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Abstract
Objective  T2 maps are more vendor independent than other MRI protocols. Multi-echo spin-echo signal decays to a non-zero 
offset due to imperfect refocusing pulses and Rician noise, causing T2 overestimation by the vendor’s 2-parameter algorithm. 
The accuracy of the T2 estimate is improved, if the non-zero offset is estimated as a third parameter. Three-parameter Lev-
enberg–Marquardt (LM) T2 estimation takes several minutes to calculate, and it is sensitive to initial values. We aimed for 
a 3-parameter fitting algorithm that was comparably accurate, yet substantially faster.
Methods  Our approach gains speed by converting the 3-parameter minimisation problem into an empirically unimodal 
univariate problem, which is quickly minimised using the golden section line search (GS).
Results  To enable comparison, we propose a novel noise-masking algorithm. For clinical data, the agreement between the 
GS and the LM fit is excellent, yet the GS algorithm is two orders of magnitude faster. For synthetic data, the accuracy of 
the GS algorithm is on par with that of the LM fit, and the GS algorithm is significantly faster. The GS algorithm requires 
no parametrisation or initialisation by the user.
Discussion  The new GS T2 mapping algorithm offers a fast and much more accurate off-the-shelf replacement for the inac-
curate 2-parameter fit in the vendor’s software.

Keywords  Algorithms · Least-squares analysis · Software

Introduction

The MRI transverse relaxation time T2 depends on the type 
of tissue, and its local digression from empirical normal 
values may be indicative of the onset of a disease. To use 
such knowledge for diagnostic purposes, maps of T2 values 

at individual voxels need to be established. Clinical appli-
cations of T2 mapping include [1, 2] myelin water-imag-
ing in multiple sclerosis and brain cancer, schizophrenia, 
phenylketonuria, identification of myocardial oedema in 
inflammatory pathologies and acute ischaemia, mapping of 
carotid artery plaque components, knee cartilage imaging, or 
T2-mapping of the posterior cruciate ligament from an MRI 
of the knee, among others.

This study was prompted by a prostate cancer project at 
the Department of Urology, University Hospital Brno, Czech 
Republic. It has been known for two decades [3] that lower 
values of the transverse relaxation time in prostate T2 maps 
are highly correlated with lower citrate values, which in turn 
indicate malignancy. Confirming this finding, the authors 
of [4] also observed that the mean T2 values were similar 
for all of the tested tissue classes on two different MR scan-
ners from different vendors, which suggests that the T2 value 
may be robust to changes in protocols and MR vendors and, 
therefore, suitable as one tool in a future multiparametric 
quantitative approach for diagnosing prostate cancer.

Transverse magnetisation decay is, in general, multiexpo-
nential [1, 2]. Some approaches attempt to find exact values 
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of several decay time constants of a particular body tissue 
such as the prostate [5], yet tissues differ in both the number 
of dominant time constants and in their values, which makes 
multiexponential fitting difficult to generalise. Furthermore, 
the accuracy of multiexponential estimates is value depend-
ent: the separation of exponential components that are closer 
than a factor of 2 requires very high-quality data [5]. To find 
the parameters of a multiexponential fit, a nonlinear least-
squares (NLLS) problem needs to be solved, but this pro-
cess is computationally demanding. For example, a NLLS 
voxelwise 3-parameter fit on a 256 × 256 voxel image takes 
several minutes to complete and, thus, does not qualify for 
interactive data post-processing.

To provide quick T2 maps for clinical use, the fast non-
iterative log-linear (LL) method, which performs a linear fit 
of the monoexponential model Eq. (1) after a log transfor-
mation, has been widely implemented by scanner vendors 
[6].

Equation (1) describes the monoexponential model for a 
particular volume element j. Each volume element has its 
own transverse magnetisation decay curve with specific val-
ues 
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2

)
.

An important issue pertaining to the LL method is that of 
noise. Due to the logarithmic operation that is used to lin-
earise the model (1), noise is amplified at small echo values 
[2, 7]. To deal with this issue, the authors of [7] presented a 
fast iterative nonlinear least-squares method of noise reduc-
tion for the 2-parameter fit, which in low-intensity T2 value 
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tissues such as muscles and adipose tissues produces less 
noise than the LL method.

Multi-echo spin echo (MSE) data that are used for mono-
exponential fitting (Fig. 1a, b) violate the assumption of 
purely exponential decay in 3 aspects (Fig. 1c, d):

1.	 the first echo is smaller than the second echo,
2.	 instead of decreasing monotonically, the echo values 

slightly oscillate,
3.	 for many voxels, the echoes converge to some positive 

offset rather than to zero.

The signal increase from the first to the second echo 
is caused by imperfections in the refocusing pulses in the 
MSE sequence, as detailed in [8, 9]. Refocusing pulses in the 
MSE should have a flip angle of exactly 180º to guarantee an 
exponential decay with T2, whereas in reality, imperfect slice 
excitation profiles and B1 inhomogeneity lead to lower flip 
angle values and give rise to stimulated echo contributions to 
the overall signal intensity. Stimulated echoes decay accord-
ing to a combination of T1 and T2 relaxation rather than 
according to T2 alone. This makes the echo amplitude jump 
from the first to the second echo and causes signal oscilla-
tions between odd and even echoes [9–11]. Oscillations due 
to imprecise flip angles present a major contribution to the 
offset and a major error source in T2 quantification.

The non-zero offset may also be due to the presence of 
Rician or Rayleigh noise; hence, the expected zero offset 
will not result even for perfect refocusing [11]. The offset 
may also be affected by the echo spacing and the echo train 
length.

