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Abstract
Objective  To estimate pancreas graft relaxation times and concentrations of total fat, and the intracellular lipids of non-
adipose pancreatic cells (NAPC) using proton (1H) magnetic resonance spectroscopy (MRS) during cold preservation.
Materials and methods  Grafts from 11 human donors were investigated. Each pancreas was perfused in situ with histidine-
tryptophan-ketoglutarate (HTK) or with University of Wisconsin solution and placed into a transport container. Temperature 
of the grafts was maintained at 4 ± 2 °C during transport to our hospital and MR scanning. A 1.5 T clinical scanner was used 
for the measurements. Single-voxel PRESS spectra were acquired using transmit–receiver head coil.
Results  Relaxation times were measured for lipid (–CH2–)n (T1, 287 ± 60 ms; T2, 27 ± 4 ms), and tissue water (T1, 670 ± 69 ms; 
T2, 77 ± 17 ms). Average total fat, and intracellular lipids of NAPC concentrations were 79.2 ± 100.8 (range 2.4–304.4), and 
2.9 ± 1.2 mmol/kg ww, respectively.
Conclusion  We have shown that 1H-MRS is a useful tool for the estimation of pancreas graft lipid concentrations. Total 
pancreatic fat and especially content of intracellular lipids of NAPC are valuable measures for inspection of graft quality 
prior to transplantation or islet of Langerhans isolation.
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Introduction

The pancreas plays an important role in the synthesis and 
secretion of digestive enzymes and metabolism-regulat-
ing hormones. The majority of pancreas volume contains 
exocrine glands that are dedicated to producing enzymes 
which help to digest proteins, fats, and carbohydrates (sug-
ars). Approximately 2% of the pancreas mass consists of 
different hormone-producing endocrine cells which clump 
together into small clusters called islets of Langerhans. The 
hormones made by alpha and beta cells in the islets produce 
glucagon and insulin, respectively. These two hormones 
regulate the sugar levels in the blood and cells.

Pancreas transplantation is the treatment of choice for 
patients whose pancreas does not make enough, or some-
times any, insulin. These patients suffer type 1 diabetes, 
or insulin-dependent type 2 diabetes. A relatively new and 
minimally invasive therapy is transplantation of the islets of 
Langerhans [1, 2]. Islets are delivered into the liver by injec-
tion to the portal vein, where they produce insulin. Pancreas 
or islets transplantation is currently the only treatment that 
restores normal glucose metabolism in insulin-dependent 
patients [3, 4].

The pancreas is regarded as one of the most challenging 
donor organs for recovery and transplantation. The selec-
tion of deceased donors for pancreas procurement is the key 
factor of outcome in transplantation of the whole organ or 
islets. The ideal donor developed brain death as a result of 
trauma, ranges in age from 10 to 40 years and has a body 
mass index (BMI) less than 27.5 kg/m2 [5]. Such strict donor 
selection has not only resulted in outstanding graft survival 
but also in underutilization of pancreas donors [6]. Fortu-
nately, recent successes in pancreas transplantation have led 
to the utilization of less-than-ideal donors. It was demon-
strated that graft survival was not significantly different in 
patients receiving transplants from obese, non-heart beating 
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or younger donors compared with grafts from ideal donors 
[5, 6]. However, the use of less-than-ideal donors requires 
methods for an objective assessment of pancreas graft qual-
ity. The aim of such methods is to predict either pancreas 
donor utilization or graft failure. Possible methods of choice 
are phosphorus (31P) [7, 8] and proton magnetic resonance 
spectroscopy (1H-MRS) [9–12].

1H-MRS is a promising tool for non-invasive quantifica-
tion of pancreatic fat content. Fat assessment is an important 
issue because fatty pancreas is more difficult to procure, and 
prepare on backbench. In addition, excessive fatty infiltra-
tion is associated with an increased risk of complications 
after pancreatic surgery [5]. BMI seems to be a less reliable 
measure of pancreas fat content [9, 13]. Some overweight 
donors may have little or no fatty infiltration of the pancreas, 
while some donors with normal BMI may have increased 
fat content [5, 10, 14]. Excessive alcohol abuse may also 
increase pancreatic lipid content, even in the absence of 
obesity [5, 10].

