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Introduction

Diffusion MRI data can provide an estimate of the local 
white matter fibre orientations non-invasively, which in 
turn can be used with a fibre-tracking algorithm to recon-
struct a representation of the white matter pathways in the 
brain [1]. Currently, the most commonly used fibre-track-
ing algorithms are based on generating a set of stream-
lines,1 an algorithm also known as deterministic stream-
lines [2, 3] or probabilistic streamlines [4], depending on 
how the streamlines propagation is carried out [1].

In the particular case of whole-brain tracking, stream-
lines are most often seeded throughout the white matter, 
thus providing an overall representation of white mat-
ter pathways throughout the brain (the so-called “tracto-
gram”—see Fig.  1). Note that, in practice, a whole-brain 
tractogram can also be generated with other seeding strate-
gies, such as seeding throughout the grey matter/white mat-
ter interface.

Besides a number of visualisation strategies to dis-
play and interrogate the resulting tractogram (i.e. the set of 
streamlines), various post-processing approaches have been 
proposed to extract more detailed information (and, often, 
quantitative information) from the set of streamlines. For 

1  Throughout this work, the terms “streamline” and “track” are used 
interchangeably, to represent a mathematical representation (i.e. a 
three-dimensional curve generated using a tractography algorithm). 
In contrast, the terms “tract” and “white matter pathway” are also 
used interchangeably to represent the actual biological structure in 
the brain.

Abstract  A whole-brain streamlines data-set (so-called 
tractogram) generated from diffusion MRI provides a 
wealth of information regarding structural connectivity 
in the brain. Besides visualisation strategies, a number of 
post-processing approaches have been proposed to extract 
more detailed information from the tractogram. One such 
approach is based on exploiting the information contained 
in the tractogram to generate track-weighted (TW) images. 
In the track-weighted imaging (TWI) approach, a very 
large number of streamlines are often generated throughout 
the brain, and an image is then computed based on proper-
ties of the streamlines themselves (e.g. based on the num-
ber of streamlines in each voxel, or their average length), 
or based on the values of an associated image (e.g. a dif-
fusion anisotropy map, a T2 map) measured at the coordi-
nates of the streamlines. This review article describes vari-
ous approaches used to generate TW images and discusses 
the flexible formalism that TWI provides to generate a 
range of images with very different contrast, as well as the 
super-resolution properties of the resulting images. It also 
explains how this approach provides a powerful means to 
study structural and functional connectivity simultaneously. 
Finally, a number of key issues for its practical implemen-
tation are discussed.
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example, the tractogram has been used to estimate the degree 
of structural connectivity between brain regions [5, 6], i.e. an 
estimate of the density of white matter connections between 
regions of the brain grey matter; this type of application 
includes what it has now become the very active research 
field of connectomics [7, 8], or the study of the brain connec-
tome. The connectivity information has also been exploited 
to guide tissue parcellation, such as in the seminal work by 
Behrens and colleagues to parcellate the human thalamus 
based on its connectivity to cortical regions [5].

The streamlines corresponding to a given white matter 
pathway also can be isolated to define a “tract of interest” 
(TOI)2 [9, 10], which can be subsequently used to measure 

2  The TOI is equivalent to the commonly used region of interest 
(ROI), for the particular case that its extent is determined by the vol-
ume occupied by a set of streamlines (typically corresponding to a 
given white matter structure).

tract-specific average diffusion MRI properties, such as the 
mean tract value of the average diffusivity, the diffusion ani-
sotropy, or even of other non-diffusion MRI parameter (such 
as the mean tract value for T2). While this approach can be 
used to obtain a tract-specific quantitative value, it cannot 
characterise the possible heterogeneity that can be present 
within the white matter pathway. To address this important 
limitation, a bootstrap method was applied to determine the 
distribution of diffusion metrics (e.g. the fractional anisot-
ropy, FA), and encode this information at each point along 
the streamline, with the pointwise assessment of streamline 
tractography attributes (PASTA) method [11]. Related 
approaches to extend these ideas have been also proposed to 
generate tract “profiles” of MRI parameters (i.e. their values 
at multiple locations along their trajectories) for all the 
streamlines in a given white matter structure [12–14], which 
can be subsequently used, for example, for quantitative 
comparison of a patient group vs. a control group [15].

A completely different strategy to extract other informa-
tion from streamlines relied on quantifying the shape of 
the streamlines (e.g. their curvature, torsion), as well as a 
measure of the relative spatial configuration between pairs 
of curves [16], i.e. a number of features related to geomet-
rical properties of the streamlines.

The information contained in a whole-brain tracto-
gram can also be exploited to generate track-weighted 
(TW) images [17]. In this track-weighted imaging (TWI) 
approach, a TW image can be generated either based on 
properties of the streamlines themselves (e.g. based on the 
number of streamlines in each voxel [18–21], their aver-
age length [22]), or based on the values of an associated 
image/map (e.g. a diffusion anisotropy map) measured at 
the coordinates of the streamlines [17]. This review article 
describes various approaches used to generate TW images, 
and discuss the flexible formalism that TWI provides to 
generate a range of images with very different contrast, 
as well as the super-resolution properties of the resulting 
images. This review article also explains how this approach 
provides a very powerful means to study structural and 
functional connectivity simultaneously. Finally, a number 
of key issues for its practical implementation are discussed.

TW images based solely on properties of the 
tractogram

Possibly one of the simplest TWI variants correspond to 
computing the number of streamlines traversing each voxel 
and assigning that value as the intensity of the TW image 
[18–21]; this approach is equivalent to a “histogram map” 
of the streamline count, where voxels are equivalent to the 
histogram bins. This type of TW image is known as ana-
tomical connectivity mapping (ACM) [18, 20], 

