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Abstract
Objective  To investigate the effect of number and combination of b values used on the accuracy of estimated Intravoxel 
Incoherent Motion (IVIM) parameters using simulation and clinical data.
Materials and methods  Simulations with seven combinations of b values were performed for 4, 6, 8, and 13 numbers of 
b values with six different values of D, D*, and f parameters. Two methodologies were implemented for IVIM analysis: 
standard biexponential model (BE) and biexponential model with total variation penalty function (BE + TV). Clinical data 
set of six patients with prostate cancer was retrospectively analyzed using 4, 8, and 13 b values.
Results  BE + TV method showed lesser error and lower variability in simulation and clinical data, respectively. 8 and 13 b 
values showed good agreement in the values of parameters estimated with high correlation coefficient (ρ = 0.83–0.93). Clini-
cal data showed high spurious noise with lower b values [4 b values leading to high coefficient of variation (CV); however, 
substantially, lower CV was observed with 8 and 13 b values].
Discussion  BE model with TV penalty function is robust to combination of b values used for IVIM analysis. Combination 
of 8 b values provided a reasonably good accuracy in IVIM parameters.

Keywords  Intravoxel incoherent motion · Diffusion-weighted imaging · Prostate cancer · b values · Total variation penalty 
function · Biexponential model

Introduction

Diffusion-weighted imaging (DWI) is an imaging sequence 
routinely used for lesion localization in prostate cancer 
patient with conventional MRI [1]. DWI signal is modelled 
using monoexponential function to obtain the apparent dif-
fusion coefficient (ADC), a quantitative measure of water 

diffusion in tissues [2]. This monoexponential model is 
highly sensitive to water diffusion in extravascular extracel-
lular space, i.e., when b values are greater than 200 s/mm2.

A special type of DWI sequence, which is sensitive to 
both water diffusion in extravascular space and intravascu-
lar space (pseudo-perfusion) is called Intravoxel Incoherent 
Motion (IVIM) imaging, i.e., it can capture diffusion and 
perfusion information of the tissue region with no external 
contrast agent [3]. For IVIM, data are acquired with a range 
of b values, and typically modelled with a standard biexpo-
nential (BE) function:

 to evaluate the IVIM parameters diffusion coefficient (D), 
pseudo-diffusion coefficient (D*), and perfusion fraction (f) 
[3]. Currently, IVIM is not often used in clinical evaluation; 
reasons include lack of agreement regarding standard proto-
cols (e.g., for prostate cancer imaging), and non-physiolog-
ical noise in parameter maps generated using the standard 
BE model [3]. To address the latter, an improved analysis 
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method was recently proposed, where BE model with total 
variation (TV) penalty function was used [4]. Physical moti-
vation of TV is to homogenize the whole 2D image at once, 
unlike conventional optimization, which processes every 
voxel independently [5, 6]. In this study, optimization with 
TV was used, which balances any sudden change in parame-
ter map iteratively, thereby reducing non-physiological noise 
and preserving edges of tissue in an image [6, 7].

BE model with TV penalty function was shown to give 
stable parameter and qualitatively better parametric maps 
based on simulated and clinical data for a given combination 
of b values [4]. However, it is necessary to understand how 
the selection of b values in IVIM acquisition could affect the 
estimation of IVIM parameters. A good analysis methodol-
ogy should be robust to the combination of b values used in 
acquisition. In this study, simulations were performed using 
various combination and number of b values, and these results 
were validated using clinical data.

Materials and methods

Simulations

Three simulations were performed, with one IVIM param-
eter varied at a time, while the other two remained con-
stant. For each set of simulation, a digital phantom with 
two-dimensional parameter map (matrix size: 64 × 64) was 
generated based on the literature [8]. Figure 1 shows the 
representative digital phantom for f parameter:

Random Gaussian noise was added with SNR = 30 to each 
of the simulation sets. To evaluate the effect of number and 
combination of b values on estimated parameters, seven dif-
ferent combinations of b values were used, according to the 
literature [9] as shown in Table 1.

Only 4, 6, 8 and 13 b values were chosen in this study: 
11–13 b values are commonly used in standard clinical rou-
tine for IVIM acquisition, having no difference in clinical 
interpretation [10, 11]; however, 4 b values have been sug-
gested as optimal number for IVIM analysis in liver [9, 12]. 
For 4, 6, and 8 b values, two different combinations were 
used to evaluate the effect of combination of b values on 
parametric estimation. Fifty data sets (64 × 64 matrix each) 
were constructed for each simulation set with 7 different 
combinations of b values, leading to a total 4.3 million data 
sets simulated (64 × 64 × 50 × 3 × 7 = 4,300,800).

