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Abstract
Objective  Quality assurance (QA) of magnetic resonance imaging (MRI) often relies on imaging phantoms with suitable 
structures and uniform regions. However, the connection between phantom measurements and actual clinical image quality 
is ambiguous. Thus, it is desirable to measure objective image quality directly from clinical images.
Materials and methods  In this work, four measurements suitable for clinical image QA were presented: image resolution, 
contrast-to-noise ratio, quality index and bias index. The methods were applied to a large cohort of clinical 3D FLAIR 
volumes over a test period of 9.5 months. The results were compared with phantom QA. Additionally, the effect of patient 
movement on the presented measures was studied.
Results  A connection between the presented clinical QA methods and scanner performance was observed: the values reacted 
to MRI equipment breakdowns that occurred during the study period. No apparent correlation with phantom QA results 
was found. The patient movement was found to have a significant effect on the resolution and contrast-to-noise ratio values.
Discussion  QA based on clinical images provides a direct method for following MRI scanner performance. The methods 
could be used to detect problems, and potentially reduce scanner downtime. Furthermore, with the presented methodologies 
comparisons could be made between different sequences and imaging settings. In the future, an online QA system could 
recognize insufficient image quality and suggest an immediate re-scan.

Keywords  Magnetic resonance imaging · Quality assurance · Quality control · Computer-assisted image analysis

Introduction

Image quality assurance (QA) in magnetic resonance imag-
ing (MRI) is often based on phantom tests defined in stand-
ards and guidelines [1–5] or by the manufacturer. Quantita-
tive phantom measurements can characterize some aspect 
of the scanner’s absolute imaging performance, but the 
relationship with the actual clinical image quality is often 
unclear. The selected imaging sequences may emphasize 
effects not observed with other techniques. Phantom images 

are often acquired with robust 2D (e.g. conventional spin 
echo) sequences which are prone to different characteris-
tic artefacts than 3D sequences [6]. Additionally, human 
anatomy provides exceedingly more complex imaging tar-
get, including non-voluntary movement and flow. Thus, the 
scanner performance cannot be entirely predicted by phan-
tom studies alone.

In addition to phantom based QA, it would be rational 
to measure image quality directly from the clinical images. 
However, the clinical image quality assessment is mostly 
based on qualitative observer-based ranking in the Likert 
scale [7] or similar. This approach is susceptible to intra- and 
interobserver variation and, therefore, lack reproducibility. 
The grading criteria can differ between (or even within) 
departments [8]. Quantitative computational methods for 
clinical image QA would enable the clinically relevant and 
reproducible assessment of MRI hardware and imaging 
sequence performance. It would also offer a possibility to 
compare scanners and sequences in a uniform scale.

There are only a few published quantitative methods 
designed to analyze clinical images in the sense of image 
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quality [9–14]. Magnotta et al. presented a method for cal-
culating signal-to-noise and contrast-to-noise (CNR) from 
clinical 2D images. Weng-Tung et al. studied 2D image reso-
lution by applying radiofrequency tagging to images. Mor-
tamet et al. presented two methods using an image volume 
background to derive QC measures. More recently, Borri 
et al. have used image power spectrum analysis to assess 
image spatial resolution, Osadebey et al. have developed 
quality measures based on local entropy in the images and 
Jang et al. have used feature statistics to track distortions 
in the images. A large cohort of clinical images has been 
analysed in respect for image quality in studies by Gedamu 
et al. and Kruggel et al. [15, 16]. A proposal for a complete 
pipeline capable of automatic image analysis was presented 
by Gedamu [17]. Additional methods for the detection of 
motion artefacts were presented in studies by Gedamu et al., 
Backhausen et al. and White et al. [18–20]. These methods 
measured also general image quality although their subject 
had a very specific error source.

In this work, we present four methods of assessing the 
image quality of 3D fluid attenuation inversion recovery 
(FLAIR) MRI sequence from clinical brain images. These 
methods were bundled as a novel automated pipeline and 
applied to a large cohort of clinical brain studies. The pipe-
line was utilized to demonstrate variations and trends in 
MRI scanner performance to assess variations in the scanner 
stability in long and short term. The results obtained with 
clinical volumes were compared with phantom QA results. 
Additionally, the effect of motion artefacts in the presented 
methods was studied.