Fig. 1   Example whole-brain tractograms (100,000 probabilistic 
streamlines). a 4-mm coronal section of the tractogram from a human 
healthy subject scanned at 3 T. b 0.2-mm coronal section of the trac-
togram from an ex vivo mouse brain scanned at 16.4 T. The colour-
coding indicates the local fibre orientation (red left–right, green 
dorsal–ventral, blue cranial–caudal). b Is modified from a figure pre-
viously published in [24], with permission of Elsevier Inc., 2012
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track-density image (TDI) [19], or fibre density mapping 
(FDM) [21]. While ACM and FDM were introduced as 
quantitative measures of anatomical connectivity and the 
density of white matter fibres, respectively, TDI was intro-
duced as a qualitative imaging method with high anatomical 
contrast. Importantly, TDI not only has been found to have 
high anatomical contrast, but it has been also shown to have 
super-resolution properties [23], such that its spatial resolu-
tion can be higher than that of the acquired diffusion MRI 
data (see Fig. 2).3 The continuity of the tracks provides extra 
information from outside the voxel to disentangle the intra-
voxel localisation of the streamlines and thus generate sub-
voxel information (see Fig. 3).4 For example, high contrast 
super-resolution TDI maps of the in  vivo human brain at 
0.125 mm isotropic resolution were constructed from diffu-
sion MRI data acquired at 2.3 mm isotropic resolution [19] 
(see also Fig. 4a), and 0.02 mm isotropic TDI maps of the 
ex vivo mouse brain were constructed from diffusion MRI 
data acquired at 0.1 mm resolution (see Fig. 4b) [24]. The 

3  ACM and FDM are essentially similar to TDI at native resolution 
(i.e. without applying super-resolution).
4  In the TDI analogy as a histogram map, super-resolution can be seen 
as the fact that the bin size (i.e. voxel size) can be, to some extent, 
arbitrarily chosen.

super-resolution properties of TDI were validated by using 
in silico phantoms, as well as by comparing the super-reso-
lution TDI maps generated from down-sampled high-reso-
lution 7  T diffusion MRI data to TDI maps generated at 
native resolution (i.e. without super-resolution) from the 
original high-resolution acquired data [23]. It is also impor-
tant to emphasise that this super-resolution property is not 
equivalent to image interpolation, as demonstrated in [19] 
(e.g. see Fig. 8 in that article).  

It should be noted that, in practice, there are several 
ways to consider the contribution from streamlines to the 
total count in TDI. For example, the streamlines travers-
ing a voxel can be counted in a binary way, all contrib-
uting a unit value regardless of their length within the 
voxel. Alternatively, the contribution of each streamline 
can be weighted by the length of the streamline segment 
within the voxel. The TDI results shown here correspond 
to the former case.

An interesting feature of the TDI maps is that their sig-
nal-to-noise ratio was shown to be influenced, not only by 
the acquisition parameters (as expected), but also by the 
total number of streamlines generated in the tractogram and 
by the size of the super-resolution voxel [19]. This provides 
a means to increase the quality of the final TDI map (for 
a given diffusion MRI data set) simply by post-processing 

Fig. 2   Illustration of the track-density imaging (TDI) formation 
and the super-resolution principle. a Axial slice of the tractogram 
highlighting the region that is shown as zoomed version in b–g. b 
Zoomed tractogram; c zoomed tractogram with a grid-size of native 
acquired resolution (2.3 mm isotropic for the diffusion MRI data used 
here); d TDI map without super-resolution (i.e. at native resolution) 
calculated by counting the number of streamlines within each grid 
element. The same procedure as in b–d can be repeated with grid-

sizes of smaller resolution to achieve super-resolution. The bottom 
row shows the corresponding super-resolution TDI maps calculated at 
1 mm (e), 500 μm (f), and 125 μm (g) isotropic resolutions. All TDI 
maps were calculated based on the same tractogram, they just differ 
in the choice of grid-size. As can be appreciated in the figure, brain 
structures (e.g. the cingulum bundle, see arrow) are visualised with 
increasing detail by using finer super-resolution



320	 Magn Reson Mater Phy (2017) 30:317–335

1 3

and, therefore, a means to change the contrast-to-noise ratio 
without involving an increased acquisition time (see Fig. 5 
for an example). The signal-to-noise ratio for a given total 
number of tracks depends on a number of factors, includ-
ing the signal-to-noise ratio of the diffusion MRI data, the 
number of diffusion gradient directions, b value, and super-
resolution voxel size [19]; the rate of increase is expected 
to be relatively much slower when using very large num-
ber of streamlines (e.g. see the shape of the curve in Fig. 5). 
As can be seen in the example TDI maps in Fig. 5, for low 
number of tracks the image is very “patchy” (because not 
enough tracks have been generated to sufficiently populate 
the super-resolution voxels), leading to very low signal-to-
noise ratio. This is equivalent to a histogram having a noisy 
appearance when using a low number of data samples. As it 
is also the case for the histogram, when a very large number 
of samples have been considered (large relative to the histo-
gram bin, or for our case, to the super-resolution voxel-size), 
then the change of the histogram appearance with further 
increases in the number of data samples is not so apparent.

Furthermore, analogous to the directionally encoded 
colour (DEC) maps in diffusion tensor imaging [25], fibre 
directionality information can be incorporated into the 

super-resolution TDI maps, by assigning an RGB colour to 
each spatial direction; for example, the colour in each voxel 
can be determined by averaging the colours of all the stream-
line segments contained within the voxel (see Fig. 6) [19]. 
Importantly, it was shown that DEC-TDI maps not only have 
super-resolution properties, but also provide an improved 
representation of the colour-encoding in areas of multiple 
fibre populations compared with DEC maps from diffusion 
tensor imaging, given that they have a better behaved defini-
tion of the colour choice [17]. In areas of crossing fibres, the 
DEC-FA map (with its colour determined by the orientation 
of the eigenvector corresponding to the major eigenvalue) 
can show low colour coherence (due to the noise sensitivity 
of the eigenvector direction), while this is avoided in DEC-
TDI, i.e. averaging colours of the streamlines in a voxel is 
better behaved with respect to noise than choosing the col-
our of the computed major eigenvector (e.g. see Fig.  7 in 
Ref. [17]). More recently, an approach that also avoids these 
uncertainties with colour-encoding in crossing fibre areas 
has been proposed, based on the information contained in the 
fibre orientation distribution (FOD) [26]; this approach does 
not require reconstruction of a tractogram; therefore, it can-
not use the super-resolution properties of DEC-TWI.

