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Abstract
Objective  The aim of this paper is to investigate the use of fully convolutional neural networks (FCNNs) to segment scar 
tissue in the left ventricle from cardiac magnetic resonance with late gadolinium enhancement (CMR-LGE) images.
Methods  A successful FCNN in the literature (the ENet) was modified and trained to provide scar-tissue segmentation. Two 
segmentation protocols (Protocol 1 and Protocol 2) were investigated, the latter limiting the scar-segmentation search area to 
the left ventricular myocardial tissue region. CMR-LGE from 30 patients with ischemic-heart disease were retrospectively 
analyzed, for a total of 250 images, presenting high variability in terms of scar dimension and location. Segmentation results 
were assessed against manual scar-tissue tracing using one-patient-out cross validation.
Results  Protocol 2 outperformed Protocol 1 significantly (p value < 0.05), with median sensitivity and Dice similarity coef-
ficient equal to 88.07% [inter-quartile range (IQR) 18.84%] and 71.25% (IQR 31.82%), respectively.
Discussion  Both segmentation protocols were able to detect scar tissues in the CMR-LGE images but higher performance 
was achieved when limiting the search area to the myocardial region. The findings of this paper represent an encouraging 
starting point for the use of FCNNs for the segmentation of nonviable scar tissue from CMR-LGE images.
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Introduction

The presence of nonviable scar tissue in left ventricle (LV) 
has a crucial prognostic and therapeutic role. Indeed, it ena-
bles assessing LV remodeling, as well as patient’s cardiac 
dysfunction or mortality [1–3].

Scar-tissue presence is commonly identified using car-
diac magnetic resonance with late gadolinium enhancement 

(CMR-LGE) [4]. CMR-LGE is performed within ten to 
twenty minutes after the intravenous administration of gado-
linium, thus when gadolinium has already been washed out 
from healthy tissues. This results in hyperenhanced (HE) 
intensity areas where nonviable scar tissue is present [5].

In clinical practice, scar analysis from CMR-LGE images 
is performed qualitatively using the American heart asso-
ciation (AHA) 17-segment model [6], which provides con-
ventional risk stratification [7]. In particular, the average 
transmural extent of HE areas is estimated within each seg-
ment (0%, 1–25%, 26–50%, 51–75%, 76–100%) to perform 
diagnosis. Guidelines also suggest to compare CMR-LGE 
images with cine and perfusion images (if the latter are 
obtained) to correctly categorize ischemia and viability. 
However, a quantitative approach to scar analysis would 
provide supplementary information to be exploited for diag-
nosis and follow-up evaluation [8].

Several methods have been proposed in literature for 
quantitative scar analysis that rely on automatic or semi-
automatic scar segmentation, once the LV myocardial 
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region, defined by its epicardial and endocardial borders, 
has been manually traced from CMR-LGE images [8].

Quantitative scar-analysis methods include two widely 
used threshold-based semi-automatic algorithms [7]. These 
two algorithms are semi-automatic as a region of interest 
has to be manually identified within the myocardial region 
for calculating the threshold values. The two thresholds are 
defined as: (1) the intensity value n-standard deviations 
higher than the mean intensity of a user-defined region in 
the normal myocardium (nSD), (2) the half value of maxi-
mum intensity of a user-defined HE region [full width at 
half maximum (FWHM)]. In addition, other semi-automatic 
methods in the literature largely exploit pixel-intensity infor-
mation for scar-tissue segmentation through thresholding 
(e.g., [9–15]). Popular automatic approaches include also 
clustering techniques, such as Gaussian mixture model 
(GMM) [16], fuzzy c-means [8], and superpixel segmenta-
tion [17, 18], where a superpixel is defined as a group of 
connected pixels with similar gray-level intensity and texture 
[19]. Max-flow and graph-cut optimization were explored 
in Refs.  [20, 21], while level-set modeling was used in 
Ref. [22].

