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Conclusion Our proposed method based on machine 
learning produces accurate tissue quantification and 
showed an effective use of large information provided by 
the four contrast images from Dixon MRI.
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Introduction

Research has shown that maintaining a proper balance in 
body fat and muscle composition is a key factor in good 
health [1]. Inappropriate amounts of fat can greatly increase 
the risks to cardiovascular disease, diabetes, and even can-
cers [2–4]. This problem has grown to such an extent that 
obesity now contributes significantly to the global burden 
of disease [5]. Conversely, sarcopenia, in which there is a 
general decline in skeletal muscle mass in relation to body 
fat, leads to frailty and functional impairment. Sarcopenia 
is usually an age-related process that is becoming increas-
ingly prevalent in developed countries where populations 
are progressively ageing [6, 7]. However, it has been shown 
that loss of lean muscle mass alone does not correlate pro-
portionately with declines in muscle strength and function; 
the quantity of intermuscular adipose tissue (IMAT) may 
instead be a better predictor [8].

MRI is an imaging technique that is capable of estimat-
ing the volume of body components. The main advantage 
of MRI over other techniques (such as DEXA) is its capac-
ity for accurate depiction of regional body composition 
without any ionizing radiation. Recent advances in fat and 
water discrimination (e.g. Dixon sequence) using 3D multi-
echo gradient recalled echo imaging have further improved 
the soft-tissue contrast and measurement accuracy of 
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fat-infiltration within skeletal muscle attainable by MRI 
[9].

Accurate segmentation of multiple structures is the key 
to regional body composition study. Using fat and water 
discrimination technique in MRI is able to achieve more 
accurate and less variable segmentations [10, 11]. How-
ever, while Dixon technique delivers up to four contrasts in 
one measurement, i.e. in-phase, opposed-phase, water and 
fat images (Fig. 1), it remains an open question how these 
four contrasts can be efficiently used for the task of seg-
mentation. Most studies have not used the combined image 
contrast space, but rather use a single fat or water image 
one at a time to segment the fat or muscle component sep-
arately. Thresholding of a fat image or fat fraction image 
is a popular choice for the segmentation of adipose tissue 
[10, 12–14]. Some authors have adapted the atlas/registra-
tion-based segmentation method by registering a water/fat 
image alone [15, 16].

Some studies used the combined contrast image 
space for body component segmentation. Makrogiannis 
et al. applied K-means clustering to the combined space of 
fat image and water image intensities to separate muscle 
and intermuscular adipose tissue (IMAT) in the thigh [11]. 
Wang et al. also employed K-means clustering to fat and 
water images to segment adipose tissue in the abdomen 

[17]. Joshi et al. selected fat image and water image com-
bined space to perform registration-based segmentation 
[18]. However, since the fat and water images are second-
arily derived through subtraction/addition, there may be 
artifacts introduced through mis-registration, motion, etc. 
As a result, including the raw echo images (in-phase and 
opposed-phase) should be helpful for segmentation. Kull-
berg et al. used fuzzy clustering in combined contrasts of 
in-phase, fat, and water images, but only for adipose tis-
sue segmentation in the abdomen [19]. Valentinitsch et al. 
applied a multi-parametric clustering method in combined 
in-phase, fat, and water images to segment different struc-
tures in the calf and thigh [20]. However, their clustering 
method was applied several times with different combina-
tion of contrast images to segment one structure at a time 
and only in single slice data.

In this study, we present a novel machine learning based 
segmentation method that fully uses the combined space 
of all four contrasts generated by Dixon technique to auto-
matically segment multiple 3D structures in the thigh. We 
also show that segmentations that are more accurate can be 
generated by incorporation of all four contrasts compared 
to using non-fat suppressed (i.e. in-phase) MRI only and 
using combined fat only and water only images (two con-
trasts) analyses.