Materials and methods

Imaging sequence

FLAIR is a valuable MRI technique for the detection of 
intracranial hemorrhage [21, 22]. The 3D FLAIR sequence 
used in this study was a turbo spin echo-based sequence 
involving radio frequency (RF) inversion pre-pulse and 
variable angle refocusing pulses to optimize contrast in the 
image [23]. The 3D sequence is nowadays often applied in 
brain studies instead of more traditional 2D sequences to 
decrease the duration of imaging protocol while maintaining 
adequate contrast between brain tissues and increasing imag-
ing resolution. 3D FLAIR sequences are also less prone to 
cerebrospinal fluid (CSF) flow artefacts than their 2D coun-
terparts [6]. In our department, the 3D FLAIR sequence is 
the most common imaging sequence used in brain studies.

The sequence can be optimized to produce optimal sig-
nal-to-noise ratio or modulation transfer function (MTF). 
These properties are somewhat interconnected and are only 
partly adjustable by the user [24]. Thus, the effect of changes 

in parameters and the scanner performance on the image 
quality are not entirely predictable. In our study, we used 
both phantom and clinical head volumes scanned with the 
3D FLAIR sequence on a 3 T MRI scanner. The sequence 
parameters presented in Table 1 were used unless stated 
otherwise.

Image quality analysis

Preprocessing

As a first step of the analysis pipeline, the brain volume was 
extracted from the original image volume with the Statisti-
cal Parametric Mapping toolbox (SPM, http://www.fil.ion.
ucl.ac.uk/spm/softw​are/spm12​). SPM generated brain tissue 
probability maps for white matter (WM), grey matter (GM), 
CSF and other tissue types. In addition, SPM produced a 
bias corrected version of the original image volume. The 
segmentation settings were SPM12 defaults (bias FWHM: 
60 mm cutoff, bias regularization: 0.001, number of tissue 
types: 6). These maps were employed to generate an initial 
brain mask as a union of voxels which had at least 0.35 prob-
ability in WM or GM map (Fig. 1). From the initial brain 
mask, all but the largest connected object was removed, and 
remaining holes were filled to obtain the final brain mask.

In addition to the brain mask, a mask for the head volume 
was generated to separate the signal producing volume from 
the background (Fig. 2). First, the whole image volume was 
thresholded. The used thresholding level was derived semi-
empirically by applying value obtained with Otsu’s method 
[25] divided by four. After the thresholding, all but the larg-
est volume was removed from the mask. Next, the remaining 
structure was dilated with a spherical structuring element 

Table 1   Sequence parameters of the clinical 3D FLAIR sequence

TE echo time, TR repetition time, TI inversion time, FH feet–head, 
AP anterior–posterior, RL right–left

Parameter Value

Sequence type 3D FLAIR
Acquisition time 6 min 56 s
TE 376 ms
TR 8000 ms
TI 2400 ms
FOV (FH × AP × RL) 240 × 240 × 180 (mm)
Acquisition voxel size (FH × AP × RL) 1.0 × 1.1 × 1.2 (mm)
Reconstruction voxel size (FH × AP × RL) 1.0 × 1.0 × 1.0 (mm)
Echo train length 125
Frequency encoding direction R–L
Bandwidth 521 Hz/pxl
Parallel imaging factor 4 (SENSE)

http://www.fil.ion.ucl.ac.uk/spm/software/spm12
http://www.fil.ion.ucl.ac.uk/spm/software/spm12
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with the radius of 10 voxels which after remaining holes in 
the object were filled [26].

Resolution

The resolution of an imaging system describes its abil-
ity to reproduce sharp material interfaces and distinguish 
closely spaced features from each other. The former can be 
quantified by differentiating an edge spread function (ESF) 
and Fourier transforming resulting in line spread function 
(LSF) to obtain modulation transfer function (MTF). MTF 
describes an imaging system’s spatial frequency contrast 
response. [27].