Clinical data acquisition

This study protocol was conducted with approval from 
Institutional review board and written consent from all 
patients was taken. Data set of six male patients with pros-
tate cancer (63 ± 4.48 years) was acquired on a 1.5 T MRI 
(Achieva; Philips Healthcare, Best, The Netherlands) at the 
Department of Radiology, AIIMS, New Delhi, India, with 
a standard MRI protocol, including IVIM imaging with 
13 b values = 0, 25, 50, 75, 100, 150, 200, 500, 800, 1000, 
1250, 1500, 2000 s/mm2 using phased-array surface coil 
(TR = 5.774 s, TE = 0.081 s).

Simulation 1 ∶ D = [0.7, 1.0, 1.3, 1.6, 1.9, 2.2] × 10−3mm2∕s;

D∗ = 13 × 10−3mm2∕s; f = 0.19;

Simulation 2 ∶ D =1.3 × 10−3mm2∕s; D∗ = [7, 10, 13, 16, 19, 22]

× 10−3mm2∕s; f = 0.19;

Simulation 3 ∶ D =1.3 × 10−3mm2∕s; D∗ = 13 × 10−3mm2∕s;

f = [0.03, 0.11, 0.19, 0.27, 0.35, 0.43];

Fig. 1   Two-dimensional digital phantom with varying parameter map 
of f (matrix size: 64 × 64), consisting of concentric circles; f varied 
from 0.03 in center to 0.43 periphery, as indicated

Table 1   Different number and combinations of b values used in simu-
lations

No. of b values b value combinations (s/mm2)

4 b values1 [0,25,200,2000]
4 b values2 [0,50,150,2000]
6 b values1 [0,25,100,800,1250,2000]
6 b values2 [0,50,150,500,1500,2000]
8 b values1 [0,25,75,100,200,800,1250,2000]
8 b values2 [0,50,75,150,500,800,1500,2000]
13 b values [0,25,50,75,100,150,200,500,800

,1000,1250,1500,2000]
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4 and 8 b values’ combinations were obtained by sub-
sampling the 13 b values IVIM image. The clinical data was 
analyzed using the 4, 8 and 13 b values’ combinations as 
used for the simulations (6 b values were not used in clinical 
data analysis, as it showed suboptimal results compared to 
8 b values as elaborated in results).

Analysis of parameter map

Parameter estimation in simulation and clinical data was per-
formed using in-house toolbox in MATLAB® (MathWorks 
Inc., v2016b, Philedellhia, PA, USA). All data sets were pro-
cessed using both BE model and biexponential + TV model 
(BE + TV). Non-linear least square optimization was used 
for both BE and BE + TV. In BE + TV model, minimization 
of total variation was obtained, as shown in Eq. 1 [4, 7]: 

TV(g) penalty is L1 norm of image gradient, as shown in 
Eq. 2 [5], where g and h are expected and observed image 
of size M × M, respectively. For every iteration, the image 
gradient was calculated and used to update the parameter 
values:

Alpha is positive TV penalty parameter that balances 
between goodness of fit and data as measured by the opti-
mizer, whereas beta is TV iteration stopping criterion. In this 
study, alpha and beta were set to 0.02 and 0.99, respectively 
[4, 7].

(1)mingf (g) = ming||g − h||2 + � ∗ TV(g).

(2)TV(g) =
∑

i

√
∇xgx + ∇ygy.

Error calculations

For simulations, relative root mean square error (RRMSE) 
was calculated for each parameter (Drrmse, D*rrmse, and frrmse) 
in percentage as shown in Eq. 3, 4, 5:

 where Dʹ, D*ʹ, and fʹ are estimated values, D, D* and f are 
reference values, and D , D∗ , and f  are mean values, and 
N is total number of elements in reference map. RRMSE 
is a measure of accuracy: RRMSE = 0 represents a good 
accuracy.

For clinical data, coefficient of variation (CV), Spear-
man correlation coefficient (ρ), and Bland Altman plots were 
used to respectively assess the variations, associations, and 
agreements between parameters estimated using different 
combinations of b values.

