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segmentation and the corresponding volume quantification 
outperformed the interoperator variability using a mini-
mum of three original atlases.
Conclusion  We demonstrated the reliability of a multi-
atlas segmentation approach for the automatic segmenta-
tion and volume quantification of individual muscles in rat 
leg and found that constraining the registration in plane sig-
nificantly improved the results.

Keywords  Magnetic resonance imaging · Skeletal 
muscle · Multi-atlas · Segmentation · Anisotropy · Rat · 
Reproducibility of results

Abbreviations
3D	� Standard 3D nonlinear registration process
SBS	� Slice-by-slice nonlinear registration process
2Dc	� 2D constrained nonlinear registration process
R-	� Rescaled along Z
RO	� Relative overlap index
CV	� Coefficient of variation
ICC	� Intraclass coefficient
mv	� Majority vote procedure
wv	� Weighted vote procedure
z0	� No slice translation
z1	� 1 slice translation
z2	� 2 slice translation
DSC	� Dice similarity coefficient

Introduction

Muscle quality is commonly defined as the ratio between 
muscle strength or power and muscle mass [1–3]. Muscle 
mass can significantly change in a variety of conditions 
such as growth [4, 5], aging [6, 7] or training [8]. It can also 

Abstract 
Objective  To quantify individual muscle volume in rat leg 
MR images using a fully automatic multi-atlas-based seg-
mentation method.
Materials and methods  We optimized a multi-atlas-based 
segmentation method to take into account the voxel anisot-
ropy of numbers of MRI acquisition protocols. We mainly 
tested an image upsampling process along Z and a con-
straint on the nonlinear deformation in the XY plane. We 
also evaluated a weighted vote procedure and an original 
implementation of an artificial atlas addition. Using this 
approach, we measured gastrocnemius and plantaris mus-
cle volumes and compared the results with manual segmen-
tation. The method reliability for volume quantification was 
evaluated using the relative overlap index.
Results  The most accurate segmentation was obtained 
using a nonlinear registration constrained in the XY plane 
by zeroing the Z component of the displacement and a 
weighted vote procedure for both muscles regardless of 
the number of atlases. The performance of the automatic 

Michael Sdika and Anne Tonson have contributed equally to this 
work.

 *	 Michael Sdika 
	 michael.sdika@creatis.insa‑lyon.fr

1	 Aix-Marseille Université, Centre National de la Recherche 
Scientifique (CNRS), Centre de Résonance Magnétique 
Biologique et Médicale (CRMBM) UMR 7339, 
13385 Marseille, France

2	 Université de Lyon, CREATIS, CNRS UMR5220, Inserm 
U1044, INSA-Lyon, Université Lyon 1, 7 Avenue Jean 
Capelle, 69621 Villeurbanne Cedex, France

3	 Present Address: Department of Physiology, Michigan State 
University, East Lansing, MI 48824, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10334-015-0511-6&domain=pdf


224	 Magn Reson Mater Phy (2016) 29:223–235

1 3

decrease in pathological conditions including neuromuscu-
lar disorders, cardiovascular diseases and diabetes [1, 9]. In 
this context, muscle size has to be accurately quantified in 
order to properly investigate the corresponding functional 
changes. Moreover, given that these changes can be mus-
cle-specific [10–13], the corresponding quantification must 
ideally be performed individually for each muscle.

Magnetic resonance imaging (MRI) has been recognized 
as the method of choice because of its noninvasive nature 
and capacity to distinguish fat, connective and muscle tis-
sue. Considering the high contrast difference between mus-
cle and fat signals, several automatic methods based on the 
signal intensity threshold have been successfully developed 
in order to quantify fat-free muscle area [14, 15]. However, 
muscle size has been considered as a whole so that individ-
ual muscle changes such as those occurring in aging [11, 
16] or neuromuscular disorders [12] have not been inves-
tigated. The automatic segmentation of individual muscles 
within a limb or within the same muscle group is techni-
cally impossible using the same approach considering the 
poor contrast between connective and muscle tissues. In 
this context, the gold standard method is based on the man-
ual delineation of regions of interest on contiguous indi-
vidual slices, which is tedious and time-consuming and has 
questionable reproducibility. The corresponding results are 
largely operator-dependent, and it has been reported that 
measurement of a specific muscle volume using MRI with 
manual delineation in the forearm would not detect changes 
below 7 % in healthy adults [17]. In humans, a few alterna-
tive methods allowing a selective segmentation of muscles 
have been proposed in the last few years. A ‘pseudo mus-
cle volume’ has been quantified on the basis of the manual 
segmentation of a limited number of slices by interpolat-
ing the missing data using geometrical [18] or mathemati-
cal models [5, 7]. Although these methods can reduce the 
processing time, they still involve extensive manual work 
so that a robust automatic method is highly desirable. How-
ever, automatic segmentation of individual muscles from 
MR images is technically challenging given that individual 
muscles share the same MR properties and that fasciae dis-
play very poor contrast. So far, very few methods targeting 
automatic segmentation of individual muscles have been 
reported, and to our knowledge none of them have been 
applied to small animal models despite their increasing use 
in the investigation of functional changes in skeletal muscle 
in various healthy and pathological conditions. The fully 
automatic method based on mesh modeling, which has 
been proposed recently, still requires integration of manual 
constraints [19]. Other methods based on the utilization of 
surface landmarks [20] or principal component analysis 
[21] have provided promising results, but no information 
related to the volume error has been reported. Interestingly, 

tissue segmentation methods based on an atlas database 
have been successfully used in brain, bee brain, heart and 
prostate as wellas whole body fat/water separated MR 
images [22–27]. In this context, the specific hurdles related 
to individual muscle segmentation are mainly related to the 
high voxel anisotropy, i.e., a different spatial resolution in 
at least one of the three dimensions.