Authors of [11] admit that monoexponential fitting is not 
the most appropriate method of data fitting in T2 relaxom-
etry, yet they argue that monoexponential fitting methods 
are used in the majority of clinical and preclinical studies. 
To improve T2 estimates from data that have been distorted 
by imperfect flip angles and Rician noise, the researchers 

Fig. 1   a, b T2 echoes at echo times 10 and 310 ms, i.e. the first and 
the last echo of 32 echoes lying 10 ms apart that were acquired using 
the MRI MSE sequence. Ideally, the brightness of the echoes within 
the tissue should decrease exponentially from left to right. c, d T2 

echoes from arbitrarily picked voxels at all 32 echo times (TE =10, 
20, 30,. .., 320 ms). The decay is not purely exponential: the first echo 
is smaller than the second echo, the decay oscillates rather than being 
monotonic, and in some cases, late echoes do not converge to zero



425Magnetic Resonance Materials in Physics, Biology and Medicine (2019) 32:423–436	

1 3

augmented the model Eq. (1) by adding a non-zero offset to 
the monoexponential model. Different voxels j of an MRI 
image possess the different offset values cj:

Report [11] assessed the potential benefit of non-zero off-
sets for fitting accuracy by comparing four methods:

1.	 all echoes fitted with the simple exponential without 
offset, Eq. (1),

2.	 all echoes fitted with the exponential with offset, Eq. (2),
3.	 the first echo was discarded, and the remaining echoes 

were fitted with Eq. (1),
4.	 the first echo was discarded, and the remaining echoes 

were fitted with exponential + offset, Eq. (2)

The reference T2 values (i.e. ground truth) that were used 
for the comparison were known either from extended phase 
graph (EPG) simulations [12] or from T2 relaxometry on 
an agarose/water-mixture phantom. Report [11] concludes 
that, after discarding the first echo, most of the remaining 
systematic error in T2 could be eliminated by the offset as a 
fitting parameter (method 4).

The efficacy of skipped echo methods for T2 quantifica-
tion has been examined in [13]. The authors compared three 
monoexponential fitting strategies—exponential fitting for 
T2 using all echoes, skipping the first echo, or skipping all 
odd echoes—against computational modelling of the exact 
signal decay using Bloch equation-simulated, phantom and 
in vivo MSE data. They optimised a 2-parameter monoex-
ponential model to fit the simulated or measured MSE data. 
For this model, which lacked a constant offset, their results 
show that even if skipped methods represent a step forward 
over standard exponential fitting, they nevertheless result in 
a substantial T2 error, and they recommend fitting for the 
actual decay curve using full Bloch equation modelling and 
measured flip angle maps that account for all echo pathways.

To compensate for the effect of stimulated echoes in a 
multiexponential decay model, the authors of [14] present 
an approach that is based on the estimation of the inhomoge-
neity of the B1 field and the resulting refocusing angle. The 
estimated refocusing angle was then inputted as a voxel-spe-
cific parameter called A to the EPG algorithm, both for the 
simulated tri-exponential and the in vivo data. The value A 
was used to calculate many decay curves over a range of 40 
logarithmically spaced T2 values ranging from 0.015 to 2 s. 
This yielded an objective function for the non-negative least-
squares (NNLS) fit. Using the NNLS method, they obtained 
a T2 distribution that minimised the Euclidian norm of the 
solution; however, this produced narrow, sharp peaks. To 
increase the solution’s robustness in the presence of noise, 
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regularisation using a minimum energy smoothing constraint 
was added to the NNLS fitting procedure. The paper [14] 
does not explain why—without regularisation—the NNLS 
method produced sharp peaks. By a simple linear algebra, 
the problem of fitting a linear combination of 40 linearly 
independent sampled curves (EPG curves or exponentials) 
to 32 echoes is underdetermined and has infinitely many 
exact solutions, some of which will produce sharp peaks, 
and others smooth ones.

From [14], it is also not clear what benefit the smoothing 
of the T2 distribution had for the numerical model they used 
in simulations. The model consisted of exactly three discrete 
peaks located at 20 ms, 100 ms, and 2 s. For this numerical 
model, the realistic solution has exactly three sharp peaks. 
To obtain the correct solution, the regularisation should 
emphasise sharp peaks instead of smoothing them.

The authors of [14] claimed that the exponential model 
did an extremely poor job of finding the echo magnitudes. 
They quoted computing times slightly less than 30 min for 
stimulated echo analysis of seven 256 × 256 voxel slices of 
32 echo data frames, making use of parallel computing with 
eight physical processor cores.

To restrict the set of T2 distributions to the least complex, 
regularisation can be used [2]. In this approach, the objective 
function is a sum of two terms that are optimised simultane-
ously: the first term penalises the misfit between model and 
measurement, while the second term evaluates the energy of 
the T2 distribution, weighted by a constant µ. High values of 
µ increase the constraints, resulting in broad T2 distributions 
at the expense of a higher misfit, whilst very low µ values 
result in narrow T2 distributions.

T2 mapping errors that are caused by measurement noise 
can, to some extent, be algorithmically suppressed [2]. To 
avoid noise effects in T2 mapping using MSE, the short-
est echo should have a signal–noise ratio (SNR) that is 
greater than 100, which may require signal averaging. Image 
smoothing also has the effect of increasing the SNR. A non-
local mean filter can be used to increase the SNR across 
regions with similar characteristics. Alternatively, voxels 
can be averaged across a region of interest, but this discards 
information about the noise that is associated with each con-
stituent component and hinders a statistical comparison of 
T2 values across different regions, between subjects, or over 
time [2].

Errors can also be incurred by using magnitude instead of 
complex-valued MR data. The authors of [15] observe that 
this simplification results in biased T1, T2* and T2 estimates 
at low SNRs, and they employ several estimation techniques 
which use real or complex-valued MR data to achieve an 
unbiased estimation. The estimators were then compared in 
terms of bias (accuracy), variance (reciprocal of precision) 
and computation time. For the T2 simulation studies, com-
plex-valued MR data were generated using monoexponential 
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decay with a complex multiplier representing proton den-
sity and initial phase. For T2 studies on experimental data, 
high-SNR T2 MSE datasets of in vivo rat brains under 2% 
isoflurane anaesthesia were acquired in a single session on 
a 4.7-T system. The reconstructed complex-valued datasets 
that resulted from these scans were incrementally degraded 
by adding complex additive white Gaussian noise to reveal 
the relative robustness of the different methods to additional 
noise, and parametric maps were estimated at each stage. 
Simulations and experiments demonstrated that the estima-
tion techniques that used complex-valued data provided the 
minimum-variance unbiased estimates of parametric maps 
and markedly outperformed the commonly used magnitude-
based estimators under most conditions, even compared to 
the magnitude-based techniques that account for Rician 
noise characteristics. However, the authors also mention 
some limitations of the estimators that are based on com-
plex-valued data, such as unexpected phase deviations while 
deterministic phase evolution is assumed.