Three regions of interests (ROI) of ~ 350 voxels were 
drawn on b = 2000 s/mm2 image in every patient, a rep-
resentative case presented in Fig. 2: (1) tumor region; (2) 

(3)
Drrmse =

�
∑
(D−D′)

2

N

D
× 100

(4)
D∗

rrmse
=

�
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D∗−D∗
�
�2

N

D∗
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(5)
f rrmse =

�
∑
(f−f ′)

2

N

f
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Fig. 2   Prostate cancer PIRADS 4 lesion in left transitional zone (Tz) 
appearing hyperintense on high b value IVIM image and hypoin-
tense on corresponding ADC map. Example ROIs, corresponding to 

tumor (black), and healthy tissue drawn on transition zone (blue) and 
peripheral zone (red)
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transition zone (Tz); and (3) peripheral zone (Pz) of prostate. 
For tumor ROI, high b value image (b = 2000 s/mm2) and 
ADC map were used to localize the lesion by identifying a 
hyperintense region in high b value image and correspond-
ing hypointense region present in ADC map. Wilcoxon 
signed-rank test was used for statistical comparison of esti-
mated parameters between combinations of b values used in 
both simulations and clinical data.

Results

Simulations

Figure 3 shows estimated parameter with BE and BE + TV 
method using different combination of b values. Qualita-
tively parameter maps by BE were poor quality with high 

spurious values present as compared to BE + TV. Estimated 
D map quality was good as compared to other parameters 
for both methods and all combinations of b values. 8 b val-
ues’ combinations and 13 b values showed similar estimated 
parameter maps. 4 and 6 b values’ combinations showed 
higher noise in estimated parameters (especially for D* and f 
parameter). Qualitatively, the parameter estimation improves 
with increasing the number of b values from 4 to 13.

Figure  4 shows bar plots of RRMSE in estimated 
parameters of all simulations. RRMSE broadly decreased 
with increasing number of b values. BE + TV method 
showed lower RRMSE by a factor of 15 ± 10% in param-
eter D, 3 ± 2% in parameter D*, and 42 ± 16% in param-
eter f compared to BE across all combinations of b values. 
In all IVIM parameters estimated using BE+TV method, 
the improvement by TV penalty function was higher with 
lower number of b values (4 b values’ combinations), with 

Fig. 3   Estimated parameter 
maps using various combina-
tions of b values using BE and 
BE + TV for Simulations 1, 
2 and 3. First row represents 
the D, D*, and f reference maps



523Magnetic Resonance Materials in Physics, Biology and Medicine (2019) 32:519–527	

1 3

reduced RRMSE. It was also observed that f parameter 
showed largest reduction in RRMSE by 42 ± 16% (across all 
b value combinations) with BE + TV method as compared 
to BE. RRMSE of both 8 b values’ combinations showed 
similar trend as 13 b values for BE + TV method.

Clinical data

Mean values of estimated IVIM parameters for prostate 
using 4, 8, and 13 b values are shown in Table 2. Average 
D and f remained similar for any b value combinations or 
method used, whereas in D*(BE), there was significant dif-
ferences (p < 0.05) for 8 b values’ combinations in tumor. 
Figure 5 shows the IVIM parametric maps for one represent-
ative patient with prostate cancer PIRADS 4, using different 
numbers of b values. Tumor appears hypointense in D map 
and hyperintense in D* and f maps. Qualitatively, D* map 
with 4 b values’ combination appears noisy, whereas D* and 
f map estimated with 8 and 13 b values, appears similar. Fig-
ure 6 shows the Bland–Altman plot of all IVIM parameters 
estimated using 8 and 13 b values with BE + TV method. 
For all parameters, the data points were within ± 2 SD inter-
val and showed tight correlation among 8 and 13 b values 
(ρ = 0.83–0.93) except for f in Pz region. Figure 7 shows 
CV for parameters of tumor, Tz, and Pz regions. BE + TV 
consistently showed lower value of CV by 30–50% as com-
pared to BE. BE + TV method was observed to be robust to 
different combinations of b values in both combinations of 4 
or 8 b values; it had no significant differences for CV among 
two different combinations using 4 or 8 b values.    

Discussion

It is important to determine the effect of number and com-
bination of b values used in the estimation of IVIM param-
eters, in order to ensure that the methodology used is robust 
to b value combinations. Appropriate selection of b values 
is necessary for IVIM analysis in any clinical protocol, as it 
can directly impact acquisition time. The previous studies 
on b value optimization used only BE model [9, 13, 14] and 
other models such as segmented approach, stretched model, 

kurtosis model, etc. [15, 16]; however, the impact of post-
processing methodologies was not investigated. Cohen et al. 
showed that perfusion-related parameters such as D* and 
f are poorly estimated using BE model [17]. In our study, 
seven combinations of b values were evaluated using simula-
tions and clinical data, and the analysis was performed using 
two methods (BE model and BE model with TV penalty 
function).