The purpose of the present work was to develop an orig-
inal segmentation method based on a multi-atlas database 
and allowing a complete automatic quantification of indi-
vidual muscles in rat leg.

Materials and methods

Animals

Sixteen Wistar Han rats (2.5  months old, 8 males/8 
females) were investigated according to the guidelines of 
the National Research Council Guide for the Care and Use 
of Laboratory Animals and the French law on the Protec-
tion of Animals. Animals were initially anesthetized in an 
induction chamber with 4  % isoflurane (Forene®; Abbott 
France, Rungis, France) mixed in 33  % O2 (0.4  l/min) 
and 66  % N2O (0.8  l/min) and then positioned supine in 
a home-built cradle designed to be accommodated within 
the MR superconducting magnet to investigate functional 
changes throughout a muscle exercise session [28].

MRI experiment

MRI of the right leg was performed using a fast spin echo 
sequence (RARE) at 4.7 T on a Biospec 47/30 supercon-
ductor magnet (Bruker, Germany). Eighteen images were 
recorded in order to cover the entire length of the leg from 
the knee to ankle using the following parameters: rare fac-
tor =  6; repetition time =  2000 ms; echo time =  16 ms; 
field of view =  30 ×  32 mm2, matrix size =  256 ×  256 
pixels; slice thickness = 1 mm, interslice space = 0.5 mm; 
slice orientation = axial; 8 accumulations for a total acqui-
sition time of 8  min 32  s. Throughout the procedure rats 
were continuously anesthetized by gas inhalation of 2  % 
isoflurane mixed in 33 % O2 and 66 % N2O using a home-
designed facemask. Body temperature was maintained at 
37 °C using an electric blanket controlled by a temperature 
unit (Harvard Apparatus, MA, USA) connected to a home-
made rectal probe [28].

Image analysis

Each set of images was both manually and automatically 
segmented.
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Manual segmentation

Gastrocnemius and plantaris manual delineation was per-
formed on each slice and for each data set (subject) using 
the FSL software (FMRIB Software Library, Analysis 
Group, FMRIB, Oxford, UK). The corresponding results 
were used as the gold standard measurements and were 
referred to the reference segmentation database (atlases). 
In order to assess the reproducibility of this process, man-
ual delineation was performed twice by the same operator 
and once by two different operators, and the correspond-
ing global muscle volume was compared between each 
process. The first version of the first operator manual seg-
mentations was used as the ground truth segmentation of 
the atlas, resulting in 18 ground truth atlas images.

Automatic segmentation‑general pipeline

The present automatic segmentation method has been 
tested using either one (Fig. 1) or multiple atlases (Fig. 2) 
for both muscles.

As indicated in Fig.  1, the set of images to be seg-
mented (i.e., subject images) was initially corrected for 
bias inhomogeneities as previously described [29], and 
the background was removed [30]. Then, the images were 

successively registered to each atlas (one or multiple) using 
an affine transformation (12 degrees of freedom) [31] fol-
lowed by a nonlinear procedure [32]. Each step of this 
standardized procedure was optimized in order to account 
for the high voxel anisotropy (see below). When using N 
atlases (Fig.  2), the initial segmentation process provided 
N intermediate segmentation maps, which were combined 
using a vote procedure in order to provide the final segmen-
tation map.

Each step of the segmentation process was optimized 
throughout different options of the nonlinear registra-
tion (more specifically the model of deformation used), 
the image upsampling, vote procedure and artificial atlas 
addition.

Automatic segmentation: specific implementations

Nonlinear registration

The standard full 3D registration method (3D) previously 
described by Sdika [32] was modified using a slice-by-
slice nonlinear registration (SBS) or using an additional 
constraint, i.e., the deformation along Z was zeroed (2Dc), 
both constraining the deformation in the XY plan. Acqui-
sition and post-processing constraints were related to the 

Fig. 1   Schematic representation of a standard processing pipeline used for automatic segmentation of gastrocnemius (green) and plantaris 
(brown) muscles
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fact that the image resolution was larger in the XY plane 
as compared to the Z direction, thereby compromising 
the interpolation process in the Z direction. Both methods 
assume that the linear registration is reliable for a proper 
slice alignment and that nonlinear deformation does not 
occur along Z. These assumptions seem reasonable in our 
context given that structures in the limb are mostly tubu-
lar and do not usually present any drastic morphological 
changes along the limb length.

Image upsampling

Alternatively, we addressed the voxel anisotropy issue 
by upsampling the image along Z before the registration 

processes. This process aimed at improving the resolution 
in the Z direction and thus the interpolation process. In this 
case, images were upsampled by a factor of three using a 
windowed cardinal sine kernel. This rescaling process has 
been combined with each of the previously described non-
linear registration models, i.e., with the standard 3D (R-
3D), 2D constrained (R-2Dc) and slice-by-slice (R-SBS) 
models.