Several other researchers have reported that the intro-
duction of an offset may significantly reduce the T2 estima-
tion error both in simulations and on phantoms with known 
relaxation times, yet in most approaches the offset was found 
either manually—by choosing the best-performing value out 
of a preselected range—or heuristically, e.g. by taking the 
mean of the late echoes [11].

Manual offset selection is not feasible for full-size MRI 
images, which can have, e.g. 256 × 256 = 65,536 different vox-
els with different offsets. Taking the mean of the late echoes 
for an offset may well be automated, yet the estimates do not 
rely on optimisation of some objective function; hence, their 
optimality cannot be measured. References to algorithms that 
automatically find the optimum M0, T2, and c values of Eq. (2) 
are rare. The earliest mention of an automatic 3-parameter 
matching of Eq. (2) and the only publicly available imple-
mentation that was capable of yielding numerical results for 
our MRI prostate data was the ImageJ MRI Processor plug-in 
[16]. The plug-in offers the following two fitting algorithms:

1.	 the Levenberg–Marquardt algorithm,
2.	 the general purpose Simplex algorithm.

The user can specify the number of iterations and has the 
option to force the offset parameter to 0. In addition, echo 
times can be explicitly defined. The MRI Processor’s LM 
method takes approximately 4 min to calculate the M0, T2, 
and c parameters for 256 × 256 voxels of a 32-image MSE 
sequence on an Intel i7 CPU laptop. MRI Processor’s Sim-
plex algorithm did not converge for our data.

Another implementation of the LM nonlinear least-
squares algorithm was reported in [11] for comparison of the 
four fitting cases (with/without the first echo, with/without 
offset), yet no execution times were quoted.

A method for an automatic classification of tissues using 
T1 and T2 relaxation times from prostate MRI is presented in 
[17]. To create PET/MR attenuation maps, the authors clas-
sify the different attenuation regions from MRIs at the pelvis 
level using the T1 and T2 relaxation times and anatomical 
knowledge. The T2 relaxation maps are computed from MSE 
imaging of the prostate using the 3-parameter fit to Eq. (2). 
To find the M0, T2 and c parameters, the researchers use 
a proprietary bi-square weights nonlinear least-squares fit-
ting method that was developed in MATLAB. The algorithm 
automatically extracts the background and fits only the body 
region to minimise the fitting time. Approximately, 5 min is 
needed to compute the T2 values for all voxels of the reduced 
foreground image.

Rather than calculating the offset numerically from MSE 
acquisitions, in [18], the offset is found as a function of the 
MRI sequence parameters (flip angle, number of pulses, rep-
etition time, etc.). The authors of [18] designed a novel T2 
mapping sequence that was different from the usual MSE. 
This novel method enables a robust estimation of T2 maps 
using a 3-parameter fit model. In conclusion, the 3-param-
eter model of [18] for T2 relaxation accurately models myo-
cardial T2 mapping, which is not true when the conventional 
2-parameter model is used for curve–fitting.

The introductory review confirmed that adding offset to 
the monoexponential fit of the measured transverse relaxa-
tion curve substantially improves the estimate, yet it is 
expensive in terms of its computation time: compared to 
the seconds needed to compute the fast yet inaccurate LL 
fit, it takes several minutes to find the 3-parameter NLLS fit 
of Eq. (2) from a 32 MSE sequence for all of the 256 × 256 
image voxels.

Our goal was to develop a T2 3-parameter matching algo-
rithm with execution times in the seconds range and with 
the accuracy of a 3-parameter NLLS fit. The idea for how to 
achieve this was to modify the NLLS optimisation in such 
a way that only one variable needed to be optimised itera-
tively, with the other two variables being uniquely defined by 
the current iteration of the first one. Reducing the number of 
problem variables would lead to shorter computation times.

Materials and methods

The algorithm

Below, the algorithm will be elaborated in 4 steps:

1.	 we will formulate the problem of finding the exponen-
tial fit parameters 

(
M0, T2, c

)
 of Eq. (2) in terms of the 

least-square minimisation of the sum of errors between 
the measured echoes and the fitting function
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2.	 instead of solving the least-squares problem for the expo-
nential fit, which is difficult, we will apply a weighted 
linear regression to its logarithm with the fixed offset c, 
which is easy,

3.	 to account for noise boost caused by the logarithmic 
operation, we will apply a compensatory weighting for 
the measured echoes,

4.	 we will show that an accurate estimate of c can be easily 
found using a one-dimensional golden section (GS) line 
search, since the modified objective function empirically 
turns out to be unimodal with respect to c

The idea to iteratively optimise c with 
(
M0, T2

)
 uniquely 

defined by the value of c that resulted from the current line-
search operation leads to a reduction in the number of optimi-
sation variables from 3 to 1, since M0 and T2 are projected onto 
c. In this regard, our approach is reminiscent of the variable 
projection method [19], yet the similarity ends here. While 
variable projection algorithms generally apply to a class of 
least-squares problems with separable linear parameters that 
are eliminated by substituting partial derivatives with respect 
to the non-linear variables, we do not use partial derivatives 
at all. Instead, we keep only one linear parameter, the offset 
c , and calculate new iterates of 

(
M0, T2

)
 using noise-weighted 

linear regression on the log error.

Least‑squares fit of sampled echoes by an exponential 
and an offset

All computations below are done voxelwise. For readability, 
we omit the voxel index j in Eq. (2) and make the replace-
ment T2 = 1∕R2:

The parameters M0, R2 and c of the exponential fit Eq. (3) 
are required to minimise the sum G of square errors between 
the measured echoes e⃗ and the corresponding samples of the 
fit function y⃗:

with:

(3)yi = M0e
−R2ti + c R2 ... the transverse relaxation rate
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Replacing the exponential fit Eq. (4) with linear regression

For a fixed c, we replace the computationally intensive non-
linear minimisation in 2 variables 

(
M0,R2

)
 from Eq. (4) with 

simple linear regression, in which the sum of the squared 
errors between the logarithm of the echo minus the offset 
and the logarithm of the exponential function value is mini-
mised. We introduce di and fi:

and instead of Eq. (4), we minimise the weighted sum Q of 
squared errors between the logarithms with respect to L0 
and R2:

where f⃗ =
[
f1, f2, ..., fN

]T

In Eq. (6), W  is a positive semi-definite weighting matrix 
that is designed to compensate for the overemphasis on small 
echoes, as derived in the next paragraph.