Although these methodologies achieved encouraging 
segmentation performance, they suffer from variability in 
CMR-LGE images (e.g., in terms of noise and intensity level 
associated to HE areas), and/or require heavy operator inter-
vention. This strongly hampers the translation of the devel-
oped methodologies into the actual clinical practice [22]. To 
tackle image variability and reduce operator intervention, 
the literature on medical-image segmentation is focusing 
more and more on deep-learning (DL) approaches based on 
convolutional neural networks (CNNs) [23].

Despite the potentiality of DL for medical-image segmen-
tation, few DL-based attempts at scar segmentation from 
CMR-LGE images can be found in the literature. These 
attempts, both focused on quantifying atrial fibrosis, include 
[18, 24], that exploit CNNs for superpixels-based feature 
extraction and sparse auto-encoders for superpixel classi-
fication (i.e., each superpixel is classified as scar tissue or 
healthy myocardial tissue). Additionally, in Ref. [25] CNN-
based image features were extracted from image square 
patches, and the features from one patch were classified with 
fully connected layers while the output class was assigned to 
the central pixel of the patch.

It is worth noting that these DL-based methodologies 
classify superpixels or image patches individually. To 
encode spatial-connection information while performing 
segmentation, advancements in DL in other fields (such as 
natural-image segmentation, and, more recently, medical 
image segmentation in other anatomical districts) have lead 
to the introduction of fully convolutional neural networks 
(FCNNs). In a FCNN, fully connected layers are replaced 
by upsampling layers to provide directly fast and accurate 

image segmentation [26, 27]. In Ref. [28], simulated LV scar 
tissue generated from LGE-CMR images obtained in healthy 
subjects was segmented using U-Net [29]. In Ref. [30], a 
first attempt that exploits recursive FCNN for the task of 
atrial-scar segmentation in clinical images was proposed, 
resulting in a sensitivity of 76.12%.

Considering the performance achieved by FCNNs in 
other fields, the aim of this paper was to investigate the fea-
sibility and accuracy of FCNNs for LV scar segmentation 
in CMR-LGE images.

Methods

From the earlier attempts at using FCNNs for image seg-
mentation [26], mainly relying on successful CNN archi-
tectures modified and tuned to include and train upsampling 
layers, several FCNN models have been proposed (e.g., [31, 
32]). In this work, the efficient neural network (ENet), that 
was presented in Ref. [32] for natural-image segmentation, 
was exploited and modified. With respect to the first FCNN 
architectures for image segmentation (e.g. [31]), ENet also 
implements skip connections [33]: architectures with skip 
connections have been widely shown to outperform their 
plain counterpart (e.g., [32, 33]. While providing compa-
rable accuracy to existing FCNN models, ENet was also 
demonstrated to be faster to be trained and able in reducing 
significantly the number of required floating point operations 
per second (FLOPs). Moreover, ENet has been already found 
able to provide good results for ventricle segmentation in 
CMR images [29].

The ENet architecture consists of a sequence of 7 dif-
ferent stages (Fig. 1). The first stage, called initial stage, 
consists of an inception module [34], that concatenates the 
results of convolutional layers of different receptive field size 
(i.e., 5 × 5, 3 × 3, and 1 × 1) to allow a reach (multi-scale) 
feature representation. With respect to ENet, our FCNN ini-
tial stage had only 13 convolutional layers in parallel to a 
max-pooling layer, thus resulting in 14 feature maps after 
concatenation, instead of the original 16. Indeed, ENet was 
designed for RGB images, while our FCNN was fed with 
CMR-LGE images with one videointensity channel only. 
Convolution was performed with 3 × 3 kernels with stride 
2 and max pooling with non-overlapping 2 × 2 windows.

ENet stages from 2 to 4 act as encoders for feature 
extraction and consist of a series of bottleneck modules. 
As in the original paper [34], in the implemented FCNN 
configuration each bottleneck module had a main branch 
and a lateral branch, the latter consisting of a series of 
three convolutional layers. The output of each of the three 
convolutional layers was activated with the parametric 
rectified linear unit (PReLU) [35]. Prior to activation, 
batch normalization was performed as regularization 
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technique. The main branch consisted of a max pooling 
layer followed by padding to match the dimensions of the 
convolutional-filter output. The output maps from the two 
branches were summed up and activated with PReLU. As 
shown in Fig. 1, stages 2, 3 and 4 were made of 5, 9 and 8 
bottleneck modules, respectively.