A well-defined edge is an essential requirement for MTF 
measurement. This condition can be easily satisfied using 
phantoms, but it becomes problematic when clinical images 
are assessed. In this study, we used the cortical surface as an 
edge for resolution measurement. The strong contrast and a 
sharp interface provide a favorable target surface.

In our method, the bias corrected image volume was first 
interpolated to isotropic 0.5 × 0.5 × 0.5 mm3 resolution. 

Tetrahedral mesh was generated from the brain mask with 
iso2mesh library [28]. Typically, from 50,000 to 95,000 tri-
angular polygons were generated from which 30,000 ran-
domly selected were used in the resolution measurement. 
Each of these polygons was used to define a cylinder with a 

Fig. 1   An axial slice of typical probability maps for a WM, b GM and c initial brain mask

Fig. 2   a An illustration of seg-
mented brain and head volumes. 
b Illustration of the outer perim-
eters of the head and brain mask 
in one transversal image slice

Fig. 3   a A sample of vectors perpendicular to the brain surface and b 
an illustration of the normal vector and corresponding cylinder (right)
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diameter of 1 mm and direction perpendicular to the brain 
surface (Fig. 3). The grey value and the distance from the 
mesh were recorded for the voxels inside the cylinder and 
used to create preliminary ESFs. The location of the edge in 
each preliminary ESF was refined by 1D convolution with 
the first derivative of Gaussian and finding the maximum 
[29]. Each preliminary profile origin was then shifted cor-
respondingly to the center of the detected edge.

Each preliminary ESF was verified to represent an actual 
edge of the brain surface. The automatic verifying meth-
ods included a check that difference of the grey values over 
the edge is reasonable and to check that the 1D convolution 
resulted in high enough values to guarantee a reasonable 
gradient of the edge. Also, there was a limit on the maximum 
detected edge distance (5 mm) from the mesh. Filtered ESFs 
could then be averaged together at selected directions. In this 
work, we studied ESFs in three orthogonal directions cor-
responding to anatomical volume alignment: anterior–poste-
rior (AP), feet–head (FH) and right–left (RL). The opening 
angle limiting accepted preliminary ESFs in each direction 
was 15°. An example of directional ESFs is presented in 
Fig. 4 together with point cloud representing a sample of 
all ESF points.

The averaged ESFs were then differentiated to obtain 
LSFs. Before Fourier transformation, the LSFs were Han-
ning filtered to suppress high frequency components origi-
nating from the LSF tails [27]. Typical resulting directional 
MTFs are presented in Fig. 5. The used MTF10 and MTF50 
values were chosen as resolution measures corresponding 
spatial frequencies where the MTF is 10% and 50% of the 
value at zero spatial frequency as presented in Fig. 5.

Quality index

Instabilities during scanning can produce ambiguity in the 
image reconstruction. This can result, e.g. from the patient 
movement or imperfect operation of gradient fields. Sig-
nal intensity can then spill to erroneous locations inside 
the imaging volume. The most evident is the introduction 
of extra signal outside the actual signal producing vol-
ume. Thus, the amount of signal outside the anatomical 
volume can be used as a figure of merit. A quality index 
(QI) adapted in this study has been presented by Mortamet 
et al. [11], and it can be calculated by

(1)QI =
Nartefact

NBG

Fig. 4   a An example of point cloud consisting of a sample of 5000 points taken from ESFs in AP direction. b Typical directional ESF profiles in 
AP, FH and RL directions

Fig. 5   Typical directional MTFs in AP, FH and RL directions
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where NBG is the number of background voxels and Nartefact 
is the number of background voxels labelled as artefactual. 
Background voxels were defined as image volume excluding 
the head volume and a 10 voxel margin to the image vol-
ume borders. As proposed by Mortamet et al., voxels were 
labeled as artefactual by thresholding background volume 
with the value corresponding to the peak of the background 
histogram and eroding and dilating the result with 3D cross-
structuring element [26].