Vote procedure

The final segmentation of a given subject was obtained 
by combining the N segmentation maps produced by each 
atlas using a vote procedure. The final label was the one 

Fig. 2   Schematic representation of an automatic muscle segmentation procedure using multiple atlases
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with the largest number of votes (Fig. 2). A simple majority 
vote (mv) and a vote weighted by the registration residual 
(wv) as previously described [24, 33] have been imple-
mented and evaluated.

The weighting function used was:

where r is the residual of the registration at a given pixel, 
Gσs is a Gaussian function, * is the convolution operator, 
and σs and σr are parameters to tune the weighting.

Artificial atlas addition

Given that the quality of a multi-atlas segmentation proce-
dure is an increasing function of the number of atlases used, 
we tested an original approach of artificial atlas creation by 
shifting the original atlas slices up to ± one (z1) (i.e., slice 
one became slice two, …) or ± two (z2) slices just before 
the nonlinear registration. As a result two (with z1) or four 
(with z2) artificial atlases were added to the database for 
each original atlas. This translation should compensate for 
linear registration errors along Z, especially when the non-
linear registration is 2Dc or SBS.

Automatic segmentation evaluation

The different settings proposed in this study were evalu-
ated using a leave-one-out procedure, i.e., each atlas was 
sequentially used as the subject image and automatically 
segmented using each of the other subjects as atlases. A 
final segmentation was obtained from each possibility, and 
the results presented are related to the corresponding aver-
age. The standard deviations were not included in the fig-
ures because they were too small.

The segmentation quality for each method was quanti-
fied using the relative overlap (RO) defined as:

where Lsg is the mask of the structure s (gastrocnemius or 
plantaris muscles) in the ground truth (i.e., manual seg-
mentation) and Lsa is the mask of the structure s in the 
automated segmentation. V is the volume of voxels (in 
mm3) inside the binary mask, i.e., the number of voxels 
multiplied by the voxel size (0.12 × 0.12 × 1.5 mm). As a 
result, a high RO is indicative of a high spatial overlap of 
the two given segmentations. We also calculated the RO 
values between the manual delineations performed by the 
same operator (intra) and two different operators (inter) 
in order to evaluate the accuracy of the present automatic 
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methods with respect to with the accuracy of the reference 
method.

Muscle volume quantification

Gastrocnemius and Plantaris muscle individual volumes 
were quantified from both the manual delineation (refer-
ence measurements) and fully automatic segmentation 
results using the setup resulting in the highest RO values. 
The relative corresponding error was calculated as the 
volume difference between the two segmentations and 
expressed in %.

Statistical analysis

The intra- and interoperator variability of the manual seg-
mentation was quantified from the global volume measure-
ments using the coefficient of variation (CV) and intraclass 
correlation coefficient (ICC) for both gastrocnemius and 
plantaris muscles specifically.

Results

Representative transverse images of the rat leg (Fig.  3a) 
and the corresponding manual (Fig. 3b) and fully automatic 
segmentations (Fig. 3c) of the gastrocnemius and plantaris 
muscles are presented in Fig. 3.

Reproducibility of the reference measurements

Manual delineation of both muscles by a trained expert 
required a minimum of 15 min per subject (i.e., 18 slices) 
and has been performed twice by the same operator and 
an additional time by a second operator. The correspond-
ing volumes for each subject are presented in Table 1. The 
intraoperator coefficient of variation (CV) was 1.1 ± 0.8 % 
and 5.1 ±  4.2  % for the gastrocnemius and the plantaris 
muscles, respectively. The corresponding ICC was 0.99 
(gastrocnemius) and 0.87 (plantaris). While measurements 
performed by two different operators provided compara-
ble results for the gastrocnemius muscle as indicated by 
the small CV (2.3 ± 1.4 %) and high ICC (0.97), the cor-
responding measurements for the plantaris muscle were 
found to be less reproducible, with a CV of 18.7 ± 7.3 % 
and a poor ICC (0.41).

Accuracy of the automatic methods

We calculated the relative overlap index (RO) in order to 
evaluate the performance of each automatic procedure 
for both gastrocnemius and plantaris muscle segmenta-
tions and for different numbers of atlases, from 1 to 14. 
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Fig. 3   a Representative images of right lower rat leg recorded at the proximal (top) and distal levels (bottom). b Corresponding manual and c 
fully automatic segmentation of gastrocnemius (G) and plantaris (P) muscles

Table 1   Individual muscle 
volumes calculated from 
manual segmentation

F and M designate Female and Male subjects, respectively. Operator 1_1 and 1_2 refer to the results of two 
measurements performed by the same operator, and operator 2 shows the results obtained by a different 
operator. SD is standard deviation. ROs calculated for manual segmentations performed by the same opera-
tor and two different operators were, respectively, 88.3 and 83.2 for the gastrocnemius and 81.5 and 68.1 
for the plantaris muscle segmentations

Subject Gastrocnemius muscle volume (mm3) Plantaris muscle volume (mm3)