Also stages 5 and 6 of ENet consist of a series of bottle-
neck modules (3 and 2, respectively), but these stages act as 
decoders performing upsampling. As in Ref. [35], here max 
unpooling and spatial convolution were present in the lateral 
and main branches of the bottleneck modules, respectively.

The last stage of the proposed FCNN consisted of a 
bare full convolution. The convolution kernel had height 
and width equal to the size of the CMR-LGE images, and 2 

channels, as the problem addressed in this paper is a binary 
segmentation problem.

Segmentation protocols

After modifying the ENet architecture to deal with the 
scar-segmentation task, two segmentation protocols were 
investigated. The aim of the first protocol (Protocol 1) was 
to explore the potential of the presented FCNN to directly 
provide scar segmentation from CMR-LGE images. Thus, 
during training, the FCNN was fed with CMR-LGE images 
and the relative scar ground-truth (GT) masks. Scar-GT cre-
ation is explained in “Experimental setup”. The workflow of 
Protocol 1 is shown in Fig. 2.

Fig. 1   Fully convolutional 
neural network (FCNN) archi-
tecture. Numbers refer to the 
FCNN-module indexes

Fig. 2   Workflow of the first 
segmentation protocol (Protocol 
1). GT ground truth, CMR-LGE 
cardiac magnetic resonance 
with late gadolinium enhance-
ment, FCNN Fully convolu-
tional neural network
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The second protocol (Protocol 2) aimed to explore the 
potential of the FCNN in segmenting scar in a pre-defined 
LV myocardial region. With Protocol 2, the aim was to inves-
tigate if delimiting the search area for scar segmentation, as 
currently done in the semi-automated quantification methods 
described in “Introduction”, could provide more accurate 
segmentation results. Thus, Protocol 2 required a priori 
to manually identify the myocardial boundaries to delimit 
the search area. To this goal, prior to feeding the FCNN, 
CMR-LGE images were multiplied by the relevant binary 
myocardial masks (obtained, both for training and testing, 
through manually tracing of LV contours as explained in 
“Experimental setup”). The workflow of Protocol 2 is shown 
in Fig. 3.

Experimental setup

The CMR-LGE images analyzed in this study refer to 30 dif-
ferent patients (26 men and 4 women) acquired at the Centro 
Cardiologico Monzino hospital in Milan (Italy), for a total of 

250 short-axis images. These patients were retrospectively 
selected from the hospital database, with inclusion criteria a 
diagnosis of ischemic heart disease with a consequent pres-
ence of nonviable scar tissue in LV myocardium. Image size 
was 256 × 256 pixels and all the images were used for the 
analysis (i.e., no slice selection was performed).

For training and testing purposes, scar GT was obtained 
with manual tracing of scar contours by an expert cardiolo-
gist using Circle Cardiovascular Imaging v.5.6.1 LV-myo-
cardium contours for Protocol 2 were obtained in the same 
way. Examples of CMR-LGE images and relevant ground 
truth resulting from scar manual tracing are shown in Fig. 4.

Data pre-processing was performed prior to FCNN 
training and testing. In particular, CMR-LGE images were 
cropped to reduce the processing area, as commonly sug-
gested in the literature [22]. Image cropping was fully auto-
matic. First, LV diameter and center were retrieved using 
the circle Hough transform [36] from each CMR-LGE slice. 