Contrast‑to‑noise ratio

CNR is an image quality parameter that reflects the imag-
ing systems ability to differentiate noise contaminated 
objects by their signal level in the image. The contrast can 
be defined as a relative difference in the signal strengths 
of two known objects in the image. The discernibility at 
different contrast levels is limited by the amount of noise. 
The CNR parameter in this study was calculated by

The representative WM and GM grey values were 
obtained from the model fitting parameters of the SPM 
software used for tissue segmentation. The software pack-
age is fitting a mixture Gaussian model to brain and the 
used WM and GM values are expectation values of Gauss-
ian distributions respectively. σBG is the standard deviation 
of voxel grey values in original image volume excluding 
the head volume and 10 voxel margins to the image vol-
ume border.

Image intensity spatial homogeneity

Image intensity level inhomogeneity may be induced to MRI 
by spatial differences in a scanner’s RF-transmit (B1) or a 
receive field. Modern MRI scanners have advanced methods 
of correcting signal inhomogeneities in the images. If there 
is substantial signal inhomogeneity present after these cor-
rections, it may be a sign of a hardware failure.

The level of signal inhomogeneity was studied using 
the bias correction feature of the SPM package which pro-
duced an intensity corrected version of the original image 
volume. The average bias correction of a voxel, or bias 
index (BI), was then calculated by

(2)CNR =
GM −WM

�BG

(3)BI = 100% ×

∑N

i=1

���
bias corrected

i
−original

i

original
i

���
N

where N is the number of voxels included in the spherical 
volume with a 10 cm diameter and concentric with the brain 
mask center of mass, bias corrected is the grey value in the 
bias corrected volume, original is the intensity in original 
volume and i is the voxel index.

Resolution measurement validation

The resolution calculation was validated with a standard 
spherical quality assurance phantom with the diameter of 
17 cm and liquid signal producing content. In the testing, the 
phantom was scanned with variable isotropic voxel sizes of 
0.9–1.3 mm with step of 0.2 mm. The imaging sequence was 
otherwise identical to the one used in the clinical images.

Additionally, the resolution calculation method was tested 
by filtering a binary brain mask with 3D Gaussian filter and 
studying how the parameters of the filter affect the resulting 
MTF10 and MTF50 values. The results were compared with 
simulated ideal MTF10 and MTF50 values obtained by the 
Gaussian filtration of a 1D step function.

Clinical head volume analysis

The presented image quality metrics was calculated for a 
large cohort of clinical head volumes spanning over a test 
period of 9.5 months. In total, 665 head volumes were 
included. The inclusion criterion of the head volume was a 
GM/WM volume ratio between 0.3 and 2.0 to filter out vol-
umes with substantial pathologies and inaccurate segmenta-
tion. The inclusion criterion was verified visually. The GM 
and WM volumes were calculated as the sum of respective 
probability maps generated by SPM. Fifty-five percent of 
the patients were female, 45% male and the median age was 
43 (range 13–84) years. The possible presence of foreign 
objects (such as metallic implants) was not taken into con-
sideration in the analysis. The use of clinical volumes was 
approved by department’s scientific committee.

The mean and standard deviation for each parameter were 
calculated for each day of the period by using a 7-day mov-
ing window. Each 7-day window included in average 19.4 
studies with the standard deviation of 5.5 studies. During 
the test period, there were two major scanner breakdowns. 
The first breakdown occurred at the beginning of the month 
number three and was caused by a broken RF-amplifier. The 
second breakdown occurred at the beginning of the month 
number eight and was caused by a break in a gradient coil 
requiring the full replacement of the gradient coil system.

Comparison with phantom measurements

During the clinical QA test period, a daily phantom QA 
program was in position. A cross-sectional image of a man-
ufacturer provided cylindrical phantom was scanned daily 
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using a head coil, fixed phantom position and a standard 
spin echo (SE) sequence. The primary purpose of acquiring 
the daily QA image was to verify the scanner was working 
properly before the first patient of the day. In addition to 
visual inspection, the image was sent to a QA server for 
detailed analysis. Calculated QA parameter time series 
included signal-to-noise ratio (SNR), image intensity uni-
formity, image ghosting and geometric distortion. SNR was 
calculated by a single image method presented by National 
Electrical Manufacturers Association (NEMA) [4], ghosting 
was calculated as presented by International Engineering 
Consortium (IEC) [3] and image intensity uniformity with 
methods presented by both IEC [3] and NEMA [5]. The 
geometric distortion was followed by measuring a phantom 
diameter in horizontal and vertical directions. A full descrip-
tion of the utilized automatic daily phantom QA pipeline is 
presented by Peltonen et al. [30].