Fig. 1  Four contrasts generated by Dixon technique in one measurement: a in-phase, b opposed-phase, c fat image, and d water image
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Materials and methods

Data

MRI scans of the thighs of 190 healthy community 
dwelling older adults (age 50–99 years, average age: 
67.85 ± 7.90 years, 58 men and 132 women) were 
acquired and analyzed as a part of a larger longitudinal 
study. In this study, we have randomly chosen 40 subjects 
for validating our proposed segmentation method. The 
research protocol was approved by the National Health-
care Group Domain Specific Review Board. Informed 
written consent was obtained from all subjects prior to all 
examinations.

All the MRI scans were acquired using a 3T MR scan-
ner (Siemens Magnetom Trio, Germany). Subjects were 
lying on a 6-channel spine-array coil and covered by a 
6-channel body matrix external phased array coil. A rapid 
survey scan was obtained to identify axial slice locations, 
using the proximal and distal ends of the femur as land-
marks. Next, four contrast images (in-phase, opposed-
phase, water-only, and fat-only) were acquired using a 
2D modified Dixon (multi-echo VIBE and T2 correction) 
T1-weighted gradient echo pulse sequence for each sub-
ject. The in- and opposed-phase images are source echo 
images while the water- and fat-only images were automat-
ically constructed from the source echo images. Repetition 
time (TR), the first echo time (TE1), the second echo time 
(TE2), flip angle (FA), field of view (FOV), and matrix 
were: TR = 5.27 ms, TE1 = 1.23 ms, TE2 = 2.45 ms, 
FA = 9, FOV = 440 × 440 mm2, and matrix = 320 × 320. 
Both left and right thighs were encompassed in the image 
with in-plane resolution of 0.69 × 0.69 mm2 and with 72 
slices (slice thickness: 5 mm). There is no gap between 
slices.

Machine learning based segmentation scheme

The key concept of our proposed approach is to use fully 
the image intensity information provided by the four con-
trast images of Dixon MRI. The approach can be summa-
rized into two broad steps: (1) a machine learning 3-class 
(fat, muscle, and background/bone) classifier is learned 
from training samples and subsequently used for voxel 
classification on target subjects. The classifier is based 
on a set of image features extracted from all four contrast 
images. (2) Morphological operations are performed to 
smooth and generate segmentation masks for subcutaneous 
adipose tissue (SAT), intermuscular adipose tissue (IMAT), 
muscle, and bone. The overall scheme of the proposed 
approach is illustrated in Fig. 2.

Preprocessing: MRI intensity inhomogeneity correction

As the proposed scheme is based on the intensity of MR 
images, the first step was to correct the intensity inhomo-
geneity in the images due to bias in magnetic field during 
scans. In this study, we used a popular automated bias cor-
rection algorithm called N4ITK [21]. This algorithm was 
used to estimate iteratively the multiplicative bias field 
from the in-phase image that maximizes the high frequency 
content of the tissue intensity distribution. Sample images 
of the original in-phase image, estimated bias field, and 
bias corrected in-phase image are shown in Fig. 3 to dem-
onstrate the effect of bias correction.

Segmentation of training data set

In order to provide classification information for machine 
learning, a set of training subjects is randomly selected 
and interactively segmented using an active contour based 
segmentation method [22] available in “ITK-SNAP” [23]. 
Each voxel of a training subject is assigned a target cate-
gory t such that:

Feature extraction

For each voxel in both training data and unseen data, a fea-
ture vector is generated in terms of its intensity and neighbor-
hood mean, variance, and entropy in all four-contrast image 
domains. These features were calculated in 3D. In this study, 
a cube of 5 × 5 × 5 voxels was used to calculate the corre-
sponding feature vector for the center voxel in the cube. For 
each voxel sample, 16 different image features were generated.

Machine learning: extreme learning machine

Supervised machine learning algorithms aim at learning 
from labeled data for prediction on unseen data. In this 
work, we used a state-of-art machine learning algorithm 
called extreme learning machine (ELM) to train and test all 
voxel samples. Compared to other machine learning algo-
rithms, ELM is simple, fast, and achieves high performance 
in terms of accuracy [24].