Fig. 3   Illustration of the origin of the super-resolution property. a 
Axial slice of a TDI map calculated at native resolution (2.3 mm iso-
tropic for the diffusion MRI data used here), highlighting the region 
that is shown as zoomed version in b–d. b Zoomed TDI map at native 
resolution; the highlighted voxel is shown as zoomed version in e–f. c 
Same image as in b, but with the fibre orientation distribution (FOD) 
overlain in each voxel. d Corresponding region of the tractogram. e 
Zoomed version of the voxel highlighted in (c); the FOD data identi-
fied two fibre populations within the voxel: one corresponding to the 

corpus callosum (in yellow) and the other to the cingulum bundle (in 
blue). Based on these FOD data, it is not possible to determine where 
within the voxel these fibre populations are located. f Zoomed ver-
sion of the voxel highlighted in d; the continuity of the streamlines 
provide sub-voxel information, and it is now possible to disentangle 
the spatial distribution of the corpus callosum and cingulum bundle 
within the voxel. This is the source of the super-resolution property in 
TDI, i.e. the streamlines provide sub-voxel localisation
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In order to investigate whether the very high anatomi-
cal contrast provided by super-resolution TDI maps is 
meaningful, the anatomical information from these maps 
was compared with that from high-resolution T1-weighted 
images from in  vivo 7T human MRI data [27], and with 
histology for ex vivo ultra-high field mouse brain MRI (e.g. 
see Fig. 4) [24]. These studies demonstrated the very use-
ful anatomical information contained in TDI maps. In par-
ticular, the high anatomical contrast in TDI and DEC-TDI 
maps has been exploited, for example, to develop a detailed 
white matter atlas of the in vivo human brain [28], to char-
acterise the structures within the brain stem [29, 30], and 
to precisely define seed regions for tractography [19, 31], 
as well as to visualise the mouse barrel cortex [32], map 
the somatosensory connectivity in the ex vivo mouse brain 
[33], and provide an enhanced characterisation of zebrafish 
[34] and zebra finch [35] brains.

Given that TDI is essentially a map of the tracto-
gram, the better the quality of the fibre-tracking results, 
the better quality of the resulting TDI map. For exam-
ple, increasing the amount of data (e.g. increasing the 
number of diffusion-weighted encoding directions), or 
increasing the signal-to-noise ratio of the data (e.g. by 
using  better RF coils, stronger gradients) can all lead 
to better fibre-tracking results. Similarly, the use of 
advanced models to estimate fibre orientations within 

a voxel [36, 37] can lead to more meaningful ana-
tomical information (see Fig.  7), and the use of better 
fibre-tracking algorithms [38–41] can lead to improved 
tractograms. As illustration, the high-quality diffusion 
MRI data from the Human Connectome Project [42, 
43], when combined with advanced models to estimate 
fibre orientations [44] and state-of-the-art fibre-tracking 
strategies [38, 45] generates very high quality DEC-TDI 
maps, i.e. maps with very high anatomical detail, spatial 
resolution, and contrast-to-noise ratio (e.g. see Fig.  8). 
Similarly, very impressive super-resolution TDI maps 
can be achieved based on ex vivo brain imaging at ultra-
high field MRI: the features that can be visualised using 
super-resolution TDI and DEC-TDI can be outstand-
ing, because long acquisition times can be employed to 
acquire very high resolution and high signal-to-noise 
ratio diffusion MRI data. For example, TDI maps were 
used as a tool to visualise the barrel cortex in the ex vivo 
mouse brain, based on data acquired at 16.4T, and the 
identified barrel structure corresponded well with that 
seen in histology [32]. Similarly, ultra-high field MRI of 
the ex vivo zebrafish brain were used to generate 5 μm 
isotropic resolution DEC-TDI maps [34], which pro-
vided a rich visualisation of numerous anatomical struc-
tures, including 17 structures previously unidentifiable 
using MR microimaging. 

Fig. 4   Example super-resolution TDI maps. a TDI map of the in vivo 
human brain at 0.125 mm isotropic resolution (constructed from dif-
fusion MRI data acquired at 2.3 mm resolution on a 3 T scanner). b 
TDI map of the ex vivo mouse brain at 0.02 mm isotropic resolution 
(constructed from diffusion MRI data acquired at 0.1 mm resolution 
on a 16.4 T scanner). c Myelin staining of the same mouse brain, with 
a number of structures labelled. cc corpus callosum, cg cingulum, cp 

cerebral peduncle, CPu caudate putamen (striatum), dhc dorsal hip-
pocampal commisure, ec external capsule, eml external medullary 
lamina, f fornix, fi fimbria of the hippocampus, ic internal capsule, ml 
medial lemniscus, mt mammillothalamic tract, ns nigrostriatal tract, 
opt optic tract, st stria terminalis. b, c Modified from a figure previ-
ously published in [24], with permission of Elsevier Inc., 2012
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Anatomical contrast vs. quantitation

The most commonly used method for seeding when gen-
erating a whole-brain tractogram is to distribute the seeds 
throughout the white matter; this leads to a length-bias in 
the streamline density: longer white matter pathways will 
have a larger number of seeds, which generate a larger 
number of streamlines, which in turn produce higher sig-
nal intensity in TDI maps. This source of bias is in fact 
an important source of anatomical contrast in TDI. While 
other sources of tracking bias provide no anatomical use-
ful information (e.g. the bias towards tracking the medial 
aspect of the corpus callosum projections when using dif-
fusion tensor imaging—see Fig.  7c), the length-bias in 
tracking can help differentiate neighbouring white matter 
structures based on their tract length—a useful character-
istic when one is interested in anatomical contrast. On the 
other hand, there are some scenarios when one may want to 

avoid the above mentioned length-bias. For example, when 
investigating short white matter structures [24, 29, 32, 33], 
it is beneficial to minimise the dominant high-contrast sig-
nal from long fibres. Similarly, for DEC-TDI maps, whose 
contrast is primarily given by the orientation information, it 
is also beneficial to reduce the length-bias effect in order to 
avoid colour saturation of long white matter structures [24]. 
A number of strategies have been proposed to minimise this 
length-bias effect, i.e. the over-representation of long white 
matter pathways. These include two variants to the original 
TDI method: (1) the technique known as length-scaled TDI 
(lsTDI), in which the contribution of each streamline to the 
final track-count value is scaled by the inverse of its length 
[23], and (2) short-tracks TDI (stTDI), in which a stand-
ard TDI map is computed, but based on a tractogram that 
was generated by constraining the tracking to propagate 
streamlines up to a given maximum length (e.g. 10 times 
the acquired voxel size) [24]. An alternative approach to 

