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Abstract

Object The goal of the study was to determine blood T1

and T2 values as functions of oxygen saturation (Y), tem-

perature (Temp) and hematocrit (Hct) at an ultrahigh MR

field (11.7 T) and explore their impacts on physiological

measurements, including cerebral blood flow (CBF), blood

volume (CBV) and oxygenation determination.

Materials and methods T1 and T2 were simultaneously

measured. Temperature was adjusted from 25 to 40�C to

determine Temp dependence; Hct of 0.17–0.51 to evaluate

Hct dependence at 25 and 37�C; and Y of 40–100% to

evaluate Y dependence at 25 and 37�C. Comparisons were

made with published data obtained at different magnetic

field strengths (B0).

Results T1 was positively correlated with Temp, inde-

pendent of Y, and negatively correlated with Hct. T2 was

negatively correlated with Temp and Hct, but positively

correlated with Y, in a non-linear fashion. T1 increased lin-

early with B0, whereas T2 decreased exponentially with B0.

Conclusion This study reported blood T1 and T2 mea-

surements at 11.7 T for the first time. These blood relax-

ation data could have implications in numerous functional

and physiological MRI studies at 11.7 T.

Keywords BOLD fMRI � High fields � ASL � VASO �
TRUST

Introduction

The longitudinal relaxation time (T1) and transverse

relaxation time (T2) of blood are important for a number of

quantitative physiological and functional MRI measure-

ments. For example, blood T1 is used to quantify cerebral

blood flow (CBF) using arterial spin labeling (ASL) tech-

niques [1, 2]. The accuracy of blood T1 is crucial for

cerebral blood volume (CBV) determination using the

vascular space occupancy (VASO) method [3]. Blood T2 is

important in differentiating between the extravascular and

intravascular blood oxygenation level dependent (BOLD)

contributions [4]. Blood T2 has also been used for cali-

bration in determining tissue oxygen extraction fractions

(OEF) and the cerebral metabolic rate of oxygen (CMRO2),

including the T2-relaxation-under-spin-tagging (TRUST)

techniques [5–8].

T1 and T2 values of blood are dependent on hematocrit

content (Hct), oxygenation level (Y) and temperature

(Temp). These relationships have been extensively studied

at different magnetic field strengths from 1.5 to 7 T [1, 9–

11]. With the rapid growth of functional studies on high

field MRI scanners ([7 T) with animal models (especially

with rodents), similar measurements are necessary for

those high field systems in order to accurately determine

CBF, CBV, OEF, and optimize BOLD contrast under

various physiological conditions. To our knowledge, only

blood T1 and T2 dependence on Y has been reported up to

9.4 T [12, 13]. The goal of the present study was to

determine blood T1 and T2 values as functions of Hct, Y and

Temp, and explore their impacts on CBF, CBV, OEF and
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BOLD measurements at 11.7 T. Comparisons were also

made with published data at different magnetic field

strengths.

Materials and methods

Blood sample preparation

Fresh blood samples were taken from male Sprague–

Dawley rats. Five rats (500–650 g body weight) were used

for the study. Rats were anesthetized for surgical prepa-

ration with 4.0% isoflurane for induction, and maintained

at a 2.0% isoflurane and air mixture using a face mask.

Body temperature was kept at 37�C via a heating pad.

PE-50 catheters were placed into the femoral artery and

vein. For each measurement, a vial of 1.0 ml blood (with

heparin) was taken from the rat (from either artery or vein,

see details below). Blood gases, Y, total hemoglobin and

temperature were measured with a blood gas analyzer

(Radiometer ABL5, Copenhagen). Vials were then sealed.

To minimize the error due to red blood cell precipita-

tion, the samples were agitated immediately before

measurement and the study time (preparation ? scan) was

accomplished within 30 min. In the middle of the experi-

ment, blood samples were also taken out and agitated again

to minimize settling. Blood oxygenation was also measured

after the experiment.

