
profile stats

• Spine position-based fat volume and percentage analy-
sis.

• Calculations of BMI and Waist to hip ratio (WHR).

Fig. 4  Fat segmentation and analysis tool dashboard with its features (a) Plots of slice-based volume analysis and fat percentage calculation. b 
Slice-wise SSAT, DSAT, and VAT depot volume analysis. c Spine disc and inter disc-based volume analysis of SSAT, DSAT, VAT, and Total fat 
depots. d Fat percentage-based analysis for Spine disc- and inter disc-based SSAT, DSAT, VAT, and Total fat depots. e 2D and 3D Visualization 
of SSAT, DSAT and VAT depots
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Correction tool

The correction tool enables interactive correction, of the 
segmentation results, by the user. The correction window 
allows the user to select the boundary to edit from the set 
of detected SAT-VAT/SSAT-DSAT/Background—outer 
abdominal wall boundaries. The edges of each compart-
ment are converted as editable contours by placing 40 points 
evenly on the edges as shown in Fig. 5. These points can 
be manipulated (drag, add, delete) to correct the inaccurate 
segmentation regions. This feature is only enabled for those 
slices that are already segmented. In the case of VAT depot 
correction, the inner abdominal wall contour is used as a 
mask to exclude the SAT depots. A painting tool is created 
to paint the discontinuous regions of the VAT depot.

Results

Multiclass fat compartment quantification plays an impor-
tant role in the evaluation of different fat depots and their 
influence on various conditions like metabolic syndrome, 
obesity, cardiovascular risks, etc. Both 3D U-Net and RGA-
U-Net performed accurate segmentation and quantification 
of total abdominal fat and individual fat compartments, i.e., 
Superficial-SAT (C1), Deep-SAT (C2), and Visceral fat 
(C3). Training and testing dice indices and Hausdorff dis-
tance metrics (Mean ± SD) for two-class (SAT and VAT) 
and three class (SSAT, DSAT, and VAT) are described in 
Table 1.

Figure 6A illustrates the variability in datasets (low- to 
high-fat, multiple fasciae, skin folding, bias field variations, 
discontinuous fascia, etc.) used in the study and its predicted 
results along with the ground truth. Figure 6B, shows a com-
parison of predicted results and ground truth from a few 
sample datasets (low-t, medium-, and high-fat subjects). 
Figure 6C, illustrates the learning process of standard 3D 
U-Net and RGA-U-Net during the training of the models. 
During the initial iterations, RGA-U-Net functions like a 
2-class classifier segmenting the SAT and VAT and later 
builds on segmenting SAT into SSAT and DSAT, whereas 
the standard U-Net functions as a 3-class classification from 
the initial iterations. Figure 6D, showcases the misclassifi-
cation and under segmentation examples in low-, medium-, 
and high fat subjects.

Box plots (Supplementary figure S2) indicate an accuracy 
of segmentation in original and augmented datasets by both 
network models, which reinforces that the networks were 
good at generalization and efficiently handles data variabil-
ity. Further, it emphasizes that the proposed RGA-U-Net 
network had better accuracy across subject categories and 
for SSAT, DSAT, and VAT than U-Net. We observed (Fig. 7) 
varied distribution of fat compartments (SSAT, DSAT, and 
VAT) in low-, medium- and high-fat subjects.

Agreement and responsiveness of the method with ground 
truth were evaluated using concordance correlation analy-
sis, correlation coefficient [41], and Bland–Altman analy-
sis (Fig. 8A). Correlation studies illustrate the relationship 
between segmentation and ground truth, but not their differ-
ences, whereas Bland–Altman analysis, based on the evalu-
ation of agreement between two quantitative measurements 

Fig. 5  Showing the working of correction tool to correct Fascia Line to improve the segmentation of SSAT and DSAT region
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Fig. 6  A Illustrates the dataset variability of the training and testing 
cohort used along with the comparison of predicted results against the 
ground truth. a Bias field artifact, b low-fat subject having discontin-
uous fascia, c skin folding, and movement artifact, d an example of 
multiple fasciae, e low contrast discontinuous fascia. B Shows com-
parison of predicted results and ground truth from a few selected 
sample datasets of low-, medium-, and high-fat subjects. C Illustrates 
the comparison of U-Net and RGA-U-Net’s training phase at differ-

ent epochs. The figure demonstrates the differences in the learning 
process of different fat compartments like SSAT, DSAT, and VAT 
regions. RGA-U-Net excludes spine region and inter-disc regions 
whereas U-Net seems to classify some regions of the spine as VAT. D. 
Showcases the examples of misclassification, and under segmentation 
of DSAT and SSAT. The top two rows correspond to low-fat subjects, 
the third and fourth rows correspond to medium-fat subjects while the 
last two rows correspond to high-fat subjects respectively (continued)