Fig. 5   Illustration of the effect 
of number of streamlines in the 
signal-to-noise ratio (SNR) of 
the TDI map. The top two rows 
show six TDI maps (0.3 mm 
isotropic resolution) created 
with increasing number of 
streamlines (as indicated by 
the numbers in each figure). 
All TDI maps where gener-
ated using the same diffusion 
MRI data (2.5 mm isotropic, 60 
diffusion-encoding directions, 
b = 3000 s/mm2, acquired on 
a 3T scanner), and they only 
differ in the total number of 
streamlines used to construct 
the tractogram. It can be clearly 
seen that increasing the number 
of streamlines increases the 
quality of the TDI maps (e.g. 
their SNR). To quantify this 
effect, a plot of SNR vs. number 
of tracks is shown in the bottom, 
which was calculated for a rec-
tangular region of interest (368 
voxels in size) manually drawn 
in the splenium of the corpus 
callosum in the slice shown in 
the figure. The plot confirms the 
SNR increase with increasing 
number of tracks, with SNR 
defined as the mean divided by 
the standard deviation of the 
TDI values within the region
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Fig. 6   a Fractional anisotropy 
(FA) map from a healthy volun-
teer (2.3 mm isotropic diffusion 
MRI acquired at 3T). b Direc-
tional-encoded colour (DEC) 
FA map. c Super-resolution 
track-density imaging (TDI) 
map at 0.25 mm isotropic reso-
lution, created using one million 
streamlines. d Super-resolution 
DEC-TDI map (0.25 mm 
resolution). Note that all maps 
were created based on the same 
acquired diffusion MRI data, 
but they differ in the way the 
data were post-processed. The 
color-coding corresponds to 
the main local orientation (red 
left–right, green anterior–pos-
terior, blue inferior–superior), 
as defined by the orientation 
of the major eigenvector of the 
diffusion tensor (for b) or the 
orientation of the streamlines 
within the voxel (for d)

Fig. 7   Illustration of the effect of the tractography method on TDI 
contrast. a Coronal T1-weighted image for anatomical localisation. b 
Super-resolution track-density imaging (TDI) map generated using 
constrained spherical deconvolution (to model the intra-voxel fibre 
orientations) and probabilistic streamlines. c Corresponding super-

resolution TDI map generated using the tensor model and determin-
istic streamlines. All TDI maps were generated using one million 
tracks and 0.25 mm isotropic resolution (based on the same 2.3 mm 
acquired diffusion MRI data). The arrows in c indicate areas artifi-
cially enhanced due to tractography-related errors and biases
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minimise the length-bias effect is to use one of the track-
ing methods that have been specifically designed to make 
tractograms more quantitative [38–41, 46–48]. It should 
be noted, however, that length-bias is not the only possible 
source of bias in fibre-tracking. Other sources of bias and/
or errors include curvature, dispersion, the so-called fibre 
crossing vs. kissing effect, seeding strategy, and termina-
tion criteria [1, 38, 39, 41, 48–50]. The reader is referred to 
these references for further details on tractography biases 
and methods to reduce them.

While super-resolution TDI was initially developed 
primarily as a qualitative imaging method with high ana-
tomic contrast [19], track-count mapping techniques have 
been appealing as a tool that provides a potential surrogate 
measure of white matter “fibre density” and, therefore, as 
a quantitative parameter. There has been, however, some 
controversy regarding the quantitative properties of track-
count mapping. While a number of studies have reported 

very interesting applications, such as to tumours [21, 51, 
52], Parkinson’s disease [53], Alzheimer’s disease [20, 
54], multiple sclerosis [55, 56], traumatic brain injury [57], 
stroke [58], brain development [59], pain syndromes [60], 
and spine degeneration [61], others studies have high-
lighted the limitations of track-count mapping as a quan-
titative tool [22, 49, 62–68], including issues related with 
interpretation of the findings, and variability of the quanti-
tative values.

It could, however, be expected that the use of advanced 
tracking methods that make the tractogram more quantita-
tive [38–41, 46, 47] might in turn make track-count map-
ping techniques more suitable for quantitative analysis. In 
fact, it was recently shown that the spherical-deconvolution 
informed filtering of tractograms (SIFT) method [39] leads 
to a more reliable and biological meaningful tractogram 
[46] and, in turn, making TDI mapping a better quantitative 
tool, with more interpretable results and lower intra- and 

Fig. 8   Example high-quality 
super-resolution directional-
encoded colour (DEC) track-
density imaging (TDI) maps 
calculated based on 1.25 mm 
resolution diffusion MRI data, 
acquired as part of the Human 
Connectome Project [42, 43]. 
The tractogram (10 million 
streamlines) used to compute 
the DEC-TDI maps was calcu-
lated using advanced models 
to estimate the fibre orienta-
tions within a voxel [44], and 
state-of-the-art fibre-tracking 
algorithms that incorporate 
anatomical information [38] and 
are quantitative [45]. Red left–
right, green anterior–posterior, 
blue inferior–superior. Figure 
constructed from fibre-tracking 
data kindly provided by Dr. 
Chun-Hung Yeh (The Florey 
Institute of Neuroscience and 
Mental Health, Melbourne, 
Australia)
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inter-subject variability [63]. However, that same study 
[63] also showed that, at native resolution (i.e. without 
super-resolution), the total apparent fibre density (AFD) 
[69], corresponding to the orientation average FOD, pro-
vides in theory equivalent information to that from a TDI 
map following SIFT; importantly, since total AFD does not 
involve a fibre-tracking step, it was shown to have much 
lower intra- and inter-subject variability than TDI maps 
calculated either with or without a SIFT step [63]. It was, 
therefore, concluded that total AFD provides a better option 
for quantitative analysis of voxel-wise track-count map-
ping. It should be noted, however, that voxel-wise track-
count mapping methods (including total AFD) provide only 
orientation averaged information and, therefore, discard 
important information that is retained in other fibre-specific 
approaches to quantitation [69, 70]. In could, therefore, be 
argued that fibre-specific approaches are more appropriate 
for quantifying tract density since they provide increased 
specificity. Furthermore, recent statistical methods of 

connectivity-based enhancement can be used for tract-spe-
cific smoothing and enhancement for improved statistical 
inference [71].