Q
(
R2, L0

)
 is a non-negative quadratic function; hence, its 

minimum coincides with the zeros of the partial derivatives:

which resolves to:

and the parameter M0 of the exponential fit reads:

In Eq. (11), M0 can take on only positive values, yet this 
is a natural constraint for the underlying physical problem 
of exponential magnetisation decay.

Small echoes are overweighted due to the logarithm: 
the method of compensation

The fitting equation at the echo time ti reads:

(5)

di = ei − c fi = log di = log
(
ei − c

)

yi − c = M0 ⋅ exp
−R2ti log

(
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)
= logM0
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W
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(11)M0 = eL0
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where �ei is the fitting error (noise). The left-hand side of 
Eq. (12) has a Taylor expansion in �ei:

i.e., the fitting error �ei at the echo time ti is amplified by:

which becomes large when there are small differences 
between the echo ei and the current estimate of the offset c . 
This overweighting of fitting errors can be compensated for 
by multiplying the logarithmic errors in Eq. (6) by the recip-
rocal of Eq. (14) that was calculated with the current offset 
estimate. Because of the logarithmic operation in Eq. (5), 
we only perform this weighting whenei > c . When ei ≤ c , a 
weight of 0 is selected. Considering all of the echo times, we 
obtain the diagonal weighting matrix diag

(
e⃗ − c ⋅ 1⃗

)+

 , 
where

This yields:

i.e. W  in (6) becomes:

Finding the offset c

Equations (5), (9), (10), (11), and (17) compute the expo-
nential fit parameters in the case of a fixed c. It remains to 
be shown how to find the minimiser c in Eq. (4) with fixed (
M0,R2

)
 values that resulted from Eqs. (9) and (11).

The parameter c uniquely defines the R2, L0 and M0 values 
that are computed by Eqs. (9) (10) and (11), respectively, in 
which c is part of the equations fi = log

(
ei − c

)
 and 

D = diag
(
e⃗ − c ⋅ 1⃗

)
 . Indeed, in Eq.  (5), L0 = L0(c) , 

M0 = M0

(
L0(c)

)
= M0(c) and R2 = R2(c) , hence:
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(17)W = diag
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× diag
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)+

(18)G
(
M0,R2, c

)
= G

(
M0(c),R2(c), c
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= G(c)

is a function of a single variable c. It resulted empirically 
from extensive tests (65,536 fits for a 256 × 256 MRI slice) 
using MSE patient data as well as using synthetic data that 
for voxels with more or less regularly decreasing echoes, 
G(c) is unimodal. Two typical shapes of G(c) as a function 
of a varying offset c are shown in Fig. 2b for two voxels that 
were selected at random from the biological tissue of Fig. 2a. 
Both curves exhibit a well-pronounced single minimum. 
Thus, the minimiser c can be computed very quickly using 
a one-dimensional minimum search. We use the golden sec-
tion method [20] to find the minimum of G(c).

The golden section search needs two initial values 
between which the optimum is searched. Since the offset 
due to imperfect flip angles or Rician noise is always non-
negative, we selected the offset lower bound as 0 for all 
voxels. The upper bound was chosen equal to the 10th echo 
value at a given voxel with the following reasoning: for an 

Fig. 2   Unimodality of the cost function G(c) of the exponential fit. 
a Two voxels (indicated with a triangle and a circle) were arbitrarily 
chosen from the T2 echo at 20 ms. b To show unimodality at these 
voxels, G(c) was evaluated at 10 equidistantly spaced values of c that 
increased linearly with the iteration number. The curve marked with 
the circle achieves its minimum, i.e., the best exponential fit, in the 
fourth iteration, the curve that is marked with the triangle achieves 
the minimum in the second iteration
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exponential with T2 = 100 ms and 10 ms echo spacing, the 
10th echo is still ~33% above the minimum of the exponen-
tial; thus, it is safely above the offset, even if noise is present.

Each algorithm step is simultaneously performed for all 
voxels using matrix operations. A detailed flowchart of the 
algorithm is shown in Fig. 3.

Noise identification and masking

In the T2 maps that are generated using either the vendor’s 
software, or the GS method, or the LM method, noise is vis-
ible in the background and in gas-filled body cavities. On a 
closer examination, the MSE signal in noisy voxels does not 
exhibit a steady decrease. Instead, the echoes have low levels 
and oscillate heavily. This condition is easily recognised by 
comparing the total variation (TV) of the echo signal at a 
given voxel to the difference between the maximum and the 
minimum echo value. Total variation of the echo sequence 
e⃗ is defined as:

For a purely monotonic decrease, the total variation is 
equal to the difference between the maximum and the mini-
mum echoes. The more oscillatory the signal is, the more its 
total variation exceeds the span of the echo values. The T2 
values at voxels exceeding a properly chosen ratio of total 
variation and signal span can be labelled as noise.

We use the total variation-generated signal mask to 
exclude voxels with noisy MSE data from a comparison 
of the results of the different T2 mapping methods. Such 
a decision is done by multiplying the respective T2 values 
or the derived data by the TV-generated mask. The mask 
must properly distinguish voxels where the total variation 

(19)TV
(
e⃗
)
=

N∑

i=1

||ei − ei−1
||, i = 1, 2,… ,N

is high as a result of noise and which are rejected, from 
the accepted high-TV voxels where the echo train oscillates 
non-monotonically between odd and even echoes as a result 
of low refocusing pulse flip angles. The total variation value 
for given flip angles can be numerically calculated using 
the extended phase graph theory [8, 10]. In this study, we 
excluded from comparison all voxels with MSE total vari-
ation that exceeded the span of the echo values by a factor 
greater than 2. Since the highest TV factor that was found 
in the EPG simulations with a 120° flip angle was 1.4, a TV 
threshold of 2 does not filter out oscillations that are due to 
imperfect flip angles. Figure 4 compares a raw T2 map of 
the GS algorithm, the TV-generated mask, and the masked 
T2 map with high-TV, low-confidence voxels marked in red.