◂
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Fig. 7  Distribution of SSAT, DSAT, and VAT in low-, medium-, and high-fat subjects. SSAT depot volumes are almost the same across low- and 
medium-fat subjects and marginally increases in high-fat subjects. DSAT and VAT depots dynamically change in different groups of subjects

Fig. 8  A Correlation analysis of segmentation result with ground 
truth for U-Net and RGA-U-Net predicted segmentation volumes. 
Graphs indicate a good correlation for all the fat compartments 
though there is under segmentation of VAT by U-Net. B Bland–Alt-

man plots analyzing the agreement/mismatch between the ground 
truth and segmentation for the training datasets. It is evident from the 
graph that U-Net had under-segmentation for all the fat compartments 
whereas RGA-U-Net shows better accuracies
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using the mean difference and limits of agreement helps to 
understand the differences.

This technique is useful to evaluate bias of the net-
work; estimate agreement interval; and identity possible 
over-and under-estimation (Fig. 8B). Our analysis shows 
DSAT is underestimated in U-Net whereas RGA-U-Net 
performs well. Both network models under-segmented the 
SSAT region, pointing to the error in the identification 
of the right facial plane from multiple fasciae. In VAT 
segmentation RGA-U-Net outperforms U-Net which pro-
duces under-segmentation especially in smaller regions 
near the pelvic area and near the spine. The correlation 
coefficients for U-Net were 0.9933, 0.9908, 0.9780, and 
0.9875 for SSAT, DSAT, VAT, and Total fat, respectively. 
Similarly, RGA-U-Net had 0.9933, 0.9963, 0.9972, 0.990 
for SSAT, DSAT, VAT, and Total fat, respectively indicat-
ing that RGA-U-Net had a better correlation with GT for 
all the fat compartments as compared to U-Net. RGA-U-
Net performed well especially in VAT segmentation as 
compared to U-Net. Correlation plots indicate RGA-U-Net 
was good at generalization and adaption to data variability. 
Bland–Altman plots indicate the performance of both net-
works was consistent across low to high-fat volumes even 
though some low-fat volumes had higher errors in SSAT 
and DSAT separation.

Discussion

General obesity is caused due to excess accumulation of 
body fat, and abdominal obesity is known to have strong 
influences on metabolic syndrome and other morbidities. 
Accurate segmentation of different fat depots; subcutane-
ous (SAT) and visceral adipose tissue depots (VAT), and 
superficial (SSAT) and deep (DSAT) subcutaneous adipose 
tissue depots from cross-sectional imaging is essential to 
understand the clinical impact in patients. Single slice-
based analysis of the fat compartments at a specific lumbar 
position (e.g. L2–L3 or L3–L4) is practical and has been 
suggested by prior studies [42–44] to correlate with asso-
ciated clinical conditions. However, due to heterogene-
ity of patient body habitus, the optimal level for analysis 
could theoretically vary. Thomas et al. [45] indicated that 
uncertainty of prediction or correlation increases with a 
reduction in the number of slices used to quantify adi-
pose tissue depots. We believe that volumetric analysis 
of a large segment of the abdomen could achieve a bet-
ter correlation. However, manual quantification on a large 
scale would be nearly impossible without automated or at 
least, a semi-automated technique. In this study, we have 
proposed a Residual global aggregation-based 3D U-Net 

(RGA-U-Net) for segmentation and validated CAFT as a 
comprehensive tool that deploys a deep learning RGA-
U-Net algorithm that reliably segments and quantifies fat 
compartments (SSAT, DSAT, and VAT) using abdominal 
MR images. Our algorithm takes less than 10 s for simul-
taneous quantification of all the 3 fat compartments in the 
volume data, making it feasible for use in large clinical 
trials, and foreseeably, clinical routine.