To avoid orientation averaging the TDI information 
within a voxel, a number of TDI variants have also been 
proposed, which extend the TWI approach to include both 
the spatial and angular domains [39, 72, 73]. They also, 
therefore, provide fibre-specific information; however, they 
may still be subject to the length-bias issue if approaches 
such as SIFT are not used to minimise this effect.

Beyond TDI

Besides mapping the track-count, there are a number of 
alternative TWI maps that can be generated solely based on 
properties of the streamlines (see Fig. 9). For example, the 
technique known as average pathlength mapping (APM) 
[22] generates a TW image where the intensity at each voxel 
corresponds to the average length of all the streamlines 

Fig. 9   Example track-weighted imaging (TWI) maps computed 
solely based on the information contained in the tractogram. The fig-
ure summarises the processing pipeline, where diffusion-weighted 
imaging (DWI) data are used to generate a tractogram, which can 
then be used to calculate a track-density imaging (TDI) map (bottom 
row, left), an average path-length map (APM) (bottom row, middle), 
or a track-weighted map based on the average local curvature of the 
streamlines in the voxel (bottom row, right). All TWI maps were con-

structed at 0.5 mm isotropic resolution, based on the same diffusion 
MRI data (acquired at 2.5 mm resolution) and a tractogram of four 
million streamlines. As appreciated from the figure, each TWI map 
has unique image contrast and information. For example, the curva-
ture-based TWI map has high intensity in curved bundles (such as 
sub-cortical U-fibres and the corpus callosum) and low intensity in 
more straight bundles (such as the portion of the cingulum bundle in 
that slice)
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traversing the voxel. Similarly, other TW maps can be con-
structed with other properties of the streamlines (e.g. the 
mean curvature, mean torsion, which can be sensitive to 
changes in the shape of white matter pathways, regardless 
of whether there is an associated change in track density 
or length), or even using other summary statistics (e.g. the 
length variance of the streamlines instead of their average 
value). Each of these maps will have very different image 
contrast, and they all have super-resolution properties (e.g. 
see Fig. 9).

TWI combining a tractogram with diffusion MRI 
data

Another approach to generate TW images involves combin-
ing the information from the whole-brain tractogram with 
a map generated from the same diffusion MRI data used to 
calculate the tractogram. For example, the diffusion MRI 
data can be used to calculate diffusion tensor based param-
eters (e.g. average diffusivity, radial and axial diffusivities, 

anisotropy measures), and each of these maps can be com-
bined with the tractogram to generate a TW-version of that 
map (e.g. a tractogram can be combined with a FA map to 
generate a TW-FA map [17]). In its simplest form, each 
streamline can be assigned a “weighting” corresponding 
to the average value measured along the streamline coor-
dinates (e.g. the average FA value along the track), and the 
final TWI intensity (e.g. the intensity of the TW-FA map) 
calculated from the mean of these weighting values for 
all the streamlines traversing a given voxel (see Fig.  10). 
For this simple implementation, the TWI framework can 
be considered as a “track-smoothed” version of the cor-
responding map (in this example, the TW-FA maps is a 
track-smoothed version of the FA map) [17]. Importantly, 
this smoothing only occurs along the white matter path-
ways traversing the voxel (i.e. it can be considered as an 
“informed” or “smart” smoothing).

The TWI formalism is, however, highly flexible, given 
that there are many ways in which a tractogram can be 
combined with another image [17]. For example, the 
user can determine the extent of the local neighbourhood 

Fig. 10   Example track-weighted imaging (TWI) maps computed by 
combining the tractogram with other diffusion MRI data. The figure 
illustrates three cases: in the top, a fractional anisotropy (FA) map is 
combined with the tractogram to compute a TW-FA map; in the mid-
dle, an apparent diffusion coefficient (ADC) map is combined with 
the tractogram to compute a TW-ADC map; and in the bottom, the 
fibre orientation distribution (FOD) in each voxel is combined with 

the tractogram to compute a TW-FOD map. All TWI maps were con-
structed at 0.23 mm isotropic resolution, based on the same diffusion 
MRI data (acquired at 2.3 mm resolution). Each TWI map has unique 
image contrast and information. Part of this figure is modified from a 
figure previously published in [17], with permission of Elsevier Inc., 
2012)
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that will contribute to calculating the weighting for each 
streamline (e.g. by selecting the width of a Gaussian 
weighting function, or selecting a particular maximum 
track-length when propagating streamlines during the con-
struction of the tractogram, i.e. similar to the case used in 
stTDI). Similarly, the user can choose the track-weighted 
statistic (e.g. calculating the mean FA value along the track, 
or the standard deviation of the FA values, or any other 
metric along the streamline), as well as the voxel-wise sta-
tistic (e.g. by calculating the mean of the weightings for 
all the streamlines traversing the voxel, or the variance of 
the weightings, or their sum), and whether the data are cal-
culated as a scalar value in each voxel or as fibre-specific 
values [72, 73]. Each of these choices leads to a different 
image contrast in the resulting TWI maps, which also have 
super-resolution properties. In the general case (and given 
the large range of options available when constructing a 
TWI map), the simple analogy between TWI mapping and 
a smoothing method is limited, and TWI is better described 
as “propagating” information (e.g. from the FA map) along 
the tracks [17].

It should be noted that the tractogram not only can be 
combined with scalar diffusion MRI maps, but also with 
other higher-order diffusion MRI data, such as with the 
fibre orientation distribution (FOD), to generate a TW-FOD 
map [62] (e.g. see Fig. 10).

One of the advantages of this type of TWI mapping 
based on combining the tractogram with diffusion MRI 
data (cf. those described in the sections below) is that the 
diffusion MRI map used is intrinsically co-registered with 
the tractogram, and no mis-registration errors are, there-
fore, present.

All these TWI maps retain the same quantitative char-
acteristics of the diffusion MRI data used to construct 
them. For example, the TW-ADC map in Fig.  10 has the 
same units as that of the corresponding ADC map, namely 
mm2/s. The TWI maps can therefore be used for the same 
type of quantitative analysis as that often used for the cor-
responding diffusion MRI maps (e.g. region-based meas-
urements, tract-of-interest based measurement, histogram 
analysis, voxel-based analysis).