Relatively few in vivo 1H-MRS studies of human pan-
creas have been performed [9–12] so far. Lipids and total 
choline (tCho, free choline, phosphocholine, and glycer-
ophosphocholine) were quantifiable despite experimental 
difficulties with respiratory motion. It was shown that pan-
creatic fat content was increased in men with type 2 diabetes 
[9, 10, 15]. In non-diabetic men the fat content was inversely 
associated with various indicators for β-cells functions [9, 
14]. It should be noted that 1H-MRS is able to distinguish 
between lipids in fat cells (adipocytes) and lipids in non-
adipose cells (triglyceride droplets in the cytosol). Examples 
are intramyocellular [16], intrahepatic [17], intramyocardial 
lipids [18], and intracellular lipids of non-adipose pancreatic 
cells (NAPC).

In the present study, we applied 1H-MRS to human pan-
creas grafts during cold preservation. First, we measured 
pancreatic water and fat relaxation times T1 and T2. Second, 
knowledge of the relaxation times enabled us to estimate 
the absolute total fat concentration and intracellular lipids 
of NAPC. Third, we evaluated the relationship between pan-
creatic total fat content and donor’s BMI.

Materials and methods

Donors

Pancreas grafts from 11 human donors were included in this 
study. Donor’s characteristics are shown in Table 1. Organ 
donation was performed solely for research purposes and 
was approved by the relatives. We note that the grafts of 
donors were considered unsuitable for organ transplantation 
due to the advanced age (nine grafts) or for other reasons 
(two grafts). The study was approved by the Regional Ethi-
cal Review Board in Uppsala. Ten pancreas grafts were per-
fused in situ with histidine-tryptophan-ketoglutarate (HTK) 
solution and one graft was perfused with University of Wis-
consin (UW) solution. After the perfusion, the pancreata was 
stored in a plastic container (MEDCO AS, Årvollskogen, 
Norway) filled with HTK or UW solution. The temperature 
inside the container was maintained at 4 ± 2 °C during the 
transport to our hospital and MR scanning.

Data acquisition

Experiments were performed on a Philips Achieva 1.5 T 
MR scanner (Philips Healthcare, Best, The Netherlands). 

Table 1   Gender, age, BMI 
of the donors and lipid 
concentrations of pancreas 
grafts

NAPC non-adipose pancreatic cells, f/w fat/water spectral intensity ratio

Donor nr Gender Age (years) BMI (kg/m2) Concentration

Total lipid content Intracellular lipids of 
NAPC

f/w (%) mmol/kg ww f/w (%) mmol/kg ww

1 M 56 29.2 26.61 304.38 – –
2 F 62 29.4 0.83 9.53 0.36 4.07
3 M 24 31.9 0.21 2.4 0.12 1.36
4 M 68 24 0.89 10.17 0.32 3.68
5 F 63 30.9 2.78 31.8 – –
6 M 28 24.5 7.77 88.93 – –
7 M 79 22.2 5.49 62.77 – –
8 F 70 23 0.38 4.34 0.21 2.38
9 F 82 31.3 4.71 53.85 – –
10 M 70 23 21.06 240.97 – –
11 M 50 22.3 5.48 62.55 – –
Mean 59.3 26.5 6.93 79.24 0.25 2.87
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1H-MRS was performed using the standard trans-
mit–receiver quadrature head coil. T2-weighted images were 
applied for voxel positioning. The voxel was placed within 
the body of the pancreas (Fig. 1). Voxel size was between 
10 × 10 × 15 and 10 × 10 × 25 mm3. Proton spectra of HTK 
and UW solutions as well as spectra determined for lipid 
quantitation were acquired by point-resolved spectroscopy 
(PRESS) sequence (time repetition TR 5000 ms, time echo 
TE 30 ms, spectral bandwidth 1000 Hz, 1024 points, 16 
phase cycle steps). Two dummy excitations were followed 
by 16 non-water-suppressed and 64 water-suppressed scans. 
Net acquisition time was 6 min and 50 s.