Operator 1_1 Operator 1_2 Operator 2 Operator 1_1 Operator 1_2 Operator 2

F1 1373.4 1415.0 1341.3 238.7 237.1 229.2

F2 1394.5 1374.0 1480.4 241.0 232.9 195.3

F3 1374.6 1373.2 1443.6 236.5 213.7 193.2

F4 1391.7 1363.0 1306.2 222.1 211.0 176.3

F5 1231.2 1212.8 1203.9 203.0 195.8 163.4

F6 1331.4 1355.8 1295.4 207.8 208.8 162.9

F7 1384.6 1378.8 1380.3 233.2 216.4 160.8

F8 1440.5 1388.8 1323.4 249.0 230.1 164.3

M1 1815.8 1811.6 1781.6 291.6 270.0 192.4

M2 1834.0 1817.5 1763.2 248.3 250.7 170.8

M3 1890.4 1896.9 1830.8 307.6 281.4 188.4

M4 1719.0 1770.5 1699.1 261.5 216.5 180.3

M5 1893.6 1834.2 1906.4 256.6 249.6 197.2

M6 1723.6 1750.7 1738.4 279.2 259.5 193.0

M7 1820.3 1804.1 1860.6 270.8 250.5 195.4

M8 1732.8 1747.3 1765.0 242.6 196.1 183.2

Average 1584.5 1580.9 1570.0 249.3 232.5 184.1

SD 235.4 236.7 242.6 28.3 25.9 17.8
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Processing time to complete both muscle segmentations 
for one subject ranged from 10 to 15  min, depending on 
the initial settings when one atlas was used. This time 
increased linearly with respect to the number of atlases 
(e.g., a minimum of 1 h was required to perform the same 
segmentation with 6 atlases). For the sake of comparison, 
the RO calculated for the manual segmentations performed 
by the same operator and two different operators were 88.3 
and 83.2 for the gastrocnemius and 81.5 and 68.1 for the 
plantaris muscle segmentations.

Vote procedure

Table 2 presents the RO values obtained using the different 
nonlinear registration models (i.e., SBS, 2Dc and 3D) com-
bined with either the majority or weighted vote with respect 
to the number of atlases for both muscle segmentation. Our 
results showed that, compared to the simple majority vote, 
the weighted vote improved the RO when the images were 
registered using the 2Dc or the SBS model and so regard-
less of the number of atlases used or the muscle segmented. 
However, the corresponding improvement was globally 
larger for the plantaris (3.3 ± 2.6 % and 2.2 ± 1.8 % using 
the 2Dc and SBS models, respectively) as compared to 
the gastrocnemius (1.1 ± 0.4 % and 0.6 ± 0.2 %) muscle. 
Using the 3D model, no effect of the vote procedure was 
observed for the gastrocnemius segmentation while the 
RO was globally slightly improved (by 1.2 ±  1.5  %) for 
the plantaris segmentation by the weighted vote procedure. 

According to these results and for the sake of clarity, only 
the weighted vote was used for the remaining comparisons.

Images upsampling

We found a beneficial effect of the upsampling along 
the Z direction when the images were registered with 
the 3D model. Using this specific setting, the upsam-
pling improved the RO associated with the gastrocnemius 
(0.6 ± 0.03 %) and plantaris (1.5 ± 0.07 %) muscle seg-
mentation using 1–14 atlases. This indicates that the image 
anisotropy is a limiting factor for automatic segmentation 
using atlases and that the upsampling method can take 
this issue into account. When only an in-plane registra-
tion was performed, i.e., using the 2Dc and SBS models, 
this beneficial effect no longer existed. More specifically, 
combined with the SBS model, this procedure resulted in 
a decreased RO by 0.3 ± 0.06 % for both muscles regard-
less of the number of atlases used. Combined with the 2Dc 
model, we found a slight improvement for the gastrocne-
mius segmentation (RO improved by 0.3 ± 0.09 %), while 
this setting was globally detrimental for the plantaris mus-
cle (−0.1 ± 0.11 %). Accordingly, we discarded the R-SBS 
and R-2Dc of the nonlinear registration model comparison.

Nonlinear registration models

As illustrated by the higher RO values, our results clearly 
showed a higher reliability of the automatic segmentation 

Table 2   Relative overlap 
(obtained) with the different 
nonlinear registration models 
combined with the majority or 
weighted vote procedure with 
respect to the number of atlases 
included in the database

SBS, 2Dc and 3D refer to the slice-by-slice, 2D constrained and standard 3D nonlinear registration models, 
respectively, and mv and wv are the majority and weighted vote, respectively. Atlas means the original atlas 
(i.e., from manual delineation)