As an alternative to the local neighbourhood weighting 
for TWI [17], Bell et  al. [74] proposed a TWI variant in 
which the voxel weight was modulated based on the dis-
tance of the voxel from a given anatomical location along 
the tract (e.g. a segmented region corresponding to a 
brain abnormality), with a technique they called distance-
informed TWI (diTWI).

Several studies have found that many of these TWI maps 
often have much better reproducibility/variability than that 
of TDI maps [22, 62, 67] and, therefore, are more suited 
for quantitation. For example, Willats et  al. [62] showed 
that from all TWI investigated (which included TDI, APM, 

TW-ADC, TW-FA, and TW-FOD, with the latter three cal-
culated at three different local neighbourhood extents), TDI 
had the lowest within-subject quantitative reproducibility 
and largest between-subject variability. Interestingly, that 
study also showed that the reproducibility/variability was 
significantly improved by applying track-weighting (e.g. 
TW-FA had better reproducibility than FA). They con-
cluded that many of the TWI maps, including APM, TW-
ADC, TW-FA, and TW-FOD, have more power to detect 
group differences for a given effect size, or that they need 
fewer number of subjects per group to detect a given per-
centage change [62]. Many of these TWI maps could there-
fore also play an important role in quantitative analysis.

TWI combining a tractogram with other 
non‑diffusion MRI data

In a similar way to how the tracrogram was combined with 
diffusion MRI data in the previous section, the TWI for-
malism provides a means to combine the tractogram with 
other non-diffusion MRI data. For example, the tractogram 
can be combined with a T2 map to generate a TW-T2 map. 
Similarly, it can be combined with T1 data, magnetisa-
tion transfer data, quantitative susceptibility maps, or any 
other MRI data, to generate a TW-version of that data/map 
in each case. Once again, there is flexibility in the choice 
of local neighbourhood extent, track-weighted statistic, 
voxel-wise statistic, and the use of a scalar or fibre-specific 
output. A different image contrast can be achieved in the 
TW map depending on the particular combination choice 
for these options. The TWI formalism, therefore, provides 
a flexible means to combine structural connectivity infor-
mation (given by the tractogram) with other MRI measure-
ments of tissue properties. Furthermore, as it was the case 
with TDI, all these TWI variants also have super-resolution 
properties.

It is important to emphasise, however, that for this type 
of TWI implementation, co-registration between the diffu-
sion MRI data and the non-diffusion MRI data is essential 
in order to avoid mis-registration errors; this includes cor-
recting for any image distortions (e.g. eddy currents distor-
tions, and susceptibility-related distortions) or, when this is 
not possible, at least having matched distortions for both 
MR imaging modalities; note, however, that, in the latter 
case, the un-corrected image distortions can introduce sig-
nificant fibre-tracking errors [75].

TWI combining a tractogram with non‑MRI data

A further alternative implementation of TWI involves com-
bining the tractogram with an image generated from data 
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other than from MRI (e.g. from PET, SPECT, CT, autoradi-
ography). The TWI framework therefore provides a natural 
means for fusing multi-modal imaging data. For example, 
by combining a tractogram with a PET image based on a 
11C-DASB radioligand, which has high affinity for seroto-
nin transporters, Calamante et al. [76] generated a TW-PET 
map that visualised the serotonergic pathway through the 
raphe nuclei (Fig. 11): by using a very long neighbourhood 
extent (i.e. the whole length of the streamline), the TW-
PET method effectively propagated the PET information 
along the fibre pathways involved in the 11C-DASB active 
regions. TW-PET maps, therefore, encode the molecular 
information from PET and the structural connectivity infor-
mation from the tractogram, while displaying super-resolu-
tion qualities.

As it was the case for the TWI version described in the 
previous section, this variant of TWI also relies on accurate 
registration between the various imaging modalities and 
has the same super-resolution properties.

TWI as a tool to study structural–functional 
connectivity

A specific TWI case of that described in the section “TWI 
combining a tractogram with other non-diffusion MRI 
data” corresponds to when the non-diffusion MRI data are 

based on functional MRI. This specific situation can be of 
great interest because it provides a natural means to com-
bine structural connectivity information (provided by the 
tractogram) with functional connectivity or functional MRI 
information (e.g. as provided by BOLD data). In particular, 
the development of novel methods to investigate brain con-
nectivity and the role they can have to study the interac-
tion between structure and function has received increased 
interest [77].

By exploiting the TWI formalism, two broad types of TW-
functional variants have been proposed. The first variant is 
based on defining a specific functional network, such as a spe-
cific functional connectivity network, the activation network 
from a block-design fMRI study, or the network generated 
from an event-related fMRI or EEG-fMRI study. In this vari-
ant, the tractogram is then used to compute a track-weighted 
version of the functional network of interest. For example, in 
the technique of track-weighted functional connectivity (TW-
FC) [78], each streamline in a given voxel was assigned a 
functional connectivity “weighting” (corresponding to the sum 
of the functional connectivity values for the chosen network 
map along the streamline location), and these weightings were 
then averaged for all the streamlines traversing the voxel. In 
this way, the functional connectivity information from the net-
work of interest (e.g. the default mode network) is “mapped” 
to the corresponding white matter pathways and thus 
TW-FC effectively “propagates” the functional connectivity 

Fig. 11   TWI combining a tractogram and PET data. The top row 
summarises the processing pipeline, where a PET image (in this 
case, an image based on the 11C-DASB radioligand), is combined 
with a diffusion MRI tractogram to generate a TW-PET map. In this 
particular implementation, the TW-PET map can be used to visual-
ise the serotonin pathway, connecting the raphe nuclei (in the brain 
stem) with the cerebellum, spinal cord and cortical areas. The bottom 
row shows axial slices of the PET and TW-PET data at the level indi-
cated by the dash-dot line in the sagittal images in the top row. As 

can be appreciated in these images, the track-weighted contribution 
to TW-PET provides high anatomical detail of the network involved 
in the PET image. TW-PET data were generated at 0.25 mm isotropic 
resolution, based on 1.8 mm diffusion MRI data acquired at 7 T (see 
Ref. [76] for further details). Figure constructed from PET and MRI 
data kindly provided by Prof. Zang-Hee Cho (Neuroscience Research 
Institute, Gachon University of Medicine and Science, Incheon, 
Korea)
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information along the pathways involved in the functional 
network of interest (Fig. 12a). The TW-FC approach can be 
directly extended to other functional networks besides func-
tional connectivity, such as in TW-fMRI for networks based 
on paradigm driven fMRI or TW-EEGfMRI for network 
based on an EEG-fMRI study; illustrative examples of these 
two cases are shown in Fig. 12b, c.