Generating segmented volumes of SAT, IMAT, muscle, 
and bone

After ELM prediction, each voxel in unseen data is 
assigned a target category, i.e. 0 = background/cortical 

(1)t =







0 Background/cortical bone

1 Fat

2 Muscle
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Fig. 2  Flow chart of the proposed machine learning based seg-
mentation method. After preprocessing, a training set is segmented 
to assign labels in fat, muscle, and background/cortical bone. The 
labeled image and features extracted from four contrast images of the 
training set is passed to extreme learning machine (ELM) for training 

and then subsequently used to predict the unseen target. Finally, we 
apply some morphological operations to generate bone region, subcu-
taneous fat (SAT), muscle, and intermuscular fat (IMAT) volumetric 
images
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bone, 1 = fat, 2 = muscle. The voxel labels are mapped 
back to the spatial 3D image domain. However, SAT, 
IMAT, and bone marrow are all labeled as fat tissue, and 
skin and muscle are labeled as muscle tissue due to similar 

image intensity. It is necessary to separate different types of 
fat tissue properly. In this step segmented volumes of SAT, 
IMAT, muscle, and bone are generated using morphologi-
cal operations.

Step 1:  Generating segmented volume for muscle
  Although some skin and muscle tissue are both 

categorized as muscle tissue by ELM, they are 
separated by SAT, hence not connected. The seg-
mented volume for muscle (Smuscle) was extracted 
by selecting the connected component (object) 
labeled as 2 = muscle with the largest number of 
voxels (Fig. 4b). A mask (Mmuscle) was generated 
by morphological closing of Smuscle and filling all 
the holes within Smuscle (Fig. 4c).

Step 2:  Generating segmented volume for bone region
  We defined the bone region as the bone marrow 

and its surrounding cortical bone. The cortical 
bone was selected as the largest connected com-
ponent labeled as 0 = background/cortical bone 
within mask Mmuscle region. The segmented vol-
ume for bone region Sbone was then generated by 
filling holes within the cortical bone (Fig. 4d). 
Sbone was removed from Mmuscle to include only 
voxels belonging to muscle and IMAT, resulting 
mask M ′

muscle (Fig. 4e).
Step 3:  Separating SAT and IMAT
  In this last step, for voxels labeled as 1 = fat, 

IMAT was defined as voxels within M ′

muscle 
region (Fig. 4f) and SAT is the voxels outside 
Mmuscle (Fig. 4g).

Evaluation

Datasets from 40 randomly selected subjects were used 
for quantitative validation. The characteristics of the 40 
subjects are listed in Table 1. Usually, more training data 

Fig. 3  Sample images show the effect of bias correction: a original 
in-phase image, b estimated bias field, and c bias corrected in-phase 
image

Fig. 4  Illustration of generating segmented volumes of SAT, IMAT, 
muscle, and bone. a Labeled image after ELM prediction. Image (b–
g) is shown by overlaying binary mask onto the in-phase image for 

better illustration. b Segmented volume of muscle, c mask Mmuscle, d 
segmented volume of bone region, e mask M ′

muscle
, f segmented vol-

ume of SAT, and g segmented volume of IMAT
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means more accurate segmentation can be expected, but 
it is also more time consuming. In order to show that our 
proposed method works well with limited training data, 
the 40 subjects were grouped into four groups randomly 
with 10 subjects in each group. We applied leave-one-
out cross validation (LOOCV) in each group to evalu-
ate the accuracy and variability of the proposed method. 
LOOCV means that, out of the 10 subjects, one subject 
is selected as the target and the other nine as training set. 
This is repeated for all 10 subjects so that each subject is 
served as the target exactly once, resulting 10 automati-
cally segmented volumes of four structures (SAT, IMAT, 
muscle, and bone region). The automated segmented vol-
umes were compared to the ground truth in terms of Dice 
similarity coefficient (DSC), which is used to quantify 
how well two segmentations, A and B overlapped with 
each other [25]. All the ground truth segmentations were 
prepared interactively using “ITK-SNAP” [23] and subse-
quently verified by an experienced radiologist (Dr. C. H. 
Tan).