The effect of motion artefact

The effect of patient motion artefact was studied by labeling 
all head volumes as normal (91%) or affected by patient 
motion (9%). The labeling was done by an experienced QA 
specialist (JIP) based on the amount of blurring in a central 
axial slice. The median, interquartile range and range of all 
image quality parameters were calculated over all image vol-
umes for three cases: all the data, only the non-artefact vol-
umes and only the artefact-positive volumes. The statistical 
difference between the images was studied with two-sample 
Student’s t test.

Results

The image resolution measurement method was validated 
by imaging a spherical phantom with variable voxel sizes. 
The effect on the voxel size to measured MTF10 and MTF50 
values in the ball phantom is presented in Fig. 6. Voxel size 
has a linear relation to the measured resolution variables 
MTF10 (R2 = 0.98) and MTF50 (R2 = 0.95). Additionally, 
a test was done with a single brain mask (Fig. 7) where 
the effect of 3D Gaussian filtering on the measured resolu-
tion parameters was studied. The MTF10 and MTF50 value 
response to filtering was close to the ideal response.

The directional MTF10 and MTF50 values with 7-day 
running average and standard deviation measured from the 
clinical head scans during the9.5-month period are presented 
in Fig. 8. In the FH direction there is a decrease of the reso-
lution values before the both breakdowns of the scanner. 
Additionally, MTF10 and MTF50 values in FH direction 
are increased after the gradient system breakdown in month 
eight compared with the values before the breakdown. In 
other directions, the effect of the breakdowns is not apparent.

The mean and standard deviation values of the QI during 
the time series are presented in Fig. 9. QI is stable until the 
MRI scanner gradient breakdown in the month eight. After 
this breakdown, we see a clearly increased QI values result-
ing from increased signal outside head area in the image 
volume.

CNR value mean and standard deviation in the test period 
are presented in Fig. 10. The value has a decreasing trend 
throughout the time series. After the gradient breakdown in 
month eight, the CNR values were substantially decreased.

Fig. 6   MTF10 and MTF50 values measured by using a spherical 
phantom with variable isotropic acquisition voxel size

Fig. 7   MTF10 and MTF50 values obtained by using a brain mask fil-
tered with variable sized 3D Gaussian filter
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The BI representing the image intensity inhomogeneity is 
presented in Fig. 11 over the test period. The value increased 
in month number seven well before the gradient breakdown. 
At that point, a change of baseline was observed.

Phantom QA result time series for the test period has been 
presented in Fig. 12. There was no evident effect or trend 
in the phantom QA results before either of the scanner’s 
breakdowns. A decrease in the variation of the SNR was 
seen after the second breakdown.

Of the presented QA measures, MTF10, MTF50 and 
CNR had significantly different results between volumes 
affected and not affected by patient motion (p < 0.05). The 

effect of patient motion on MTF50 values is presented in 
Fig. 13.

Discussion

Unexpected changes in image quality are important indica-
tors of an MRI scanner hardware condition. QA measure-
ment can be used to verify nominal the operation of the 
scanner or in communicating the problems with the manu-
facturer or service personnel. Aside from detecting errors, 
it is often important in a patient care setting to know as 
precisely as possible the date and time when the scanner was 

Fig. 8   MTF10 and MTF50 running average and standard deviation (7-day window) in a AP, b FH and c RL directions

Fig. 9   Quality index running average and standard deviation (7-day 
window) Fig. 10   Contrast-to-noise ratio running average and standard devia-

tion (7-day window)
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verifiably working properly. It is, however, often difficult to 
determine if the clinical image quality has degraded during 
the scanner’s lifetime. Several informative parameters can 
be obtained using standardized QA phantoms and the results 
compared with those of the acceptance testing or previous 
quality control measurements. However, the results may not 
be available, or they may not fully represent the image qual-
ity produced by other imaging sequence types or clinical 

situation. With the presented methods, image quality assess-
ment can be made directly from the clinical image data and 
results compared with any corresponding study retrospec-
tively. The chosen methods were aimed to be robust, easy to 
interpret and reflect changes in MRI hardware performance.