Performance evaluation of the new GS algorithm 
for monoexponential T2 fitting with offset

To assess the effectiveness of the MATLAB implementation 
of the new GS algorithm, the accuracy, speed and agreement 
of its results were compared to the 3-parameter monoexponen-
tial fitting that resulted from the Levenberg–Marquardt NLLS 
optimisation of the squared-error sum (4) in MATLAB. In 
addition, the widely used LL 2-parameter monoexponential 
algorithm was compared to the two 3-parameter methods.

Four types of test data—three synthetic datasets with 
known ground truth and one dataset with real medical MRI 
data—were used for this evaluation.

Dataset A Sampled exponential functions with randomly 
generated initial values and T2 that were distorted by Rician 
noise.

As stated in [11], one possible reason for a non-zero offset 
in T2 relaxation may be Rician noise. Typical signal–noise 
ratios for Rician noise are between 20 and 30 [21]. Rician 
noise is not additive [22]. To simulate its behaviour, we used 
the Rician noise algorithm that was provided in [22] with 
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Fig. 3   Detailed flow chart of the algorithm
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the aim to determine whether for finite SNRs, the 3-param-
eter model improves the T2 estimate compared to a that 
of 2-parameter LL fit and to compare the fitting accuracy, 
agreement and speed of the two 3-parameter methods, GS 
and LM. We first generated synthetic decaying 256 × 256-
voxel 32-image sequences consisting of exponentials with 
random uniformly distributed initial values M0 ∈ ⟨0, 4096⟩ 
and T2 ∈ ⟨20ms, 200ms⟩:

The values of M0 represent proton density values in 12-bit 
image encoding. From these exponentials, four datasets with 
the SNRs 20, 30, 50 and ∞ were subsequently created by 
contaminating them with Rician noise, which introduced a 
non-negative offset to the simulated data. This procedure 
yielded 65,536 sampled exponentials with different initial 
values and decay rates, and the offsets were produced by 
the Rician noise. The 32 images with exponentially decay-
ing grey-scale values were saved in the DICOM format to 
allow unified input to the tested GS, LM and LL algorithms. 
Figure 5 shows one noiseless and one Rician noise-distorted 
decay curve for an arbitrarily selected voxel of the image 
frame.

The randomly generated T2 matrices provided the ground 
truth for an assessment of accuracy of the new 3-param-
eter GS method, the LM method, and the 2-parameter LL 
method.

Dataset B EPG-simulated MSE sequences with ran-
domly generated proton densities and T2 values and a fixed 
T1 value.

(20)yi = M0e
−

ti

T2 ti = 10, 30, ..., 320

We used the method of extended phase graphs [8, 10] to 
simulate MSE decay curves that had non-zero offsets due 
to imperfect refocusing. To keep the effects of imperfect 
refocusing apart from those of Rician noise, the dataset 
B assumes SNR → ∞ (no noise). Using the EPG MAT-
LAB implementation that was provided by the author of 
[12], we generated synthetic MSE image sequences con-
taining 32 frames with 256 × 256 voxels. Four simulated 
MSE sequences were created for refocusing flip angles of 
120°, 140°, 160° and 180°. As in Dataset A, random uni-
formly distributed proton density values and transverse 
relaxation times and a constant longitudinal relaxation time 
T1 = 3000 ms were input voxelwise to the EPG simulation 
routine, which calculated the simulated echoes at echo times 
TE ∈ {10, 20, ..., 320 ms} . The example in Fig. S1 shows 
the dependence of the EPG-simulated echoes on the flip 

Fig. 4   Total variation-based noise-masking. a Prostate T2 map cal-
culated by the GS algorithm. Noise appears in low proton density 
regions, such as the background and the colon. b TV-generated mask. 
Black marks low-confidence voxels, i.e., such voxels where the total 
variation of the echoes exceeds the echo range by a factor of 2 or 
more, and thus probably represents noise. Accepted voxels are those 

with TV factors less than 2, in which TV might have been increased 
by imperfect refocusing pulses, and they are tagged white. c Denoised 
T2 map. Low-confidence T2 regions with a high TV of the echo train 
are highlighted with red to distinguish them from the trusted low T2 
values (dark)

Fig. 5   A noiseless and a Rician noise-distorted (SNR=30) transverse 
magnetisation decay curve
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angles. The generated EPG image sequences were saved in 
the DICOM format.

Dataset C EPG-simulated MSE sequences with randomly 
generated proton densities and T2 values and a fixed T1 value 
that were distorted by Rician noise.

This dataset combines the effects of imperfect flip angles 
with those of Rician noise. For each of the refocusing flip 
angles 120°, 140°, 160° and 180°, the EPG method [12] 
was used to generate a simulated echo sequence at times 
TE ∈ {10, 20, ..., 320 ms} . Subsequently, the echo sequences 
were distorted by Rician noise with SNR=30 and were 
finally saved in the DICOM format.

Dataset D Prostate patient MRI data acquired on a 3-T 
scanner.

MRI slice data consisting of 32 MSE prostate images that 
were acquired 10 ms apart with a 256 × 256-voxel resolution 
were used to validate the GS algorithm and to compare it 
with the 3-parameter LM fit. In total, we had 21 prostate 
image slices (3 subjects, 7 slices each) of 2 prostate patients 
and one healthy volunteer at our disposal, of which only one 
is presented here to save space.

The ground truth of Datasets A–C was used to assess the 
accuracy of the respective T2 mapping method. To improve 
the T2 fit in all three methods, we discarded the first "non-
monotone" echo, as proposed in [9].

Accuracy and agreement evaluation of the GS, LM 
and LL methods

Our approach to the assessment of the accuracy and agree-
ment is inspired by the Bland–Altman (BA) method that was 
used in [6]; however, it could not be applied here, since the 
pairwise differences between our GS, LM, LL results or the 
ground truth are not normally distributed, as required. Instead, 
we assessed the accuracy and agreement using 95% limits on 
the empirical cumulative distribution function (ECDF):

where n = 256 × 256 (total number of voxels), t is the inde-
pendent variable of the ECDF, xi is the absolute value of 
the difference between sample pairs that were provided by 
GS, LM, LL or ground truth, and 1xi≤t is an indicator of all 
xithat are less than t. The value Fn(t) is, thus, an estimate 
of the probability that the absolute difference between the 
two quantities (e.g. between the GS solution and the ground 
truth) is less than t. If we find in the calculation of the abso-
lute differences between the GS T2 map and the ground truth 
the value of t at whichFn(t) = 0.95 , then the absolute error 
between the GS solution and the ground truth will be less 
than or equal to t with a 95% probability.