MRI experiments and data analysis

Experiments were performed on an 11.7 T BioSpec MR

scanner (Bruker, Billerica, MA, USA). A quadrature volume

coil (72 mm in diameter) was used for both RF transmission

and reception. T1 and T2 were simultaneously measured

using a RAREVTR sequence (RARE with variable repeti-

tion time TR) sequence. The sequence used a saturation

scheme (i.e., varied TR) to acquire T1 and used a multi-echo

CPMG scheme (i.e., varied TE) to acquire T2. In the study,

six TR values (208, 400, 800, 1,500, 3,000 and 3,500 ms)

and five TE values (14, 42, 70, 98, and 126 ms) were used. A

single slice centered on the blood sample was chosen. The

region of interest (ROI) was chosen to cover the blood

sample area on the slice. Other imaging parameters were

as follows: field-of-view (FOV) = 40 9 40 mm, slice

thickness = 1.0 mm, matrix size = 128 9 128 and rare

factor = 4. The total scan time was 3 min 46 s.

To evaluate temperature dependence, measurements

were made on arterial blood samples (Hct = 0.43 and

Y = 98–99%) with temperature adjusted from 25 to 40�C

via a circulating water bath and monitored in real time by a

temperature controller (Thermo Electron Co., Karlsruhe,

Germany). This was done with a home-made acrylic tube

(20 mm in diameter and 92 mm long) with a thermometer

placed in the chamber but away from the imaging slice. To

evaluate Hct dependence, plasma was added to arterial

blood to achieve a Hct level of 0.17–0.51 with Y = 99% at

room temperature (25�C) and body temperature (37�C).

Hct was determined by a high-speed micro-hematocrit

centrifuge (Model MB, International Equipment Company,

MA, USA). To evaluate blood oxygenation dependence,

oxygen concentration of the gas mixture that the animals

inhaled was modulated to achieve Y = 40–100%. Mea-

surements were also made at 25 and 37�C.

T1 fitting was done with first echo (TE = 14 ms) and all

the TRs; T2 fitting was done with the 5th repetition time

(TR = 3,000 ms) and all the echoes. T1 was calculated by

fitting M(t) = M0 [1-c 9 exp (-TR/T1)] and T2 was cal-

culated by fitting M(t) = M0 exp (-TE/T2) using ParaVi-

sion 5.0 software (Bruker) by fitting the absolute signals to

a three-parameter model where M(t) is the signal intensity

at a particular TR or TE, M0 is the equilibrium signal and C

is a factor to account for incomplete inversion.

Results

Study 1: Temperature (Temp) dependency

Figure 1 shows the plot of arterial blood T1 and T2 as a

function of temperature (Hct = 0.43 and Y = 99%).

T1 was positively correlated with temperature (r = 0.99,

P \ 0.001). T2 was negatively correlated with temperature

in a non-linear fashion (r = -0.95, P \ 0.001).

Fig. 1 Arterial blood T1 and T2 values as a function of temperature

(25–40�C). T1 was positively correlated with temperature (r = 0.99,

P \ 0.001). In contrast, T2 was negatively, and non-linearly, corre-

lated with temperature (r = -0.95, P \ 0.001)
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Study 2: Hematocrit level (Hct) dependency

A plot of arterial blood T1 and T2 (Y = 99% and

Temp = 25 and 37�C) as a function of Hct is shown in

Fig. 2. T1 was negatively, and non-linearly, correlated with

Hct at both temperature (r = -0.99, P \ 0.001 at 25�C;

r = -0.94, P \ 0.005 at 37�C). Similar results were

reported with bovine blood at 3 and 4.7 T [1, 9]. T2 was

also negatively correlated with Hct at the two temperatures

(r = -0.93, P \ 0.001, non-linearly, at 25�C; r = -1.00,

P \ 0.0005, linearly, at 37�C), consistent with that repor-

ted at 3 T [14].

Study 3: Oxygenation level (Y) dependency

Figure 3 shows the plot of T1 and T2 versus Y with a normal

hematocrit level (Hct = 0.43, Temp = 25�C and 37�C). T1

was not significantly correlated with Y (r = 0.04, P [ 0.5

at 25�C; r = 0.02, P [ 0.5 at 37�C). This finding is con-

sistent with those measured at lower fields [3, 12, 15, 16].

T2 was positively, and non-linearly, correlated with Y

(r = 0.95, P \ 0.005 at 25�C; r = 0.97; P \ 0.001 at

37�C). Arterial blood T2 (Y = 99–100%) was significantly

longer than that of venous blood (Y = 40–60%) at both

temperatures (Table 1), in good agreement with literature

[10, 13]. These findings indicate that there are strong T2

dependencies over the physiological Y ranges.