Water relaxation times T1 and T2 were computed using 
the PRESS spectra acquired at ten TRs (300, 350, 400, 500, 
750, 1000, 1500, 2000, 3000, 5000 ms, number of scans 
(NS) 16, TE 30 ms), and eight TEs (30, 40, 50, 75, 100, 125, 
150, 200 ms, TR 3000 ms, NS 16). The T1 values of lipid 
(–CH2–)n line was quantified from the spectra measured at 
TE 25 ms and TRs 550, 650, 750, 850, 1000, 1200, 1400, 
and 1600 ms (NS 64 or 128). The T2 value was estimated 
using the spectra measured at TEs 30, 40, 50, 60, 80, 100, 
120, and 150 ms (TR 1500 ms, NS 64 or 128).

The pancreas was measured in its original cylindrical 
transport container. During scanning hypothermic storage 
was maintained by three or four cooling elements (Fig. 1). 
Temperature stability (4 ± 2 °C) was checked in five grafts 
by measuring the temperature of the HTK or UW solution 
inside the transport container just before and immediately 
after MR examination.

Spectrum processing

1H spectra were fitted in time domain using AMARES algo-
rithm [19] as implemented in the magnetic resonance user 
interface (MRUI) software package [20]. After manual phase 
correction, the residual water line was removed with Han-
kel–Lanczos singular values decomposition (HLSVD) filter. 
Spectral lines were fitted with AMARES to Lorentzian line 
shapes. No apodization of free induction decay was used 
in this study. Prior knowledge applied for fitting the lipid 
signals originated from adipocytes and intracellular lipids 
of NAPC has been described elsewhere [21]. Spectral line 
at 3.2 ppm (tCho and histidine lines of HTK solution) was 
fitted by single Lorentzian. Spectral intensities between 3.5 
and 4.2 ppm were empirically fitted by three Lorentzians 
(Fig. 2).

Relaxation times T1 and T2 were estimated by monoex-
ponential fitting of the spectral intensities (Fig. 3) by a Lev-
enberg–Marquadt algorithm using the commercial software 
package ORIGIN v. 8.6 (OriginLab, Northampton, MA, 
USA). Spectral intensities versus TE or TR were fitted using 
the PRESS relaxation attenuation function att(T1, T2) = ex
p(− TE/T2) × [1 − exp(− TR/T1)].

Lipid content was computed from the relaxation-cor-
rected spectral intensity ratios to unsuppressed water line 
[22, 23]. Reference concentration 38 300 mM of “NMR-
visible” water was used in the estimation of the absolute 
concentration. The value 38 300 mM was computed using 
the assumption that pancreas contains 0.71 g H2O per 1 g 
wet weight tissue [12] and its density is 1.08 g/cm3 [24]. 
Furthermore, it was assumed that 10% of tissue water is 
“NMR-invisible” because of macromolecular binding and 
other interactions [25]. Lipid content was quantified using 
methylene intensities. Division by factor 31 was used to 

Fig. 1   T2-weighted MR images showing typical voxel position in the 
body of the pancreas. Cylindrical transport container was surrounded 
by four cooling (ice) elements
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convert methylene concentration to molecular concentra-
tion. The value 31 follows from the assumption that the 
average number of (–CH2–)n groups is 31 per fat (triglyc-
eride) molecule [23]. Division by the pancreas density 
was used to convert mM to millimoles per kg wet weight 
(mmol/kg ww). Total lipid content was also expressed as 
the ratio of lipid (–CH2–)n over water spectral intensity 
(f/w) for completeness and in line with the previous stud-
ies [9, 10].

Statistics

Quantitative results are presented as means ± 1 SD. Adjusted 
coefficient of determination adj. R2 was used to express 
goodness of nonlinear fits. Linear regression was performed 
to evaluate the relationship between BMI and pancreatic 
total fat content.