Fig. 3   Workflow of the second 
segmentation protocol (Protocol 
2). GT ground truth, CMR-LGE 
cardiac magnetic resonance 
with late gadolinium enhance-
ment, FCNN Fully convolu-
tional neural network. Myocar-
dial masks are obtained, during 
both the training and testing 
phases, by the manually deline-
ated myocardial contours

Fig. 4   An example of the masks 
characterizing the scar presence 
as drawn by an expert cardiolo-
gist for three patients. Scar loca-
tion and dimension vary from 
slice to slice and from patient 
to patient

1  https​://www.circl​ecvi.com/.

https://www.circlecvi.com/
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Squared cropping was then performed by centering the crop 
area with the LV center and setting crop side length equal to 
double the LV diameter. To standardize the cropped-image 
size, as LV size varied from patient to patient, all the images 
were resized to 64 × 64 pixels, i.e., the minimum crop size 
found. The 64 × 64 images were processed by subtracting 
the intensity mean value from each image and normalizing 
by the intensity standard deviation.

To test the proposed segmentation approaches, the CMR-
LGE image dataset was divided into two sets: the former 
was used for training and validation and the latter for testing 
purpose only. Considering the relatively limited number of 
CMR-LGE images available (even though comparable with 
similar work in the literature [22]), leave-one-patient-out 
cross-validation was used for robust performance evalua-
tion. Thus, images from one patient were classified using 
the FCNN trained with all the images from the remaining 29 
patients. This procedure was repeated for all the 30 patients.

Data augmentation was performed on the training set, 
by applying vertically flipping, horizontally flipping, and a 
combination of both, 90° rotation, 90° rotation and vertically 
flipping, 90° rotation and horizontally flipping, and 90° rota-
tion with both vertically and horizontally flipping, for a total 
of 7 transformations.

FCNN training

Mini-batch gradient descent was used for FCNN training (for 
both the segmentation protocols), using a batch size equal to 
4. Mini-batch gradient descent was chosen as a compromise 
between gradient descent and stochastic gradient descent, to 
provide fast training convergence while limiting the memory 
usage [37].

Cross entropy was used as loss function. The adaptive 
moment estimation (ADAM) [38] that adapts the learning 
rate by regularizing the gradient descent using both gradi-
ent amplitude and momentum, was used as training opti-
mizer. To (upper) bound the learning rate during training, 
an exponentially decaying learning-rate bounding function 
was defined, using an initial learning rate equal to 5e−4. 
This resulted to be useful especially during the last training 
epochs to further reduce the loss, as commonly recognized 
in the DL literature [39]. As a regularization technique, a 
weight decay equal to 2e−4 for the FCNN convolution layers 
was imposed. The learning rate and weight decay were set 
as in Ref. [32], where they were demonstrated to consist-
ently provide the best segmentation results. The FCNNs for 
both the two protocols were trained on 100 epochs. The best 
model among epochs according to the Dice similarity coef-
ficient (DSC) [40] was then chosen.

FCNN training and testing were implemented using 
TensorFlow.2 All tests were performed using NVIDIA® 
GeForce® GTX 1050 (4 GB GDDR5 dedicated) on a Intel® 
Core® i7-7700HQ (2.8 GHz, 6 MB cache, 4 cores) computer 
with 16 GB DDR4-2400 SDRAM. FCNN training took ∼ 30 
h for each of the two protocols.

Evaluation

Inspired by similar work in the literature for scar segmenta-
tion (e.g., [18, 24, 25]), the segmentation outcomes, obtained 
with both Protocol 1 and Protocol 2, were quantitatively 
evaluated with respect to the GT in terms of pixel classifi-
cation accuracy (Acc), sensitivity (Se), and specificity (Sp):

where TP and TN are number of scar and background pixels 
that were correctly identified, respectively. FP and FN are 
the number of background pixels classified as scar tissue and 
the number of scar pixels classified as background, respec-
tively. The DSC, representing an overlap measure, was also 
computed as:

The Wilcoxon signed-rank test [significance level ( � ) 
= 0.05] was used to assess whether significant differences 
existed in DSC among the segmentation results obtained 
with Protocol 1 and Protocol 2.

Results

Despite all patients were previously diagnosed with myocar-
dial fibrosis in the LV, scar tissue was present only in 215 
slices out of 250 (86% of the slices). The scar area in each 
slice ranged between 20 and 1259 pixels (pixel resolution: 
1.49 × 1.49 mm). The dataset granted high intra- and inter-
variability in both scar size and location in the LV, as can be 
seen from sample scar masks in Fig. 4.