Atlas, n Gastrocnemius segmentation, RO Plantaris segmentation, RO

SBS 2Dc 3D SBS 2Dc 3D

mv wv mv wv mv wv mv wv mv wv mv wv

1 75.8 75.8 80.2 80.2 80.2 80.2 57.7 57.7 66.1 66.1 64.5 64.5

2 76.8 78.5 81.0 81.8 81.6 81.4 55.5 61.7 63.7 68.4 62.5 66.0

3 80.1 80.7 84.0 84.1 83.8 83.8 63.6 64.5 71.2 71.6 69.1 69.1

4 80.6 81.8 84.5 85.0 84.6 84.4 62.8 66.5 70.2 73.0 68.2 70.0

5 81.9 82.6 85.4 85.8 85.0 85.2 66.1 67.6 73.4 74.3 70.9 71.0

6 82.3 83.3 85.7 86.2 85.7 85.6 66.0 68.8 72.7 74.8 70.3 71.7

7 82.3 83.2 85.8 86.2 85.4 85.6 66.9 68.5 73.8 74.8 71.4 71.6

8 82.6 83.6 86.1 86.6 86.1 86.0 66.9 69.3 73.7 75.7 71.3 72.3

9 82.9 83.8 86.2 86.8 85.8 86.1 68.0 69.5 74.7 75.8 72.1 72.3

10 83.2 84.1 86.5 87.1 86.3 86.3 67.9 70.1 74.4 76.2 71.8 72.6

11 83.2 84.2 86.6 87.2 86.1 86.4 68.6 70.1 75.2 76.3 72.5 72.7

12 83.3 84.3 86.7 87.3 86.5 86.5 68.3 70.4 74.8 76.5 72.2 72.9

13 83.4 84.3 86.7 87.3 86.3 86.5 68.9 70.4 75.6 76.7 72.7 73.0

14 83.6 84.5 86.9 87.4 86.6 86.7 68.9 70.7 75.3 76.8 72.5 73.2
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for the gastrocnemius muscle as compared to the plantaris 
regardless of the initial setting. However, the accuracy lev-
els differed according to the registration methods indepen-
dently of the muscle segmented (Fig. 4).

According to the RO values, we found a lower perfor-
mance of the SBS model compared to the other nonlinear 
registration models in our experimental conditions. More 
specifically, while RO increased from 80.2, 80.8 and 80.2 
to 86.7, 87.3 and 87.4 with respect to the number of atlases 
using the 3D, R-3D and 2Dc models, respectively, for the 
gastrocnemius muscle, the corresponding values using the 
SBS model were significantly reduced to 75.8 and 84.5 % 
(Fig. 4a). The same difference was observed for the plan-
taris segmentation (Fig.  4b). For this specific muscle, the 
RO values ranged from 64.5, 65.9 and 66.1 to 73.2, 74.8 
and 76.8 when the images were registered using the 3D, 
R-3D and 2Dc models, respectively, and from 57.7 to 70.7 
using the SBS model (Fig.  4b). Finally, considering both 
gastrocnemius and plantaris muscle segmentation, the 2Dc 
model outperformed the other models in our experimental 
conditions.

Overall, with the exception of the SBS model, our 
results showed that a minimum of three atlases was neces-
sary to automatically segment either muscle with a level of 
accuracy similar to the reference method when two opera-
tors were involved. However, despite an increased RO with 
respect to the number of atlases, none of the automatic 
methods reached the intraoperator threshold whatever the 
muscle (Fig. 4). In addition, our results showed that the cor-
responding improvement was significantly reduced beyond 
size atlases; from 1 to 6 atlases the RO was improved by 
6.4, 6.3, 7.0 and 9.0 % for the gastrocnemius and by 10.0, 
10.0, 11.6 and 16.1 % for the plantaris segmentations using 
the 3D, R-3D, 2Dc and SBS models, respectively, whereas 
the addition of eight more atlases resulted in a further RO 

improvement lower than 1.5 and 3 % for the gastrocnemius 
and plantaris segmentation, respectively (Fig. 4).

Artificial atlas addition

According to the previous results, we evaluated the effect 
of the addition of artificial atlases on the automatic seg-
mentation quality using the weighted vote combined with 
the 2Dc nonlinear registration model. As illustrated in 
Fig. 5, the addition of artificial atlases translated by ± one 
(z1) or  ±  two slices (z2) improved the RO when a low 
number of original atlases was used regardless of the mus-
cle segmented. However, the z1 setup resulted in a larger 
improvement compared to z2 for both muscles (Fig. 5). In 
addition, using the ‘z2’ atlases we observed a degradation 
of the RO when more than 4 and 8 original atlases were 
used, while the ‘z1’ atlases improved the RO up to 8 and 14 
original atlases for the gastrocnemius (Fig.  5a) and plan-
taris (Fig. 5b) segmentation, respectively, compared to the 
results obtained without (i.e., z0).

With respect to computation, the shift of up to k slices 
of the atlases and the addition to the vote data set multiply 
the number of atlases as well as the computation time by 
2k + 1. So, when z1 was used, the computation time was 
three times greater than when only the original atlases were 
used.

Muscle volume quantification

The relative volume error (expressed in % of the reference 
measurement) resulting from the automatic segmentation 
of both gastrocnemius and plantaris muscles with respect 
to the number of original atlases and using the following 
settings: the 2Dc nonlinear registration and weighted vote 
using (2Dc-z1) or not (2Dc) artificial atlases are displayed 

Fig. 4   Relative overlap (RO) expressed with respect to the number 
of atlases used when the images were registered using 3D, R-3D, 2Dc 
and SBS models. The dashed line represents RO calculated between 

two manual segmentations performed by the same (intra) and by two 
different operator(s) (inter), respectively
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in Table  3. The corresponding absolute volumes in mm3 
when using six atlases as well as the percent error are pre-
sented in Table 4. We observed a systematic overestimation 
of the gastrocnemius muscle when the segmentation was 
performed automatically compared to the reference meas-
urements (Table  4). Regarding the plantaris muscle, the 
absolute volume errors ranged from 0 to 19.5 % and 0.7 to 
18.9 % using 2Dc or 2Dc-z1 procedures. However, despite 

this larger variability, the average volume calculated from 
the automatic measurements did not significantly differ 
from the reference method as a result of individual vol-
umes over and underestimations (Table 4). These errors are 
in agreement with the volume differences calculated from 
manual delineation performed by two different operators, 
i.e., 3.0 ± 2.2 % and 22.9 ± 8.6 % for the gastrocnemius 
and plantaris muscles, respectively, but did reach the intra-
operator variability (1.6 ± 1.1 % and 6.8 ± 5.3 % for the 
gastrocnemius and plantaris, respectively).