The second TW-functional variant does not rely on defin-
ing a functional network in advance, but it uses the acquired 
functional data directly. For example, each streamline in 
the tractogram can be assigned a functional connectivity 
“weighting”, which instead of being related to the func-
tional values of a specific network (as it was the case for 
TW-FC in the first variant), it is based on the Pearson cor-
relation between the BOLD data at the track’s end-points. 
This approach can be further extended to include dynamic 
information (by computing the correlation using a sliding 

window approach [79]), in a technique referred to as track-
weighted dynamic functional connectivity (TW-dFC) [80]. 
In this way, the TWI formalism can be used to combine 
structural and functional information into a four dimensional 
dataset, which can be used to study dynamic functional con-
nectivity based on the combined structural/functional infor-
mation. In particular, these TW-dFC data were shown to 
provide a powerful means to achieve tissue parcellation in a 
data-driven way, by exploiting the combined information of 
structural, functional and dynamic connectivity [80].

As mentioned for many of the other TWI variants, the TWI 
output does not have to be necessarily a scalar map (i.e. by 
orientation averaging the information from all the fibres in the 
voxel), but it can also be stored as a fibre-specific TW data. 
As illustration, Fig. 13 shows the fibre-specific output for the 
case of TW-fMRI based on an fMRI language paradigm (same 
subject as that shown for the scalar TWI output in Fig. 12b).

Fig. 12   TWI as a tool to combine structural and functional con-
nectivity information. For each row, the left image shows the func-
tional network, the middle image the tractogram, and the right image 
the resulting TWI map. a Example of the track-weighted functional 
connectivity (TW-FC) on a healthy subject, generated based on a 
functional connectivity network (the default mode network in this 
example). b Example of the track-weighted fMRI (TW-fMRI) gen-

erated based on a functional language network (obtained using the 
orthographic lexical retrieval paradigm in this example). c Example 
of the track-weighted EEG-fMRI (TW-EEGfMRI) on an epilepsy 
patient with focal cortical dysplasia, generated based on a functional 
network obtained based on an EEG-fMRI analysis. b, c Constructed 
from images kindly provided by Donna Parker (The Florey Institute 
of Neuroscience and Mental Health, Melbourne, Australia)



330	 Magn Reson Mater Phy (2017) 30:317–335

1 3

Practical issues

Tractography choices

Since TWI maps are images of the tractogram (or 
weighted-images of the tractogram), there are a number of 
factors affecting the tractogram that will, therefore, have 
a corresponding effect on the TWI maps. For example, 
Fig.  7 illustrated a possible effect of the choice of trac-
tography algorithm on the resulting TDI map. Similarly, 
other fibre-tracking algorithm-specific choices, known to 
influence the resulting tractogram (such as the step-size, 
curvature constraints, seeding mask, termination crite-
ria, use of interpolation, etc.) [1, 4, 38, 49, 68, 81–83], 
will also lead to corresponding effects on TWI maps. The 
reader is referred to these studies for more details regard-
ing the various factors that can affect the tractogram, their 
consequences, and how they can be reduced.

A related issue to consider is the relationship between 
the step-size and the chosen super-resolution for the TWI 

map. While at first sight it would appear that the step-size 
of the tractography algorithm should be smaller than the 
TWI voxel size, this is not necessarily the case in practice. 
It is important to select the step-size small enough to mini-
mise the bias (i.e. overshoot) when tracking curved struc-
tures [82–84]. However, the step-size can be larger than 
the TWI resolution. For example, the MRtrix (http://www.
mrtrix.org) implementation of TWI mapping upsamples 
streamlines by local interpolation, to ensure that sufficient 
sampling points are included within each super-resolution 
voxel (e.g. the maximum inter-point distance set to a frac-
tion of the super-resolution voxel size).

Number of tracks vs. super‑resolution voxel size

Similarly to the relationship between the number of sam-
ples and the bin size in the case of a histogram plot (i.e. 
the smaller the bin size, the larger the number of samples 
required in order to properly characterise the histogram 
distribution), TWI requires a larger number of streamlines 

Fig. 13   Example of fibre-specific version of the TWI output. The 
example corresponds to the TW-fMRI map generated by combining 
an fMRI language network (a) with a tractogram (b). c Fibre-specific 
TW-fMRI map, with the dashed rectangle indicating the zoomed 
region showed in d. The data are for the same subject as that shown 
in the scalar TWI output in Fig.  12b. As can be appreciated, each 

voxel has a specific TW-fMRI value assigned to each fibre population 
(represented by the lines in each voxel), and no orientation averag-
ing has been performed (cf. TW-fMRI map in Fig. 12b). Figure con-
structed from images kindly provided by Donna Parker (The Florey 
Institute of Neuroscience and Mental Health, Melbourne, Australia)

http://www.mrtrix.org
http://www.mrtrix.org
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in the tractogram when using a smaller super-resolution 
voxel size. In other words, the smaller the voxel size, the 
denser the tractogram must be in order to have a sufficient 
large number of streamlines in each voxel to calculate a 
meaningful track-weighted metric (e.g. the mean values of 
the streamlines’ weightings in the voxel). In the author’s 
experience, a tractogram of ~5 to 10 million probabilistic 
streamlines provides high-quality TWI maps at super-reso-
lution voxels of ~0.2 to 0.5 mm isotropic for typical human 
brain diffusion MRI data.

For the specific case of using the short-tracks ver-
sion, e.g. stTDI [24], the total number of streamlines in 
the tractogram must be greatly increased (e.g. by an order 
of magnitude), given that each streamline has now been 
stopped after a short propagation length (e.g. 10 times the 
acquired voxel size), and therefore, it will only contrib-
ute track-weighting information to fewer super-resolution 
voxels. It should be noted, however, that neither the com-
putation time to generate the tractogram nor the file size 
will necessarily be very different: each short streamline 
is computed much quicker and occupies less space in 
storage.