Table  1 shows the performance measures obtained 
with Protocol 1 and Protocol 2. The normalized contin-
gency tables are shown in Table 2 (Protocol 1) and Table 3 

(1)Acc =
TP + TN

n

(2)Se =
TP

TP + FN

(3)Sp =
TN

TN + FP

(4)DSC =
2TP

FP + FN + 2TP

2  https​://www.tenso​rflow​.org/.

https://www.tensorflow.org/
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(Protocol 2). With Protocol 1, median Se and DSC were 
68.77% (IQR 34.83%) and 54.00% (IQR 41.03%), respec-
tively. Protocol 2 outperformed Protocol 1 significantly (p 
value < 0.05), with median Se and DSC equal to 88.07% 
(IQR 18.84%) and 71.25% (IQR 31.82%), respectively.

Protocol 1 and Protocol 2 failed in detecting the pres-
ence of scar tissue in 17 slices from 7 patients and 2 
slices from 1 patient, respectively. Protocol 1 and Pro-
tocol 2 detected scar tissue when it was not present in 21 

slices from 10 patients and 28 slices from 11 patients, 
respectively.

Some examples of segmentation outcome obtained with 
Protocol 1 and Protocol 2 for four patients, highlighting 
the observed scenarios, are shown in Fig. 5. In CMR-LGE 
slices from Patient 1 and Patient 2, the tendency of Protocol 
1 (red line) in overestimating GT scar contours (blue line) 
can be observed. In Patient 3, both Protocol 1 and Protocol 
2 detected scar tissue while this was not evidenced by the 
expert cardiologist in three out of eight slices. A relevant 
example is shown in Fig. 5 bottom left. For Patient 4, Proto-
col 1 failed (or barely succeeded) in detecting the presence 
of scar tissue in four slices out of nine. Two examples are 
shown in Fig. 5 bottom right.

Discussion

In this paper, the feasibility and accuracy of FCNNs for scar 
segmentation in CMR-LGE images were assessed. Accord-
ingly, ENet was properly modified to be applicable to this 
kind of images, and evaluation of its performance in two 
parallel segmentation protocols was achieved. In this pilot 
study, as only 30 patients were included, data augmentation 
techniques allowed increasing the total number of avail-
able images up to 2000, and leave-one-patient-out cross-
validation was the method of choice to guarantee proper 

Table 1   Median (inter-quartile range) performance measures obtained for the first (Protocol 1) and second (Protocol 2) segmentation protocol

Acc accuracy, Sp specificity, Se sensitivity, DSC dice similarity coefficient

Acc Sp Se DSC

Protocol 1 95.79% (3.55%) 97.31% (3.01%) 68.77% (34.83%) 54.00% (41.03%)
Protocol 2 96.83% (3.26%) 97.89% (2.93%) 88.07% (17.84%) 71.25% (31.82%)

Table 2   Median normalized contingency table for Protocol 1

Ground-truth segmentation

Scar tissue Background

FCNN-based 
segmentation

Scar tissue 68.77% 2.69%
Background 31.23% 97.31%

Table 3   Median normalized contingency table for Protocol 2

Ground-truth segmentation

Scar tissue Background

FCNN-based 
segmentation

Scar tissue 88.07% 2.11%
Background 11.93% 97.89%

Fig. 5   Sample segmentation 
results obtained with Protocol 
1 (red contour) and Proto-
col 2 (green contour) for four 
patients. The blue contour refers 
to ground-truth segmentation

Patient 1 Patient 2

Patient 3 Patient 4
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analysis. Computational training time (about 30 h) could be 
considered acceptable, considering this approach and the use 
of not optimized computer architecture. Both segmentation 
protocols were in general able to detect scar tissue in the 
CMR-LGE images. Nonetheless, the performance achieved 
in Protocol 1 was lower than the one achieved in Protocol 2. 
This result was expected, as scar-segmentation algorithms in 
the literature (both traditional and based on DL) commonly 
require a priori knowledge of the LV myocardial position, 
defined by its myocardial borders, to define the regions of 
search for segmentation (e.g., [7, 8, 17, 18]). Indeed, in the 
CMR-LGE images, several structures are present surround-
ing the LV. Such structures have similar intensity and texture 
with respect to the scar tissue, making the task of Protocol 1 
more challenging than the one of Protocol 2.