(21)Fn(t) =
1

n

n∑

i=1

1xi≤t,

To classify the agreement of two methods, agreement limits 
need to be defined. Like in the BA method, the agreement 
limits are application specific. We related them to the normal 
T2 relaxation times, which, according to [23], for human body 
tissues lie between T2min = 28 and T2max = 767 ms. Consider-
ing these values, we chose the agreement limits as follows:

•	 excellent agreement: 95% of the values of absolute dif-
ferences lie below (T2min/5) ~ 5 ms

•	 good agreement: 95% of the values of absolute differ-
ences lie below T2min = 28 ms

•	 poor agreement: the 95% limit is greater than T2min = 28 
ms

An assessment of accuracy differs from that of agreement in 
that the result of a method is compared with the ground truth, 
rather than with the result of another method. The aforemen-
tioned limits are used for classification of accuracy, as well. 
The symbols T2_GS, T2_LM, T2_LL and T2_true refer to the T2 
maps that were calculated using the GS, LM or LL methods, 
or to the ground truth.

Three‑parameter exponential fit with offset using 
the Levenberg–Marquardt algorithm in MATLAB

Authors who have disclosed the details of their monoexpo-
nential 3-parameter T2 fit used the LM algorithm to find the 
unknown fit parameters [11, 16]. The LM implementation 
in MATLAB R2016b (lsqcurvefit) does not allow for con-
straints to be imposed on the solution, and it often yielded 
implausible results for our test data, such as negative values 
for proton density, whereas the true M0, T2, and c values 
are always non-negative by their physical nature or by the 
test data design. To constrain the search space, we chose 
a widely used MATLAB implementation of the Leven-
berg–Marquardt method levmar [24], which provides for box 
constraints. A compiled version of levmar was downloaded 
from [25].

For all test data, the parameter search was constrained to 
the ranges M0 ∈ ⟨0, 20000⟩ , R2 ∈ ⟨0+, 1⟩ and c ∈ ⟨0, 20000⟩ 
These bounds cover our synthetic MRI test series by design 
as well as the true MRI data where the maximum echo val-
ues of 4095 (i.e. 212−1) were observed, obviously owing to 
the A/D converter resolution.

Our extensive calculations show that the convergence of 
LM optimisation depends heavily on the algorithm initialisa-
tion. This finding is explained by the fact that the 3-param-
eter minimisation of the objective function (4) is a non-con-
vex problem, which can easily be verified by a numerical 
example. For example, the initialisation with mid-values of 
the search ranges led to very poor optimisation results. After 
experimenting with different combinations of initial values, 
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we decided to use the following data-dependent initialisa-
tion: M00 = e1, R20 =

1

10TE
log

e2

e12
, c0 = 0 . For a pure expo-

nential without offset and without noise, these M00, R20, c0 
values are true parameter values.

Results

Table 1 summarises the accuracy, agreement and execu-
tion time results for the four test datasets. To visualise 
the results, a number of empirical cumulative distribution 

Table 1   Comparison of Accuracy and Agreement of the GS, LM and LL Methods

accuracy of the

GS algorithm

accuracy of the

LM algorithm

accuracy of the

LL algorithm

agreement 

between the GS 

and the LM 

algorithm

GS 

execution

time [s]

LM

execution

time [s]

Dataset A

SNR=20 24.2298 27.352 50.5359 18.5555 2.8715 151.4639

SNR=30 21.7744 21.0281 43.9927 11.9014 2.8833 155.6946

SNR=50 13.9725 12.8971 27.1258 5.071 2.9495 168.66

SNR→∞ 0.27894 0.35286 0.14232 0.1475 2.8646 172.2904

Dataset B

FA=120º 5.555 5.8775 21.5875 0.72211 2.8413 116.9515

FA=140º 2.0611 2.1787 8.9523 0.84234 2.8518 114.037

FA=160º 0.79137 0.63452 2.244 0.5194 2.9173 114.9438

FA=180º 0.26917 0.34923 0.13934 0.14896 2.865 161.77

Dataset C

FA=120º 24.9759 23.2036 34.4512 8.2054 2.9416 178.5104

FA=140º 22.2435 19.6558 39.5513 11.6806 2.8706 139.6199

FA=160º 22.5069 20.7262 42.8598 12.6087 2.9126 149.5067

FA=180º 22.0836 20.7848 44.1453 11.8094 2.9002 154.4866

Dataset D

n/a n/a n/a 3.0301 2.894 312.6724

0-5 excellent

5-28 good

>28 poor

Note: 20 iterations were carried out for all GS calculations
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functions are plotted in the Supplementary material.

Accuracy and agreement of the GS, LM and LL 
methods

Dataset A For the Rician-distorted data, the new GS method 
achieves the best accuracy of all methods in the SNR = 20 
case, and it is almost on a par with the LM method for the 
other SNRs. The LL accuracy is poor for SNR = 20 and 30 
cases and is only barely good for the SNR = 50 case. At 
SNR → ∞ all three methods, GS, LM and LL, are excellent. 
Since SNR → ∞ is unrealistic, the use of the LL method for 
monoexponential fitting is discouraged.

The agreement between the GS and the LM methods is 
good to excellent, and these methods are interchangeable 
with respect to their accuracy (cf. Fig. S2).

Dataset B For the EPG-simulated MSE sequences, the 
accuracy of both the GS and the LM methods is good for 
the 120° flip angle and excellent for the 140º, 160º, and 180º 
flip angles. Their agreement is excellent in every case. The 
errors from the LL method are approximately 4 times higher 
than those of the GS and LM methods, and this method 
only becomes excellent with perfect refocusing. In conclu-
sion, for MSE sequences with imperfect refocusing, an offset 
introduction in the monoexponential transverse relaxation fit 
significantly improves the T2 estimate (cf. Fig. S3).