In this study, the overall SNR used in simulations was 30 
and the total acquisition time was not kept constant. For all 
the simulations, the maximum b values used were 2000 s/
mm2, and thus, TE was assumed to be constant for all pro-
tocols [18]. In principle, it would be possible to simulate 
data with equal total acquisition time using a normalised 
SNR condition [19] (for example, comparing 12 b values 
vs. comparing three averages of 4 b values, i.e., with the 
same total effective SNR/time). However, such simulation 
would be appropriate when the intention is to see whether, 
for all other things being equal (particularly time and SNR), 
having more b values is beneficial (vs. having less b values, 
but repeatedly acquired). Instead, here, we seek to determine 
whether acquiring less data (and, therefore, with less overall 
SNR, but more importantly with less total acquisition time) 
comes at a large penalty on the quality of the resulting IVIM 
parameter maps. In line with the same objective for analysis 
of clinical data, we acquired clinical data with 13 b values 
and subsampled this set using different combinations of 4 b 
values and 8 b values for the analysis. Furthermore, as we 
kept the maximum b value = 2000 s/mm2 same for all combi-
nations used in simulations and clinical data, TE (and, there-
fore, base SNR) remained constant for all combinations.

In simulations, BE + TV showed accurate estimation for 
all parameters using any combinations of b values with at 
least 8 b values required for reliable estimation. Jambor et al. 
[20] have shown that 8–10 b values provide optimal results 
with overall less acquisition time in prostate, which is in 
accordance with our results. In addition, as the number of 
b values was increased, the RRMSE in D and f parameters 
decreased, for both BE and BE + TV method; however, the 
variance was much lower for BE + TV methods. Effect of 
TV was more prominent when there are fewer b values avail-
able for analysis. Thus, with fewer b values (poor SNR and 

Fig. 4   Bar plots showing RRMSE of simulated D map, D* map, and f map generated using different combinations of b values
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shorter acquisition time), the quality of parameter estimation 
can be improved substantially with TV penalty function. 
Qualitatively, the error in estimation of parameters reduced 
with increasing number of b values. Also, it was expected 
that the error will be lower with increasing SNR. However, 
it was noticed that there is a non-linear decrease in RRMSE 
with increasing number of b values and with respect to SNR, 
which is specifically prominent for parameter D*. The same 
has been reported earlier in the literature, D* parameter is 
most susceptible to noise and shows poor reproducibility for 
low SNR [17, 21, 22]; there is also non-linear dependency of 
overall fit quality of parameters with SNR and combination 
of b values [13]. The f parameter map with BE showed less 
accuracy in any combinations, in comparison with D and D* 
parameters. For both the combinations of 8 b values used, D 
parameter didn’t show any differences while using BE+TV 

method, which suggests that BE + TV is insensitive to the 
specific combination for the same number of b values used.

CV was consistently lower for BE + TV compared to BE 
method, and Bland–Altman plot showed good agreement in 
estimated parameters using 8 and 13 b values with BE + TV 
method. Parametric image quality and parameter values 
show no difference among 8 and 13 b values when using 
BE + TV method, as shown in Fig. 5. The previous studies 
have suggested to use lesser b values for shorter acquisition 
time [9, 23]. However, in our study, higher error in simu-
lation and poor image quality with higher CV in clinical 
data was observed when using 4 b values. Only two patients 
showed higher values of D* in neurovascular bundle around 
prostate, which was not a consistent finding across patients. 
This would need to be further investigated for any poten-
tial clinical use. The study has few limitations, as, Gaussian 

Fig. 5   Representative patient with prostate cancer PIRADS 4 lesion 
in left transitional zone (Tz) as shown as hyperintense in high b value 
image and hypointense in ADC map. IVIM parameter maps (D, D*, 

f) using BE + TV using 4 b values1, 8 b values1, 13 b values; tumor 
is circled (Black) showing hypointense in D and hyperintense in D* 
and f 
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noise was used in the simulation; however, in literature use 
of Rician noise has been proposed [24], and this can be 
evaluated further. Sample size of clinical data was relatively 
small; in future, more data sets for optimization of b values 
could be evaluated.

In conclusion, a detailed analysis of post-processing 
methodology using biexponential and biexponential 
models with total variation penalty function has been 
performed. Biexponential model with total variation pen-
alty function is robust to combinations of b values used 

Fig. 6   Correlation and Bland–Altman plots of parameter generated from BE + TV using 8 b values1 and 13 b values in tumor, transition zone, 
and peripheral zone

Fig. 7   Coefficient of variation (CV) of IVIM parameters D map, D* map and f map generated from BE (blue) and BE + TV (orange) using 4, 8, 
and 13 b values
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for IVIM analysis. Quality of perfusion fraction map is 
substantially improved with BE + TV method. 8 b values’ 
acquisition with analysis using biexponential model with 
total variation penalty function provides a good practical 
compromise in terms of accuracy and acquisition time.
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