The resolution measurement methodology is relying 
heavily on data averaging to prevent the effect of local 
anomalies. However, the vast amount of data points in a 
3D image is enabling the method of providing information 
on the actual directional clinical image resolution achieved 
with the scanner. The accuracy of the resolution assessment 
was verified with the simulated test models and phantom 
imaging. High correspondence to idealized expected values 
was achieved for the degraded brain mask (i.e. simulated) 
images. Also, a linear relationship between set and measured 
resolution was observed in the phantom acquisitions verify-
ing the measurement’s feasibility for QA purposes.

The MTF10 and MTF50 values are presented here as 
indicators of MRI scanner resolution. Both values demon-
strated a clear response to the changes in scanner hardware. 
The system breakdowns were seen as a drop of values in FH 
direction just before the malfunction. The gradient related 
problems should introduce ambiguity to spatial frequency 
components and thus the sensitivity to gradient related 
breakdown is expected. However, the correlation between 
the RF-system breakdown to changes in MTF values is not 
apparent. MTF10 values are generally more sensitive to 
image artefacts with high frequency components. This is 
seen in the AP direction, where there is a period of increased 

Fig. 11   Bias index running average and standard deviation (7-day 
window)

Fig. 12   Phantom QA results for 
the test period. a SNR, b image 
intensity uniformity based 
on the methods presented by 
NEMA and IEC, c image ghost-
ing and d phantom diameter in 
horizontal and vertical direction
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MTF10 values and standard deviation in month nine that is 
absent from MTF50 values. A similar period is seen in the 
RL direction in month four where equal effect is seen in both 
MTF10 and MTF50 values.

The measurement of QI is based on a principle that all 
signal outside the actual anatomical volume is resulting 
from anomalies in the scanning process. Thus, QI is likely 
to be sensitive to any problems with scanner hardware or 
patient co-operation. Of the presented quality parameters, 
QI showed the strongest response on the scanner operation 
after the second breakdown. QI is not a specific QA measure 
since there are multiple hardware error mechanisms influ-
encing the value including gradient system instability, the 
mechanical vibration of a scanner, eddy currents and RF 
interference. Although no significant correlation between 
increased QI values and the movement of the patient was 
found, it is likely that especially major patient movement 
is provoking increased QI values. This is likely the reason 
behind small peaks seen in the QI time series.

CNR measurement is depending on the variation of the 
background noise and contrast between the WM and GM. 
In the time series we did see a small decreasing trend in 
the CNR values and a clear drop after the scanner gradient 
breakdown. The drop after the breakdown is likely caused 
by increased signal or noise outside the anatomical volume 
seen also as increased QI values. Likely, the variations in 
the CNR value are indicating changes in the scanner’s RF-
system: increased noise or changes in achieved flip angles. 
Furthermore, patient motion blurs the image and decreases 
contrast. This is presumably behind the relatively high 
standard deviation of the CNR values in the time series. 
The standard deviation could be decreased if only the head 
volumes without motion would be included.

The BI should be sensitive to inhomogeneities in RF 
transmit or receive field affecting the RF excitation flip 
angle in the target volume. These may be induced by prob-
lems in RF instrumentation. Additionally, the RF trans-
mission field shape is affected by the anatomical shape of 
the patient, which may induce strong inherent variation in 
the measure. Also, metal implants in the patient are caus-
ing strong disturbance to the field. A substantial increase 
in BI value is seen in results during the test period but it is 
unclear if it has a direct connection to either of the occurred 
breakdowns. Generally, RF field inhomogeneity effects are 
effectively corrected by scanner’s image intensity normaliza-
tion algorithms which may decrease methods sensitivity to 
scanner performance changes. Accessing the normalization 
algorithm parameters could yield interesting performance 
information.