Dataset C The presence of Rician noise with SNR = 30 
in the simulated EPG sequences, which is a realistic condi-
tion, decreases the GS and LM accuracies to good for all flip 
angles. The agreement between the GS and LM methods is 
good. The errors of the LL method are roughly two times 
higher than those of the other methods, indicating once again 
that the monoexponential LL fit is not suitable for MRI data 
that are subject to both imperfect refocusing and Rician 
noise (cf. Fig. S4).

Dataset D For the prostate patient MRI data, the agree-
ment between the new GS and the LM method is excellent, 
and their respective 95% agreement with the LL method is 
achieved at a difference of as much as 70 (Fig. S5 b). The LL 
method cannot be recommended as a T2 quantitation method 
due to its severe T2 overestimation (cf. Fig. S5). Figure 6 
visually compares the T2 maps that were calculated using the 
GS method (Fig. 6a), the LM method (Fig. 6b) and the LL fit 
method (Fig. 6c). The T2 overestimation by the LL method 
appears as lighter colours throughout the body tissue.

Speed comparison of monoexponential fitting 
with an offset between the new GS‑based algorithm 
and the LM method

Computation times were recorded on an i7 4-core 2.6 GHz 
laptop for the four test data types and are listed in the last 
two columns of Table 1.

For the Levenberg–Marquardt MATLAB levmar imple-
mentation [24], the default configuration of the OPTI tool-
box [25] was left unchanged, i.e. for each voxel, there were 
at most 1500 iterations and a maximum of 10,000 objective 
function evaluations. Both the absolute and the relative con-
vergence tolerance of the solver were 1e−7 by default since 
the tests with tolerance values of 1e−4 and even 1e0 showed 
that these options did not change the number of iterations 
for any of the 256 × 256 voxels. Although dataset sizes were 
identical, the computation times varied considerably, as the 
last column of Table 1 shows. While the shortest execu-
tion times of approximately 114 s were observed for EPG-
simulated data, the execution time was as high as 312 s for 
the real MRI MSE data.

The computation time of the GS algorithm needed to 
reconstruct a 256 × 256 voxel MRI slice is approximately 
2.9 s for 32 echoes. For the true MRI data, the GS algorithm 

Fig. 6   Comparison of the T2 maps for MRI prostate data obtained 
from a patient with a 3-T scanner. Visually, the agreement between 
a the new GS and b the LM method is excellent, but the agreement 
between the a, c GS and LL, and b, c LM and LL methods is poor, 

with the LL method strongly overestimating the T2 values. The col-
our scale corresponds to the calculated T2 values. Note: only the vox-
els that were not excluded by the total variation-dependent mask are 
depicted in a, b and c 
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is, thus, approximately two orders of magnitude faster than 
the levmar MATLAB LM implementation.

Discussion

Vendor software for T2 relaxometry mostly uses a simple 
2-parameter monoexponential model [2, 6] that is matched 
using the log-linear algorithm. The LL algorithm is fast and 
non-iterative and as such always provides a unique solution, 
but it considerably overestimates the T2 relaxation times in 
the cases of when the MRI MSE echoes decay to some non-
zero final offset. The offset may have two major causes: flip 
angles of refocusing pulses which are less than 180°, as 
assumed by the CPMG sequence, and Rician noise due to 
using the magnitude rather than the real and imaginary part 
of the MRI data from the frequency space for reconstruc-
tion [11, 26].

Motivated by the observation from our prostate patient 
data, where the MSE brightness often decays to a non-zero 
final value, our goal was to obtain a better match of the 
decay curve by introducing a non-zero additive offset to the 
monoexponential decay model. The most widely used solu-
tion that has been adopted by other authors—a 3-param-
eter least-squares fit using the Levenberg–Marquardt algo-
rithm—worked for our data, as well, yet the run times were 
in the range of several minutes, and we aimed at achieving 
a comparable accuracy much faster. We extended the LL 
algorithm by introducing an offset, with the proton density 
and T2 estimate uniquely determined by this offset, which 
made the objective function of the fit to depend on the offset 
alone. We observed that the modified objective function was 
unimodal with respect to the offset value. This unimodality 
enabled us to design a new algorithm, which was labelled 
GS because the optimum parameters were found using a 
one-dimensional golden section search on the offset. The 
resulting GS line search is approximately two orders of 
magnitude faster than the 3-parameter LM optimisation of 
the non-convex objective function. To our knowledge, our 
approach to reducing the number of variables has not previ-
ously been presented elsewhere.

To counteract the noise amplification at small echoes 
that was caused by the logarithmic operation, we proposed 
a Taylor expansion-based compensation which eliminates 
distortions caused by noise.

In addition to the decisive speed edge of the GS algo-
rithm over the LM fit, its convergence properties are equally 
important. Due to the non-convexity of the objective func-
tion, LM minimisation yields results that heavily depend 
on initial values. For example, we observed that the LM 
algorithm fails to converge if non-specific initial values 
such as the middle of the allowable parameter range are 
selected, and we were only able to obtain usable results 

with data-dependent initialisation. Furthermore, users of 
the LM algorithm have to parameterise a host of termina-
tion criteria, which is impossible to do without a profound 
knowledge of the algorithm internals. These reasons might 
be why the clinical use of the LM algorithm has so far never 
been reported. In contrast, the initial search range of the GS 
algorithm is automatically selected depending on the meas-
ured echo train data, and it always converges by virtue of the 
unimodality. The GS iterations can simply be stopped after 
a low, fixed number of golden section steps.

To assess the accuracy and agreement of the GS, LM 
and LL methods, we defined a cumulative distribution-based 
procedure to establish the 95% accuracy and agreement 
ranges. To enable a quick classification, we chose limits of 
excellent, good and poor accuracy and agreement. The limits 
are related to the range of T2 values that are found in human 
body tissues. On synthetic data with known ground truth, 
the accuracy of the new GS method and the LM method 
matched. On the true MRI data, the agreement between GS 
and LM was excellent.