Finally, it is worth noting that in contrast to the improve-
ment we observed for the RO values, the addition of arti-
ficial atlases did not improve the accuracy of the volume 
estimation for both muscles.

Discussion

In this study, we described for the first time a multi-atlas-
based segmentation method that can be efficiently used to 
automatically quantify individual muscle volumes within 
the limb from rat MR images. We have investigated the 
effects of a number of modifications to the standard method 
in terms of accuracy (determined by the RO index) with 
a particular attention given to the voxel anisotropy of 
the images and reliability of individual muscle volume 
quantification.

We showed that an automatic process including a 2Dc 
nonlinear registration model, weighted vote and mini-
mum of three atlases provided a better RO value than the 
value obtained from a comparison between manual seg-
mentations performed by two different operators. On that 
basis, we demonstrated that the accuracy of the automatic 
segmentation of both gastrocnemius and plantaris mus-
cles outperformed the interobserver manual segmentation 

Fig. 5   Relative overlap (RO) calculated using the 2Dc nonlinear reg-
istration model expressed with respect to the number of atlases when 
only original atlases were used (2Dc) or when artificial atlases trans-
lated by one (2Dc-z1) or two slices (2Dc-z2) were added to the origi-

nal atlas database. The dashed line represents RO calculated between 
two manual segmentations performed by the same (intra) and by two 
different operator(s) (inter), respectively

Table 3   Absolute volume error from automatic segmentation with 
respect to the number of atlases included in the database

2Dc and 2Dc-z1 refer to the automatic segmentations using the 2D 
constrained nonlinear registration model when only original or with 
the addition of artificial atlases translated by one slice were used, 
respectively, combined with the weighted vote. The relative volume 
error (as percentage) is the averaged absolute error for the entire pop-
ulation

Atlas, n Gastrocnemius muscle  
volume error, (%)

Plantaris muscle 
volume error, (%)

2Dc 2Dc-z1 2Dc 2Dc-z1

1 4.9 5.4 10.0 9.6

2 4.5 5.4 8.3 8.1

3 4.2 5.0 8.0 8.0

4 3.9 5.0 7.7 7.7

5 3.8 4.8 7.2 7.4

6 3.5 4.7 7.4 7.5

7 3.8 4.9 7.4 7.4

8 3.6 4.7 7.1 7.3

9 3.7 5.0 7.0 7.3

10 3.6 4.8 7.2 7.3

11 3.5 4.7 7.1 7.3

12 3.6 4.8 7.2 7.2

13 3.5 4.7 7.0 7.1

14 3.5 4.7 7.0 7.1



232	 Magn Reson Mater Phy (2016) 29:223–235

1 3

variability. This result highlighted the robustness of the 
method, which only needs a very limited amount of manual 
work, i.e., on three atlases. The corresponding global mus-
cle volume error was 4.2 and 8.0 % for the gastrocnemius 
and plantaris muscles, respectively. Interestingly, this error 
was lower than the interoperator variability for the refer-
ence method illustrating the reliability of the present fully 
automatic method. Finally, we showed that the quality of 
the automatic segmentation was improved by the addition 
of artificial atlases especially when a low number of origi-
nal atlases were used. Of interest, this improvement did not 
affect the global muscle volume quantification.

The reference segmentation of both gastrocnemius and 
plantaris muscles was performed three times manually for 
each slice and each data set, twice by the same operator and 
an additional time by a new operator. The measurement 
variability was determined from the global volume quan-
tification using the CV and ICC coefficients. Our results 
clearly disclosed a muscle-dependent reproducibility with 
CV much larger (18.7 ±  7.3  %) and ICC (0.41) and RO 
(68.1) much lower for the plantaris as compared to the gas-
trocnemius muscle. This inconsistency is likely related to 
the muscle size given that in our context the plantaris mus-
cle volume was more than six times smaller than that of 
the gastrocnemius regardless of sex. Such a difference has 
already been suggested in humans. A <1  % interoperator 

variability was reported for a large muscle group (i.e., 
quadriceps) [18], whereas a much larger variability has 
been reported for smaller muscle groups such as the flexor 
(3.3  %) and extensor carpi ulnari (5.7  %) muscles [17]. 
This difference can also be related to the unclear distinction 
of the surrounding plantaris muscle fascia, especially on 
the distal part of the leg, making the segmentation on the 
corresponding images highly operator-dependent. On this 
basis, it is important to keep in mind that the reproducibility 
of the manual delineation and as a matter of consequence 
the performance of the automatic segmentation method is 
closely linked to the ability to clearly distinguish individual 
muscles on the MR image, which is itself dependent on the 
inherent contrast and image resolution.