Results

The pancreas grafts were delivered to our hospital between 
5.5 and 12.5 h (median 8 h) after the start of perfusion 
with HTK or UW solution. All the spectroscopic experi-
ments were performed within a few hours after delivery. 
Figure 2a, b shows the spectra of HTK and UW solutions, 
respectively. Only the spectral lines of the HTK’s histidine 
(180 mM) and the UW’s raffinose (30 mM) are detectable. 
Figure 2c depicts the unsuppressed water line (concentra-
tion reference) of spectrum shown in Fig. 2d. Methylene 
(–CH2–)n spectral lines of intracellular lipids were quan-
tifiable in four spectra (Fig. 2d–g) with low total lipid con-
tent (f/w ≤ 0.9%). The intracellular methylene resonance 
was unresolvable from methylene peak of pancreatic adi-
pocytes in spectra with increased fat content (not shown). 
Figure 2d–f show the pancreas spectra perfused by HTK 
solution. The spectrum of pancreas perfused by UW solu-
tion is shown in Fig. 2g. This spectrum is completed by 
fits and residue. Resonance at 1.3 ppm represents intra-
cellular (IC) lipid methylene line of NAPC. Methylene 
peak at 1.42 ppm originates from pancreatic adipocytes 
(AD). From Fig.  2d–f follows that tCho (3.2  ppm) is 

Fig. 2   a 1H spectrum of HTK solution (histidine). b Spectrum of 
UW solution (raffinose). c–f Spectra of pancreas grafts perfused with 
HTK solution. c Unsuppressed water line (concentration reference) of 
spectrum d. g Spectrum of pancreas graft perfused with UW solution, 
fits and residue. Resonance at 1.3  ppm represents intracellular (IC) 
lipid methylene line of NAPC. Methylene peak at 1.42  ppm origi-
nates from pancreatic adipocytes (AD)

Fig. 3   Monoexponential fits of spectral intensities vs. TR and TE
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overlapped by strong signals of histidine doublet of dou-
blets. In contrast, tCho is clearly separated from neighbor-
ing resonances in Fig. 2g. The intensities between 3.4 and 
4.2 ppm were fitted by three Lorentzians. These fits refer 
to an empirical attempt to compensate for the signals in 
this region containing a large number of spectral lines with 
a high degree of overlap. Histidine (HTK solution) and 
raffinose (UW solution) dominate in this spectral inter-
val. However, glucose, glycerol, choline, phosphocholine, 
glycerophosphocholine, myo-Inositol, ethanolamine, uri-
dine, and amino acids were also identified in this region 
using high-resolution magic angle spinning (HR-MAS) 
spectroscopy [26].

Excellent match of spectral intensities to monoexponen-
tial functions was achieved for water relaxation times T1, 
T2 (adjusted R2 ≥ 0.991). Adjusted R2 between 0.846 and 
0.984 was achieved for fat T1. Spin–spin relaxation time 
T2 of the lipid methylene spectra line was fitted within 
the interval 0.985 ≤ adj. R2 ≤ 0.992. Relaxation times are 
summarized in Table 2. Concentrations of total fat and 
intracellular lipids of NAPC are shown in Table 1. No cor-
relation (r = − 0.087) was found between total fat content 
and BMI (Fig. 4).

Discussion

To our knowledge, this is the first 1H-MRS study of human 
pancreas grafts. For the first time relaxation times were 
measured during the cold preservation (~ 4 °C) and for 
the first time intracellular lipids of non-adipose pancreatic 
cells were detected and quantified by 1H-MRS.

In vivo quantitation of intracellular lipids of NAPC is 
a difficult task. Navigator-guided acquisition, respiratory 
triggering, or measurement during breath-hold are able to 
suppress spectral distortions, however, remaining resid-
ual respiratory, peristaltic and heart motion could cause 
additional phase and frequency distortions and anomalies 
in water suppression [27]. Spectroscopy of the pancreas 
grafts during cold storage offer the unique opportunity to 
obtain spectra free from motion artifacts. However, the 
absolute quantitation of intracellular lipids of NAPC is 
not always possible in spite of motion artifact-free spec-
tra. Quantification depends on the ability of fitting algo-
rithm to distinguish methylene spectral line of intracellular 
lipids at 1.3 ppm from the methylene line of adipocytes 
at ~ 1.4 ppm. Already modest increase of pancreatic adi-
pocytes produces dominant lipid (–CH2–)n signal which 
contaminate the intracellular spectral line due to severe 
overlap. Intracellular lipids are then indistinguishable. 
Increased spectral resolution at higher magnetic fields 
(B0 ≥ 7 T) can substantially improve detectability of intra-
cellular lipids. Total Cho peak at 3.2 ppm is also undetect-
able when the lipid peak is high.