To exclude noisy T2 map regions from comparison, we 
proposed a novel approach to identify noise in the echo train. 
Our method uses a total variation-based criterion that can be 
used to pinpoint regions with low signal and strong variation, 
such as gas-filled body cavities. The distinction between 
voxels corresponding to body tissues and voxels that map 
gas-filled space is based on the fact that the spin echo decay 
in tissue voxels is more or less steadily decreasing, with the 
total variation of the echo train close to the range of echo 
values, whereas in void voxels, the echo train has low values 
and oscillates substantially. We use the TV–range ratio as a 
threshold to distinguish between tissue and empty space vox-
els. To admit a possible TV increase due to imperfect refo-
cusing flip angles, voxels with a TV–range ratio of less than 
2 are accepted as valid. The resulting noise mask can help 
medics to identify regions where T2 estimates are untrust-
worthy. To our knowledge, our approach to identifying noisy 
voxels in T2 maps has so far not been proposed elsewhere.

Consistent matrix implementation of the GS method 
without any scalar operations enabled us to accommodate 
the whole algorithm in a mere 90 MATLAB code lines. 
We only used entry-wise matrix operations: addition, sub-
traction, Hadamard multiplication and Hadamard division. 
These simple matrix operations are easy to port to the C 
programming language, where they may occupy some 100 
lines of code. In this way, the GS algorithm can be efficiently 
implemented in C by replacing the MATLAB statements 
with calls to the above pre-programmed matrix operation 
functions without the need for either MATLAB or third-
party numerical libraries such as LAPACK.

The GS algorithm thus possesses 4 decisive advantages 
over the LM 3-parameter monoexponential fit: it is much 
simpler, it is approximately two orders of magnitude faster, it 
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does not require the user to provide initialisation or termina-
tion criteria, and it can be efficiently implemented without 
third-party numerical math packages.

Since it is known that the transverse magnetisation decay 
is, in general, multiexponential [1, 2, 5], the limitations of 
the monoexponential model with offset should be briefly 
addressed. If the tissue under study contains two com-
partments, one with a fast T2 decay of, e.g., 100 ms and 
another one with, e.g., T2 = 700 ms, then during a relatively 
short echo train length of 320 ms, the second decay curve 
decreases only by ~17%. If the proton density of the slow 
component is low, the slow component might be assigned 
to the offset and remain unnoticed.

This example shows that the multiexponential model cap-
tures the T2 distribution of a tissue better than the monoex-
ponential model with offset. On the other hand, it needs to be 
clarified if the mathematical problem of estimating multiple 
T2 values from measured MRI data can be solved with rea-
sonable accuracy. An indicator of the solution accuracy is 
the condition number, which–in some norm—measures how 
errors in the input data (in the T2 relaxometry the CPMG 
echo train) are amplified in the output data (i.e. the estimated 
proton densities and T2 values). Well-conditioned problems 
possess low condition numbers, ill-conditioned problems 
have large condition numbers. The condition number is 
given by the mathematical model alone, i.e. by the function 
that maps the input data to the outputs. The condition num-
ber does not depend on the algorithm used to solve the math-
ematical problem. An ill-conditioned system of equations 
will strongly amplify the errors in the input data regardless 
of the algorithm used to solve it. A system of linear equa-
tions is ill-conditioned when the rows or columns of the sys-
tem matrix are almost linearly dependent. This is the case for 
the widely adopted logarithmic gridding approach to multi-
exponential T2 fitting as in [14], where higher T2 values in 
the spectrum are multiples of the lower neighbour by a small 
factor, e.g. 1.1337. Starting with T2 = 15 ms, a spectrum of 
40 T2 values covers the range up to 2000 ms. If only the 
first 32 exponentials are used for the multiexponential grid-
ding fit, the condition number calculated by MATLAB is ~ 
2.8 × 1018, which is extremely high. It means that errors like 
the Rician noise in input data can cause changes 2.8 × 1018 
times as large in the estimated weights of the exponential 
functions in the spectrum. As a consequence, more or less 
correct weights can be calculated only when the noise level 
is very low.

The topic of conditioning of the multiexponential T2 
fitting has also been investigated in [27], whose authors 
state that in the multiexponential estimation problem, the 
resulting nonlinear minimization is typically difficult due 
to local minima and ill-conditioning. In particular, when a 
slowly decaying component is present in a dataset with few 

samples, it is often possible to accurately model the signal 
using a combination of faster components.

We tested the sensitivity of the multiexponential grid-
ding approach to noise using the versatile relaxometry suite 
written in MATLAB (https​://githu​b.com/qMRLa​b/qMRLa​
b) which was made publicly available by the authors of 
[28]. The multiexponential fitting code was implemented 
according to the method described in [29]. To work with 
a known ground truth, we generated 32 samples of a biex-
ponential decay curve with two sharp peaks at T2 = 25 and 
T2 = 120, and distorted it with Rician noise for six different 
signal–noise ratios SNR = ∞, 500, 200, 100, 50 and 30. The 
results in the Supplementary material confirm that—due to 
its ill-conditioning—the gridding-based multiexponential 
fit gets extremely distorted by noise, and for our sampled 
biexponential function failed to locate the T2 peaks for SNRs 
less than 100. Our results permit the following conclusions:

•	 the multiexponential model with logarithmically distrib-
uted T2 spectrum describes the T2 distribution in MRI 
relaxometry better than the monoexponential model with 
offset,

•	 contrary to the the monoexponential model with offset, 
the multiexponential model with logarithmic T2 distribu-
tion does not account for the non-zero mean of the Rician 
noise, which may lead to a bias in the T2 estimates,

•	 due to its ill-conditioning the T2 spectrum returned by the 
multiexponential fitting will be strongly affected in the 
presence of noise and the estimated T2 values may lie far 
from the true values,

•	 due to possible spurious peaks in the multiexponential fit, 
a T2 peak appearing in the computed T2 spectrum does 
not necessarily imply that there is a compartment with 
that T2 in the biological tissue under study

The above results should be taken into account when 
comparing the monoexponential model with offset to the 
multiexponential gridding approach.

In conclusion, we developed a new, fast, simple and 
accurate algorithm for the estimation of T2 values under 
the influence of both Rician noise and imperfect refocusing 
using a monoexponential model with offset. Contrary to the 
LM algorithm, the use of which has so far been reported 
only under laboratory conditions, the GS T2-mapping algo-
rithm presents a ready-made solution that is perfectly suited 
for MRI software vendors. Since it is applicable to models 
involving a single exponential function and an offset, the 
approach might also be useful for other types of monoexpo-
nential fit, such as T1 relaxometry.
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