Segmentation

The proposed framework of Comprehensive Fat Analysis 
tool (CAFT) is built with 5 components—(1) Preprocess-
ing (2) Data Augmentation (3) Neural Network model 
zoo containing a standard 3D U-Net and Residual Global 
Aggregation U-Net (RGA-U-Net)-based segmentation 
models which can be extended to any number of models 
(4) Dashboard and visualization for data presentation and 
analysis, and (5) Editing tool to correct the contours of 
segmentation.

Pre-processing improved the accuracy of segmentation 
since the arms contain SAT, and being similar in contrast 
to the abdominal fat, would have interfered with automated 
segmentation. Furthermore, an error would occur if the 
arms were imaged to be abutting the abdomen. Concur-
rently, our postprocessing method localized the spine and 
individual lumbar discs to build correspondence between 
data slices to anatomy. By identifying the correspond-
ences, we were able to aggregate the lumbar-based seg-
mentation stats for the visualization. This automatic pro-
cessing eliminated the need for manual aggregation and 
computation of fat volumes, contributing to improved 
efficiency and accuracy. Importantly, we found high accu-
racy of our technique, in comparison to the ground truth 
(manual segmentation by our human readers).

The multilayer attention and global aggregation module 
at each level of U-Net architecture help in the consolida-
tion and merging of attention features at each level. Atten-
tion modules captured important features (fascia boundary, 
smaller VAT components around spine without includ-
ing spine or its discs, Fig. 6C) at different resolutions and 
Residual connection blocks facilitated the improved separa-
tion of SSAT and DSAT, which is physically separated by 
a thin fascia superficialis that is not visible on some slices. 
Localization of right fascial separation was the most dif-
ficult aspect in the segmentation of SSAT and DSAT where 
RGA-U-Net excels. RGA-U-Net starts with a 2-class model 
of SAT and VAT and during the later iterations divides the 
SAT into SSAT and DSAT, whereas standard U-Net starts 
with 3 class-based classifications from the initial iterations 
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itself (Fig. 6C). We observed a higher initial error in RGA-
U-Net than U-Net as it starts with a 2-class classification 
in the initial stages. The error decreases exponentially in 
the later phase of training and achieves faster convergence. 
Further, RGA-U-Net is fast and can be deployed in a low-end 
computation system as the inference is patch-based which 
reduces the computational time.

Our results show reasonably accurate quantification in 
both 2-class and 3-class-based segmentations. The mean 
dice coefficient was about 95% for total fat (sum of VAT 
and SAT) and greater than 90% for SAT and VAT (Table 1). 
For segmenting between SSAT and DSAT, the accuracies 
as compared to our ground truth were around 91% and 89% 
respectively. RGA-U-Net had greater than 94% accuracy 
in distinguishing between fat and nonfat tissues and was 
accurate in differentiating between bone and fat especially 
in the spine and pelvic regions, where the bone contours can 
be complex. Average Hausdorff distance for RGA-U-Net 
was marginally better for 2- class (SAT and VAT) segmen-
tation whereas it was significant for 3-class (SSAT, DSAT 
and VAT) when compared to standard U-Net. RGA-U-Net 
proved its worth in VAT segmentation (Table 1) where the 
spine and its disc regions were not segmented as shown in 
Fig. 6C. In lean or low-fat subjects, a fascial plane could 
not be observed between the SSAT and DSAT near L1 and 
L2 regions. In such patients, RGA-U-Net was superior to 
U-Net, which tends to “under-segment” all fat compart-
ments. Nevertheless, both network models had comparably 
high accuracies for original and augmented dataset seg-
mentation (Fig. 7), bearing testament to their abilities to 
generalize and handle data variability across patients with 
diverse body habitus. Correlation analysis and Bland–Alt-
man plots analysis (Fig. 8A, B) show a high agreement 
between the ground truth and segmentation for the training 
datasets. Some intermuscular fat regions that are closer to 
pelvic bone is being segmented as VAT by both models. 
These false positives did not significantly contribute to the 
DICE statistics (Figs. 5, 6D). In some cases, we observed 
part of pelvic bone considered as VAT due to the presence 
of bone fat and intermuscular fat (Fig. 6D). In some cases, 
we observed some false positives (DSAT classified as VAT) 
especially in the pelvic cavity and in cases where the inter-
muscular fat is closer to the inner abdominal boundary.