The proposed method, based on in-phase image only 
and combined fat and water images, was also implemented 
to benchmark the accuracy of our proposed method based 
on four contrasts. To do this we used the features extracted 
from in-phase image only (one contrast) and fat and water 
images only (two contrasts) as input to our machine learn-
ing algorithm, left the other stages of the methodology 
unchanged, and repeated the above experiments.

Results

All the segmentations were performed using Windows XP, 
on an Intel Xeon Processor (dual core, 3.00 GHz) with 
9 GB RAM. The proposed method was implemented using 
MATLAB version 7.1.1 (The Mathworks, Inc, Natick, MA, 
USA) [26]. The MATLAB implementations used in this 
study were not particularly optimized for reduced compu-
tational cost and memory usage. The typical execution time 
for training of nine datasets was less than 2 s. Segmentation 
time was less than 45 s per unseen data.

Typical segmented images of the proposed segmentation 
method based on four contrasts are shown in Fig. 5. The 
proposed method robustly classified all the structures (SAT, 
IMAT, muscle, and bone region) in thigh images, even in 

extreme cases where a very thin SAT layer or severe fat 
infiltration in muscle exists (Fig. 6).

DSC values of comparing volumes segmented by the 
proposed method and the ground truth are presented 
in  Table 2. The proposed method based on four con-
trasts achieved good segmentation accuracy and outper-
forms the method based on non-fat suppressed image 
and the method based on fat and water images, aver-
age DSCbone = 0.94 ± 0.03, DSCSAT = 0.96 ± 0.03,  
DSCIMAT = 0.80 ± 0.03, DSCMuscle = 0.97 ± 0.01. Fried-
man statistical test [27] is known for detecting differences 
in treatments across multiple test samples. The test was car-
ried out using SATA 14 for Windows [28]. Results showed 
that there are significant differences (p < 0.0001) between 
the three schemes tested in terms of segmentation accu-
racy. Student’s t tests were performed and further showed 
significant improvement for the proposed scheme based 
on four contrasts over the scheme based on fat and water 
images (p = 0.0115 for bone region, p = 0.0001 for SAT, 

Table 1  Characteristics of validation subjects

Female Male Total

Number 28 12 40

Age (years) 67.8 ± 8.3 72.6 ± 6.8 68.2 ± 8.1

BMI 23.6 ± 3.0 23.9 ± 4.4 23.7 ± 3.4

Fig. 5  Representative sample segmented images using the proposed 
method with four contrasts. Structures in yellow bone, blue muscle, 
red IMAT, green SAT
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p < 0.0001 for IMAT, and p = 0.0025 for muscle). There 
were also significant differences between the scheme using 
fat and water images and using unsuppressed image only 

(student’s t test: p < 0.0001 for bone region, SAT, IMAT, 
and muscle).

Examples of segmented images using the proposed 
segmentation scheme based on different contrast images 
are shown in Fig. 7. Segmentation scheme based on four 
contrasts correctly segmented all the structures while 
the scheme based fat and water images failed to segment 
the bone region and underestimated IMAT and SAT. The 
scheme based on unsuppressed image only did not manage 
to segment muscle and fat content accurately. 

Discussion

Our proposed segmentation method is shown to be accu-
rate in segmenting 3D thigh MR images compared to 
ground truth segmentations. Implementing the machine 
learning technique for segmentation has shown to be easy 
and efficient in using all four contrasts generated by Dixon 
sequence. An advantage with the proposed method is that 
it segments multiple structures (bone region, SAT, IMAT, 
and muscle) in one shot, which offers great convenience to 
study relationship of different structures.

One concern over the machine learning technique is 
the variability faced with different training samples. In 
this study we used the LOOCV to show that our proposed 
method is consistently accurate using different sets of train-
ing data to segment different targets. The standard devia-
tion of DSC is very low across four groups of total 40 vali-
dations, less than 0.03 for all components. The validation 
showed the high reproducibility of the proposed method.