In vivo estimation of pancreatic water relaxation times 
T1 (584 ± 14 ms and T2 (46 ± 6 ms) was published by de 
Bazelaire et al. [28]. Our shorter T1 and longer T2 values 
can be explained by the fact that the pancreatic blood was 
replaced by HTK or UW solution. Measured T1 relaxa-
tion time of lipid (–CH2–)n peak is shorter, about ~ 70 ms, 
and T2 is by factor ~ 2 smaller compared to the reported 
in vivo values of subcutaneous fat [28, 29]. This phe-
nomenon can be explained by the low temperature dur-
ing the experiments (4 ± 2 °C). Baron et al. [30] reported 
that T1 temperature (T) dependence of female breast adi-
pose tissue can be described by the function A × exp[− B/
(T + 273.15)] where A and B are constants. T1 temperature 
coefficient decreased from dT1/dT = 9.5 ± 0.16 ms/°C to 
5.35 ± 0.08 ms/°C in the interval from 65 to 25 °C. Linear 
dependence (0.9 ± 0.03 ms/°C) was found between T2 and 
temperature. These T1, T2 dependences and the tempera-
ture difference ~ 33 °C between in vivo and cold storage 
explain the shorter relaxation times.

In this study, we found the pancreatic fat content (f/w) 
to be very similar, to those reported for healthy subjects 
[9, 10, 12, 13]. Spectroscopic voxel was placed within 
the body of the pancreas (Fig. 1) because of the need for 

Table 2   Average T1 and T2 relaxation times (ms) of normal pancreas 
grafts at 4 ± 2 °C

N number of grafts

Water (N = 5) Fat (CH2)n (N = 5)

T1 670 ± 69 287 ± 60
T2 77 ± 17 27 ± 4

Fig. 4   Scatter plot and regression line illustrating relationship 
between BMI and total pancreatic lipid content
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large voxel size and because no significant [31] or small 
[15] difference of the fat content was reported between the 
head, body, and tail. No correlation was found between 
fat content and BMI. This result is in agreement with the 
previous studies of Tushuizen and Gaborit et al. [9, 13]. 
However, Lingvay et al. [10] and Kühn et al. [15] found 
a positive association of pancreatic fat content with BMI.

Pancreatic intracellular lipid accumulation is currently 
of considerable interest. It was shown that an increased 
content of cytosolic lipid droplets in islets of Langerhans 
leads to decreased glucose-stimulated insulin secretion 
[32, 33]. This phenomenon has been called as β-cell lipo-
toxicity [34]. To our knowledge, there are no previous esti-
mates of human pancreatic intracellular lipids of NAPC 
that can be compared with our results. The intracellular 
lipid content we found is comparable with intramyocellu-
lar lipids of the calf muscles [21, 35, 36]. It is important to 
note that 1H-MRS is unable to discriminate between intra-
cellular lipids of acinar and the islet of Langerhans cells.

The main limitation of this study is the small num-
ber of grafts and age of donors. It should be noted that 
the grafts were considered unsuitable for transplantation 
mainly due to advanced age. A further limitation is the 
fact that increased pancreatic fat content hinders detec-
tion of intracellular lipids of NAPC. The usability of the 
measured relaxation times is limited to the grafts perfused 
by HTK or UW solution and to the temperature of cold 
storage (4 ± 2 °C).

Conclusions

The present results suggest that 1H-MRS is a useful tool 
for quantification of pancreas graft lipid concentrations 
using water as the internal concentration reference. Total 
pancreatic fat and especially content of intracellular lipids 
of NAPC are valuable measures for inspection of graft 
quality prior to transplantation or islet of Langerhans 
isolation.
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