Our study data was retrospectively derived from the 
GeriLabs cohort study and only one acquisition per pulse 
sequence was performed in each MRI study.  Hence, 
image technical reproducibility could not be evaluated. 
We addressed reproducibility by augmenting each sub-
ject’s data with MR acquisitional variations to simulate 
variations in practice. The dice scores of the augmented 
subject data exhibited good consistency (Supplementary 
Figure S2).

Visualization

Different patterns in fat compartment distribution were 
observed across low-, medium- and high-fat subjects. In 
the low-fat subjects, the volume difference between SSAT 
and DSAT is significantly high, whereas there is no signifi-
cant volume difference between SSAT and VAT (Fig. 7). 
The SSAT and DSAT volume difference start reducing 
with increasing fat accumulation (medium- and high-
fat subjects). VAT volume increases linearly as obesity 
increases. DSAT volume seems to be increasing more than 
SSAT volume across different groups. Such insights will 
be useful to monitor the progress of nutritional or exercise 
intervention programs that target obese older adults [46].

We observed that the SAT accumulation profile gen-
erally changed as we move from the thoracic to lumbar 
regions for every patient. In some regions (like L1 and L2) 
we noticed an equal quantity of SSAT and DSAT, often 
with a prominent fascia superficialis, whereas progress-
ing more caudally towards L5, there were multiple fascial 
lines whereby some appeared discontinuous. This was 
more pronounced in our older adult cohort dataset due to 
skin folds and loosely bound fat compartments. Identifying 
a single boundary between SSAT and DSAT at the lower 
lumbar levels can be challenging even for radiologists, 
raising susceptibility to errors in delineating and conse-
quently, quantifying the fat compartments.

Assumptions and limitations

In the study, we assumed that the MR scans are acquired in 
a standardized manner with proper placement of field-off 
view; no swap of fat and water pixels (in Dixon sequence); 
arms are at a distance from the trunk; low field inhomo-
geneities, etc. We also consider that the ground truths are 
drawn by the clinician as a gold standard for training the 
model. Care was taken to include datasets with variability 
in fat quantity, fat profiles, and body types (low-, medium-, 
and high fat), data from young adults and elderly, male, 
and female, data from different anatomical locations (lum-
bar and thorax), slice thickness, data dimensions, MR 
acquisitional variations like bias field, ghosting, blur, and 
random noise to avoid any possible biases, improve the 
segmentation performance and generalization.

We aim to further expand our datasets in subsequent 
studies to include more variability in terms of subjects and 
data acquisition, such as usage of multiple contrasts (in-
phase, out-phase, etc.), extending to other MR sequences, 
and training on pediatric datasets. The cause for the over-
estimation of VAT was due to imaging errors (errors 
in reconstruction due to some fat–water pixel swaps). 
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Over-estimation of DSAT and under-estimation of SSAT 
were due to multiple boundaries created by different fas-
ciae like fascia superficialis, deep fascia, skin ligaments, 
and fascia of the obturator internus. While drawing the 
ground truth, the clinicians use their knowledge and expe-
rience to draw a contiguous boundary, whereas in applica-
tions like patch-based deep learning architectures, since 
the whole anatomy information is lost (to use causality 
conditions), the learning methods instead rely on locally 
available information for segmentation which could be 
erroneous (Fig. 6D).

Conclusion

In this study, we propose a comprehensive deep-learning 
RGA-U-Net-based tool (complete processing pipeline) 
along with other features like data augmentation on the 
fly, pre-processing, automatic whole abdomen (volu-
metric) or lumbar level-based (cross-sectional area) fat 
quantification, automatic spine segmentation, 2D and 3D 
visualizations, and correction tool which are essential for 
large cohort studies. Our framework for abdominal fat 
compartments segmentation (SAT-SSAT and DSAT, VAT, 
Total Fat), demonstrated that the deep learning model is 
highly accurate and takes just about 10 s (using standard 
computational hardware) to segment data containing about 
80 slices. The editing module allows easy navigation and 
manipulation of the contours across the data and corrects 
the errors in segmentation to aid in continuous learning. 
The model trained with a large number of patches and 
with high variability data (low-, medium-, and high-fat 
volume subjects, from different regions, from young to 
elderly subjects, etc.) is scalable, deployable, and useful 
for large cohort studies. The proposed framework allevi-
ates laborious manual segmentation and saves precious 
time of clinicians and money.
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