To our knowledge, no data related to the reproducibility 
of the manual delineation from small animal MR images 
have been reported so far. However, both intra- and inter-
operator CV (1.1 ± 0.8 % and 2.3 ± 1.4 %, respectively) 
and ICC (0.99 and 0.97, respectively) reported for the gas-
trocnemius muscle volume are in agreement with values 
previously reported in humans for different muscles [17, 
18, 34]. Although frequently used for the segmentation of 
soft tissues [22, 24, 25, 33, 35], only one study so far has 
used a multi-atlas-based approach in order to automati-
cally segment a single muscle [36]. More specifically, the 
authors reported an automatic method dedicated to the 

Table 4   Muscle volumes 
quantified from automatic 
segmentation when using six 
atlases and corresponding error 
compared to the reference 
measurements

F and M designate female and male subjects. 2Dc and 2Dc-z1 refer to the automatic segmentations using 
the 2D constrained nonlinear registration model when only the original or with the addition of artificial 
atlases translated by one slice were used, respectively, combined with weighted vote. % Error is the cor-
responding difference with the manual segmentation. SD is standard deviation

Subject Gastrocnemius muscle volume (mm3) Plantaris muscle volume (mm3)

2Dc % error 2Dc-z1 % error 2Dc % error 2Dc-z1 % error

F1 1448.5 5.5 1474.8 7.4 223.1 −6.5 223.0 −6.6

F2 1422.0 2.0 1448.1 3.8 213.1 −11.6 213.2 −11.5

F3 1519.5 10.5 1498.6 9.0 201.2 −14.9 200.1 −15.4

F4 1436.9 3.3 1424.2 2.3 206.2 −7.2 206.2 −7.1

F5 1295.9 5.3 1323.7 7.5 199.7 −1.6 199.8 −1.6

F6 1357.8 2.0 1375.3 3.3 219.8 5.8 220.4 6.1

F7 1446.0 4.4 1469.7 6.1 224.1 −3.9 223.8 −4.0

F8 1506.1 4.6 1540.3 6.9 228.4 −8.3 227.1 −8.8

M1 1869.1 2.9 1871.2 3.1 286.6 −1.7 285.6 −2.0

M2 1862.8 1.6 1882.1 2.6 288.2 16.1 285.6 15.0

M3 1931.5 2.2 1940.9 2.7 270.6 −12.1 270.0 −12.2

M4 1821.9 6.0 1820.7 5.9 261.5 −0.01 259.7 −0.7

M5 1893.2 0.0 1919.0 1.3 306.6 19.5 305.0 18.9

M6 1767.6 2.6 1782.4 3.4 264.1 −5.4 265.0 −5.1

M7 1836.9 0.9 1860.1 2.2 302.6 11.6 301.5 11.4

M8 1771.4 2.2 1812.9 4.6 286.2 18.0 282.4 16.4

Average 1636.7 3.5 1652.7 4.5 248.9 −0.1 248.0 −0.5

SD 223.6 2.5 223.4 2.3 38.1 11.1 37.4 10.8
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delineation of the pectoral muscle from breast MR images 
using a standard 3D registration procedure but did not tar-
get the muscle volume quantification. The accuracy of this 
automatic segmentation [36] illustrated by a dice similar-
ity coefficient (DSC) of 0.74 ± 0.06 [i.e., an RO of 0.59, 
DSC, RO =  DSC/(2-DSC)*100] was actually inferior to 
the accuracy of our results. In addition, further support-
ing our initial conclusion, these authors reported a low 
reproducibility of the pectoral muscle manual delineation 
(RO =  0.54) and indicated that this poor reproducibility 
might be linked to the difficult distinction among the pecto-
ral muscle, surrounding tissues and intercostal muscles on 
MR images [36].

Our results clearly showed that, regarding voxel anisot-
ropy, a nonlinear registration constrained in two dimen-
sions (i.e., 2Dc) was more beneficial to the automatic seg-
mentation quality than the standard 3D model, especially 
given that the image resolution did not allow a clear dis-
tinction of a small muscle like the plantaris muscle Indeed, 
in the context of an atlas-based segmentation, voxel anisot-
ropy should result in a biased image interpolation along Z, 
thereby affecting the segmentation mask and deformation 
itself. Several factors can explain the superiority of the 2Dc 
registration as compared to the other models. In the 3D 
model, the parameters for the deformation are estimated in 
all three directions, whereas the 2Dc model restrained the 
deformation within the atlas slices where the resolution is 
the highest while the Z component is set to zero providing 
a de facto regularization beneficial to the registration. As 
a result, this model still takes advantage of the 3D nature 
of the data and is able to generate a more coherent and 
robust deformation during the registration as compared 
to the SBS model for which no regularization is imposed 
slice to slice. Following the same idea, image upsampling 
along Z before the registration was, as expected, beneficial 
when it was combined with the standard 3D model. This 
improvement clearly indicates that image resolution and 
more specifically voxel anisotropy are limiting factors for 
the segmentation process using atlas-based approaches. 
Interestingly, this limitation can be artificially reduced 
using an upsampling procedure, though at the expense of 
a larger processing time. Another possibility would be the 
acquisition of fully isotropic 3D data sets as previously 
described for the automatic quantification of fat-free mus-
cle volumes [26, 27]. The ICCs between automatic and 
manual segmentation reported by these authors were above 
0.89 for all muscle groups and showed that under those 
acquisition conditions age and BMI (from lean to obese) 
differences did not affect the multi-atlas method perfor-
mance [27]. Interestingly, using full isotropic voxels, Karl-
son et al. [26] reported a similar accuracy regarding auto-
matic muscle volume estimates as compared to the manual 
segmentation, and so despite an eight-fold resolution 

difference when data were acquired at 1.5 T (voxel dimen-
sions =  3.5 ×  3.5 ×  3.5  mm3) or at 3 T (voxel dimen-
sions = 1.75 × 1.75 × 1.75 mm3). Although this approach 
might provide a more accurate registration and, on that 
basis, an improved segmentation quality, it would be at the 
expense of both post-processing and acquisition times. In 
addition, the resulting gain in terms of volume quantifica-
tion accuracy should only be marginal given that no drastic 
change in anatomical shape is expected between two con-
secutive slices. The improvement resulting from the upsam-
pling procedure combined with the standard 3D model was 
actually not better than the automatic segmentation using 
the 2Dc model when considering both muscles together.