The results obtained with Protocol 2 [median DSC 
71.25% (IQR 31.82%)] were in line with those [median 
DSC 64.00% (IQR 20%)] reported in Ref. [22] for seven 
semi-automatic approaches. The dataset in Ref. [22] was 
built with 15 subjects, for a total of 124 CMR-LGE training 
images (from 5 subjects) and 208 CMR-LGE testing images 
(from 10 subjects). A direct comparison was not possible 
as, to the best of the authors’ knowledge, the GT masks for 
the dataset presented in Ref. [22] were not provided for the 
testing images. Nonetheless, with respect to the state of the 
art approaches, both Protocol 1 and Protocol 2 were fully 
automatic and parameter free (i.e., not requiring additional 
region of interest selection in addition to the delineation of 
the myocardial contours). This is an undoubled advantage 
compared to threshold approaches (such as nST and FWHM) 
that require both user interaction for manual delineation 
of regions of interest in the LV myocardium for threshold 
computation and parameter tuning for setting the thresholds 
(e.g., number of standard deviations for nST). Similarly, 
clustering techniques such as GMM need to the define the 
number of GMM classes, which is not always trivial [41, 
42]. With respect to other DL-based methodologies, such 
as [18, 24, 25], our approach directly provided the segmen-
tation mask without requiring (1) pre-processing to extract 
and (2) post processing to merge superpixels or patches from 
the LV myocardial region. This was achieved by exploiting 
a fully convolutional architecture instead of an architecture 
based on CNNs with fully connected layers for classification 
tasks. This is widely recognized in the literature to simulta-
neously simplify, toughen and speed up both learning and 
segmentation [26].

A first limitation of this study, as also reported in Ref. [8], 
is related to the lack of a true GT for algorithm training 
and testing. In fact, having a GT for the scar-segmentation 
task is not trivial. Histological validation in animal models 
that has been considered as GT in other studies (e.g., [12, 
43]) resulted to be inadequate for humans [44]. However, 
expert tracing of contours of the object of interest is widely 

considered as acceptable strategy to provide a reference for 
comparison. In this study, a possible limitation is consti-
tuted by the fact that scar manual tracing was performed by 
one clinician, while a more robust gold standard could be 
achieved by determining a consensus of the presence and 
scar morphology among several experts [45].

A second issue is related to the fact that our evaluation 
protocol was based on a limited number of CMR-LGE 
images. Even if such number was comparable with other 
approaches in the state of the art [22] (332 CMR-LGE 
images from 15 different subjects), a larger training dataset 
would allow encoding variability in image characteristics 
and scar size and position, to increase the segmentation per-
formance. However, this initial work has to be intended as a 
proof of concept for the described methodology, and we are 
currently working with our clinical partners on expanding 
our training dataset.

As future extension of this work, once a larger dataset 
in terms of number of patients will become available, 3D 
FCNNs will be investigated to exploit the 3D information 
implicitly encoded in CMR-LGE data, as constituted by a 
stack of 2D images. In fact, 3D FCNNs were recently shown 
to provide encouraging results when applied to magnetic 
resonance volumetric images of the prostate [46], and thus 
adding the third dimension in the analysis (i.e., interpreting 
the image stack all together) of CMR-LGE images could 
result in possible improvements in pixel classification.

In conclusion, the proposed strategy for scar segmenta-
tion from CMR-LGE images based on FCNN showed a good 
performance, in particular once the process was guided by 
limiting the processing area to the myocardium only, such 
as in Protocol 2. These results are promising for application 
of deep learning techniques to this kind of medical imaging, 
and constitute the basis for future research involving larger 
training datasets.
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