Interpretation: local vs. distant effect

As emphasised in the original TDI publication [19], it is 
important to emphasise that a change observed in a given 
location in the TWI map may be due to a local effect (e.g. 
a lesion in that location) or to a distant effect (e.g. a change 
affecting the tracks connecting to that location, such as a 
distant abnormality that disrupted that connection, or the 
presence of extra tracks to the location of interest [63]). 
As a possible way to investigate these two scenarios, it is 
for example recommended to use the detected area of TWI 
change as a seed region for targeted tracking (or, alterna-
tively, to track-edit the tractogram using the abnormal TWI 
region to isolate the streamlines of interest); in this way, 
the brain areas that have contributed to the detected TWI 
change can be identified.

Focal vs. extended abnormalities

As discussed above (see “TWI combining a tractogram 
with diffusion MRI data” section), there are a number of 
ways to control the spatial extent (along the streamline) that 
will contribute to the weighting assigned to each streamline 
(i.e. the size of the local neighbourhood), including using 
a Gaussian weighting function along the streamline, or 
selecting a specific maximum track-length when construct-
ing the tractogram). The particular choice for a given study 
will depend on the expected abnormality. For example, if a 
disease is expected to affect a large extent of a white mat-
ter pathway, then the use of large local neighbourhood is 

likely to be beneficial. In contrast, for cases where only 
focal abnormalities in white matter are expected, then a 
small local neighbourhood (e.g. a narrow Gaussian weight-
ing function or the use of a short-track tractogram) should 
be favourable [17].

Choice of resolution

An issue of interest is the level of super-resolution that can 
be achieved in practice using TWI. It should be noted that 
TWI creates a map of the tractogram (e.g. a histogram of 
streamlines count for TDI, or a map of the average stream-
lines length for APM, or a TW version of a given parameter 
for many other TWI maps). Therefore, while any super-
resolution voxel-size can, in principle, be used, in practice 
only features that are present in the tractogram will be able 
to be resolved. For example, if the diffusion MRI data qual-
ity is not sufficient to reconstruct the streamlines from a 
small white matter pathway, then that white matter struc-
ture will not be able to be resolved regardless of the choice 
of super-resolution voxel-size. On the other hand, if a white 
matter pathway is represented as a separate structure in 
the tractogram, TWI will also be able to resolve it at high 
resolution.

Another interesting scenario is that of a very small white 
matter abnormality, smaller than the acquired diffusion 
MRI voxel size. This small focal abnormality is likely to 
be invisible to TWI regardless of the super-resolution size 
chosen: as explained in the Section “TW images based 
solely on properties of the tractogram”, the super-reso-
lution property relies on the continuity of the streamlines 
bringing information from outside the voxel, in order to 
resolve intra-voxel information; for the case of a focal sub-
voxel lesion, no extra-voxel information is available.

Voxel‑based analysis: statistical methods

It should be noted that the signal intensity of TWI maps at 
different locations are not necessarily independent, i.e. the 
track-weighting propagates the information along the path-
ways and, therefore, the values in regions that have com-
mon white matter pathways cannot be considered inde-
pendent. Standard parametric methods for voxel-based 
comparisons, such as those commonly used in SPM [85], 
are, therefore, not likely to be appropriate, and permuta-
tion-based testing strategies [86, 87] are more applicable. 
Importantly, given that by the track-weighting process, 
information is propagated along white matter pathways in 
TWI, statistical significance should be considered using 
cluster-based inference. In particular, a method recently 
developed for fibre-specific voxel-based analysis of FOD-
based measures, which boosts the statistical inference 
based on connectivity-based enhancement, a technique 
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referred to as connectivity-based fixel enhancement [71],5 
should provide a powerful statistical approach for voxel-
wise comparison of (orientation averaged and fibre-spe-
cific) TWI measures.

TWI warping: warp tracks vs. warp TWI maps

When TWI maps need to be warped to template space 
(e.g. for group analysis), there are in principle two possi-
ble approaches: warp the tractogram and then calculate the 
TWI map in template space, or calculate the TWI map in 
subject space and then warp the resulting map to a tem-
plate. It should be noted that for some TWI maps, such as 
TDI-based maps, these two approaches are not equivalent 
[78]. The normalisation step to a TDI map can lead to com-
pression or expansion of white matter structures, which in 
turn can lead to changes in streamlines density; this unfor-
tunately cannot be compensated by using the Jacobian of 
the transformation, given that the change in streamline den-
sity depends on the orientation of the white matter pathway 
relative to direction of compression/expansion [22, 78]. It 
is therefore important that TDI-based maps are not directly 
normalised, but rather that the normalisation is applied 
to the tractogram. For the case of TWI maps that are not 
based on streamline density measures (e.g. TW-FA, TW-
PET, TW-FC, among many others non-TDI maps), either 
approach (i.e. normalising the tractogram or normalising 
the TWI maps) should be equivalent.

Power calculations

As discussed by Willats et al. [62], power calculations based 
on TWI are not straightforward, given that TWI maps are 
spatially correlated (e.g. due to the track-weighted process 
and the use of neighbourhood information), which limits the 
number of independent tests. Furthermore, power calcula-
tions within a permutation-based cluster analysis framework 
are non-trivial because the choice of sample size modifies 
the form of the distribution. Simpler power calculations 
based on the Bonferroni correction have been used, but this 
only provides very conservative sample and effect size esti-
mates, since they assume that all tests are independent [62].

Conclusion

Track-weighted imaging provides a very flexible framework, 
where one tractogram can be used to generate many differ-
ent possible images, each of them with very different image 

5  The term “fixel” was introduced in that paper to refer to a specific 
fibre population within a single voxel.

contrast, all with super-resolution properties. TWI can be 
constructed based solely on properties of the tractogram, or 
by combining the tractogram with other diffusion MRI map, 
with a non-diffusion MRI data, or even with a non-MRI data 
set. At the centre of all these TW images is the tractogram 
and, therefore, the better the quality of the tractogram, the 
better the quality of the resulting TW images. The particular 
choice of TWI variant and implementation will depend on 
the application of interest. For example, for high resolution 
and high-anatomical detail, super-resolution TDI might be the 
TWI of choice, while for molecular imaging the combination 
of structural information and the specificity provided by radi-
olabelled molecules in TW-PET should be of great interest. 
All the TWI results presented in this review article were gen-
erated using the freeware MRtrix (http://www.mrtrix.org).
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