The variation of all measurements is highly depending on 
the stability of image volume segmentation. For the image 
segmentation, the method is relying on the SPM package 
which has been utilized and tested comprehensively in mul-
tiple studies [31, 32]. If the clinical volume includes severe 
pathologies, the segmentation algorithm may fail conse-
quently affecting measurement results. Thus, volumes with 
atypical segmentation results should be removed from the 
analysis. A simple rule based on GM and WM volume ratio 
calculated from the segmentation result was used in this 
study. A more sophisticated set of rules would likely result 
in decreased standard deviation, but at the same time, limit 
the amount of available data. The optimization of the criteria 
for head volume inclusion is should be performed in future.

Additionally, the tetrahedral grid placed on a desired 
interface to track the perpendicular direction to the surface 
has to adapt to actual acquisition resolution. The grid has to 
be dense enough to track the topography of the surface with-
out reacting to voxel-size features. Multiple grid parameter 
values can be tested empirically to find a stable area where 
small changes to grid settings have minimal effect on the 
results.

In addition to physiological error sources, scanner hard-
ware induces inherent variation to the results. For example, 
the main magnetic field and RF chain can demonstrate tem-
poral fluctuation. One reason to use running average over 
several days is to mitigate these effects along with inter-
patient differences.

The presented methods could potentially be utilized as 
absolute measures to compare the performance of scanners 
from different vendors and sequence types. The sequence 
should produce reasonable contrast regions and boundaries, 
which can be segmented reliably. Other anatomical regions 
instead of head could also be considered. The effect of 
changes (e.g. protocol optimization) in sequence parameters 
on image quality could be studied quantitatively. It is also 
possible to produce online clinical image quality assurance 

Fig. 13   Median, interquartile range and from the 2nd to 98th percen-
tile range of MTF50 values in three orthogonal directions for studies 
with motion artefact, without motion artefact and all patients
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tools that are automatically detecting the abnormal operation 
of the scanner and possibly enable the pre-emptive main-
tenance of the scanner before noticeable effect on clinical 
image quality.

Similarly, application of on-line QA enables the detection 
of patient related issues, e.g. movement. Optimally, this type 
of system could give a prompt suggestion to rescan before 
the examination is over. The online detection of a patient 
motion artefact could significantly affect patient care and 
costs [33]. The effect of patient motion on the presented QA 
measures was studied by labeling part of the image volumes 
as including or not including patient motion related arte-
fact. The motion artefact had significant effect on MTF10, 
MTF50 and CNR values. In the 3D FLAIR images, the 
patient motion was found to produce blurring rather than 
traditional ghosting in the phase-encoding direction. Find-
ing the optimal threshold values for patient motion detection 
requires further research.

Results obtained from clinical volumes were compared 
with phantom QA results. There were no clear trends in any 
of the phantom QA parameters nor visible effects before 
either of the scanner breakdowns. It is possible that the 
standard SE sequence is not as demanding in terms of hard-
ware as the 3D FLAIR sequence. Thus, the sensitivity of the 
phantom QA measurements may not be sufficient to detect 
effects seen in clinical image QA. Nevertheless, phantom 
QA has many advantages. For example, it is difficult to eval-
uate scanner’s geometric distortions from patient images.

Recently, machine learning methods have been applied to 
quality control purposes [34–38]. In future, novel automated 
approaches may open interesting possibilities in detecting 
and labeling scanner specific image artefacts. All in all, well-
defined, robust, specific and quantitative methods are needed 
for general QA and sequence optimization purposes, regard-
less whether they are machine learning or more traditional 
image analysis in nature.

In this study, four methods for quantifying the image 
quality of clinical 3D FLAIR acquisitions were presented 
and applied to a large patient cohort. These can be used 
in QA to monitor the long-term image quality of an MRI 
scanner and potentially detect malfunctions before complete 
hardware failures. The methods can be utilized to measure 
the effect of changes in sequence parameters or assess the 
absolute quality of a single patient study.
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