Based on the RO index, the 2Dc nonlinear registration 
also provided the most accurate segmentation for both 
muscles when it was associated with a weighted vote pro-
cedure and no upsampling. The corresponding RO values 
increased from 80.2 to 87.4 and from 66.1 to 76.8 for the 
gastrocnemius and plantaris segmentation with respect to 
the number of atlases used (from 1 to 14). The RO values 
reported for the gastrocnemius segmentation were in agree-
ment with the results reported by Andrews et  al. [21] in 
much larger muscle groups (i.e., knee extensor and flexor 
muscles) in humans. On the basis of a principal compo-
nent analysis, they reported good reliability of the auto-
matic segmentation illustrated by an average DSC value 
of 0.92 ± 0.03 (i.e., RO = 0.85) [21]. However, it has to 
be kept in mind that the level of accuracy expected from 
the automatic method has to be considered with respect to 
the reproducibility of the standard method. Unfortunately, 
these authors did not report the variability of their manual 
delineation process [21]. In the present study, although the 
accuracy of the automatic segmentation was largely lower 
for the plantaris than for the gastrocnemius muscle, the 
RO values achieved for both muscles outperformed the 
interoperator RO value using a minimum of three atlases. 
Similarly, the DSC values from the automatic segmenta-
tion reported by Gubern-Merida et al. [36] for the pectoral 
muscle also outperformed the DSC value calculated from 
the computed interobserver variability (DSC = 0.70 ± 12), 
thereby highlighting the reliability of the multi-atlas 
approach for the individual muscle segmentation. It is 
worth pointing out that in spite of an increased RO value 
with respect to the number of atlases included in the data-
base, the addition of further atlases beyond six resulted in 
a minor improvement of the RO values in both muscles, 
thereby suggesting that the manual work can be minimized 
to the delineation of six subjects for a high-quality level 
according to our data (i.e., RO = 86.2 and 74.8 for the gas-
trocnemius and plantaris segmentation, respectively).

From a physiological point of view, the accuracy of a 
segmentation method can also be evaluated on the basis of 
the error related to the muscle volume measurement. Here, 
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the global volume error was 4.2 and 8.0  % and slightly 
decreased to 3.5 and 7.4 % using 3 or 6 original atlases for 
the gastrocnemius and plantaris muscles, respectively. Simi-
larly to what we observed for the RO values, the benefit asso-
ciated with the addition of more than six atlases was negli-
gible for the volume quantification of both muscles. More 
specifically, using 14 original atlases the global volume error 
was 3.5 and 7.0 % for the gastrocnemius and plantaris mus-
cles, respectively. The present errors were consistent with 
those previously reported from the commonly used alterna-
tive methods based on a reduced number of slices manually 
delineated [7, 18, 37, 38]. In these models, the truncated 
cone formula has been particularly used to describe the limb 
shape between two consecutive, manually delineated slices 
(as the limb describes a global conic shape). However, it has 
been shown that the related bias significantly increased with 
the gap between slices. Tracy et al. [38] showed in humans 
that a minimum of 5–6 slices (depending on the thigh length) 
evenly distributed along the quadriceps muscle was neces-
sary to estimate the corresponding volume within a 4 % error 
range independent of age or sex. Bias reduction to a value 
of <2 % [38] or to a point lower than the variability of the 
reference measure [18] required the manual delineation of 12 
slices. This was reduced to seven slices using the Cavalieri 
method (assuming a cylindrical shape between two consecu-
tives slices) for this specific muscle group. Although con-
siderably reduced compared to the reference method (i.e., 
manual delineation from ~100 contiguous slices), the corre-
sponding manual work remains tedious, especially for large 
cohorts. In this respect, Morse et al. [37] reduced the manual 
work to a single slice segmentation by developing a regres-
sion model describing the evolution of the cross-sectional 
area specific to each muscle composing the quadriceps as a 
function of muscle length in humans. Depending on the loca-
tion of the segmented slice, the global error ranged from 10 
to 27 %. Although these errors have been considered accept-
able for the purpose of individual muscle size quantification, 
their use in a different context is highly questionable. The 
investigation of any new population would require a new 
model validation and would lose the benefit of any manual 
work previously performed. The present automatic method 
provides a high level of accuracy despite the large morpho-
logical heterogeneity of the population, thereby strongly sug-
gesting the possibility of using a given database of atlases for 
the automatic segmentation of individual muscles from new 
populations. However, it should be noted that the present 
method, similarly to the previous automatic work [21, 36], 
does not identify intramuscular fat so that any comparison of 
populations with a different relative proportion of intramus-
cular fat such as in aging [11, 39] and in various pathologi-
cal conditions [12] would require an additional thresholding 
process [14].

Conclusion

We reported in the present study an original multi-atlas-
based automatic segmentation process dedicated to the 
skeletal muscle offering high accuracy and reliability. We 
demonstrated that automatic quantification of individual 
muscle volume in rat leg can be performed in a popula-
tion characterized by a wide range of muscle size, thereby 
opening up promising opportunities in humans.
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