A key element of this work is the incorpora-
tion of all four contrasts generated by Dixon 
sequence for a combined analysis. Makrogiannis 
et al. [11] have shown that the use of combined fat and 
water images analysis improves the accuracy of tissue 
decomposition compared to the use of non-fat suppressed 
images only. Results from our experiments corroborate 
with their study. In addition, our results suggest that the use 
of four contrast images further improves the segmentation 
accuracy of different structures compared to the use of fat 
and water images, especially in small structure IMAT. This 
could be contributed by the fact that more contrast informa-
tion compensates for the noise and intensity non-uniform-
ity of a single or dual set of MRI images, making the algo-
rithm more robust in classification of different tissues.

Previous studies have shown that automatic muscle and 
fat segmentation using clustering method can be challeng-
ing in subjects with very thin SAT layer or very severe 
fat infiltration muscles [20]. However, such segmentation 
errors did not appear in our extreme subjects using the 
proposed segmentation scheme with four contrasts. This 

Fig. 6  Automated segmented images based on scheme with four 
contrasts superimposed on unsuppressed images in extreme cases: a 
subject with severe IMAT infiltration, and b subject with very thin 
SAT layer

Fig. 7  Examples of segmented images based on: b four contrasts, c 
unsuppressed image, and d fat and water images superimposed on a 
unsuppressed in-phase image
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could be due to that we employed the machine learning 
method for the segmentation. Machine learning techniques 
(e.g. artificial neural networks) has been shown to outper-
form fuzzy clustering method in non-homogenous regions 
such as abnormal brain with edema, tumor, etc. [29]. In 
the cases with very thin SAT or large IMAT area, SAT and 
muscle region become more non-homogenous. As a result, 
machine learning technique would work better than cluster-
ing method in terms of classifying different tissues.

We notice that a smaller DSC for the segmentation of 
IMAT was obtained. This is likely due to the small size and 
irregular shape of the IMAT structure. The voxel effects 
[30] become very significant in each step of the scheme 
and in the calculation of DSC. Any error in the procedures 
results in a relatively significant mismatch.

A limitation of this study is that a different prelimi-
nary segmentation of training set needs to be carried out 
for each MRI protocol. Nonetheless, once a small set of 
training data has been segmented for the machine learning 
algorithms, the scheme becomes fast, automatic and can 
be applied to any unseen data, making it suitable for large 
scale use in routine clinical practice.

Conclusion

This paper presents an accurate machine learning based 
segmentation method for thigh MRI images with Dixon 
technique. The method becomes fully automatic after 
initial segmentation of training samples. The proposed 

method incorporates combined image space of all four con-
trasts provided by Dixon sequence, improving the accuracy 
of tissue classification.
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Groups Contrast Bone SAT IMAT Muscle
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Group 2 Four contrasts 0.94 (0.03) 0.96 (0.02) 0.81 (0.03) 0.97 (0.01)

Fat and water 0.94 (0.03) 0.95 (0.03) 0.69 (0.09) 0.97 (0.01)

Unsuppressed 0.73 (0.21) 0.83 (0.09) 0.37 (0.12) 0.82 (0.11)

Group 3 Four contrasts 0.95 (0.02) 0.95 (0.03) 0.83 (0.03) 0.98 (0.01)

Fat and water 0.86 (0.24) 0.92 (0.06) 0.67 (0.13) 0.95 (0.04)

Unsuppressed 0.62 (0.41) 0.75 (0.16) 0.44 (0.14) 0.85 (0.12)

Group 4 Four contrasts 0.94 (0.04) 0.95 (0.04) 0.79 (0.01) 0.97 (0.01)

Fat and water 0.89 (0.10) 0.94 (0.04) 0.69 (0.07) 0.97 (0.01)

Unsuppressed 0.71 (0.24) 0.85 (0.07) 0.40 (0.09) 0.84 (0.06)

Overall Four contrasts 0.94 (0.03) 0.96 (0.03) 0.80 (0.03) 0.97 (0.01)

Fat and water 0.87 (0.18) 0.94 (0.04) 0.68 (0.10) 0.96 (0.03)
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