Study 4: Field strength (B0) dependency

We compared our T1 and T2 results at 11.7 T to published

data at other field strengths [3, 9–13, 15, 22, 23]. Figure 4a

shows that both arterial and venous T1 values (T1(a) and T1(v),

respectively) are linearly dependent on Bo (T1(a) = 133.98

T ? 1,211.4, r = 0.99, P \ 0.001, and T1(v) = 133.27

T ? 1,187.4, r = 1.0, P \ 0.02). Both arterial and venous

T1 values are linearly dependent on B0. Figure 4b shows

T2(a) and T2(v) decreased exponentially with B0 (r = -0.99,

P \ 0.001 and r = -0.90, P \ 0.005 for arterial and

venous blood, respectively).

Discussion

Accurate blood T1 is important for determining absolute

CBF (with unit ml/g/min) with the following equation:

CBF = k/T1 [(SNL–SL)/(SL ? (2a-1)SNL)] (SNL and SL

are signal intensities of the non-labeled and labeled images,

respectively. a is the labeling efficiency, k is the water

tissue-blood partition coefficient) [17]. Based on the

equation, one can estimate that quantitative CBF varies

from -6 to 19% (0.94–1.19 ml/g/min, respectively, with

the assumed basal CBF of 1 ml/g/min at 37�C in rodents)

across the four Temp points, and from -8 to 10% across

the seven Hct levels at 37�C (assuming CBF baseline is

Hct = 0.43).

Fig. 2 Arterial blood T1 and T2 as a function of Hct (0.17–0.51) at 25

and 37�C. Both T1 and T2 decreased as Hct increased at both

temperatures

Fig. 3 Blood T1 and T2 values as a function of Y (40–100%) at 25 and

37�C. T1 was independent of Y, while T2 was positively, and non-

linearly, dependent on Y at both temperatures

Table 1 T1 and T2 of arterial (Y = 99–100%) and venous blood

(Y = 40–60%) under normal physiological conditions (Hct = 0.43)

measured at room temperature (25�C) and body temperature (37�C)

T1 (ms) T2 (ms)

Arterial Venous Arterial Venous

25�C 2,249 ± 106 2,272 ± 79 48.5 ± 1.9 20.1 ± 1.1

37�C 2,813 ± 56 2,768 ± 69 46.3 ± 0.8 14.7 ± 1.3
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VASO signal changes are acquired at blood null point

(TInull), which is determined based on the blood T1. VASO

signals will have blood signal contamination with inaccu-

rate T1 values. Because changes in CBV are determined

from VASO signal [3], slightly changes in VASO signal

changes could result in dramatic difference in CBV chan-

ges. For example, VASO changes from -1.2 to -3.7%

could result in CBV changes from 21 to 38%, respectively,

based on the model presented in [3]. Because CBV change

is an important parameter in determining cerebral CMRO2

via the fMRI BOLD biophysical model [18–20], accurate

determination of CBV changes is important. A CBV

change from 21 to 38% would cause an error in CMRO2

changes of 5–10%. Therefore, caution must be taken to

determine VASO changes when applying blood T1 values

at various physiological conditions. Oxygenation level

does not significantly affect blood T1, suggesting that the

utilization of arterial or venous blood T1 should not cause

significant differences for VASO determination.

Blood T2 values, on the other hand, are highly dependent

on oxygenation level. This makes T2 particularly useful for

quantitatively estimating Y. Several groups have used this

T2 MRI approach to determine quantitative OEF (=1-Y)

and CMRO2 (=CBF 9 OEF 9 CaO2; where CaO2 is the

oxygen content), including the TRUST techniques [5–8,

14]. MRI OEF and CMRO2 data have been shown to be

consistent with those obtained by O-15 positron emission

tomography (PET), which is considered the gold standard

[21]. MRI OEF and CMRO2 will likely have widespread

utility because they are totally non-invasive.

In addition to Y, blood T2 values are also dependent on

Temp and Hct. It is interesting to see from Table 1 that

venous blood T2 has a much lower T2 at higher tempera-

tures, opposite to the trend of blood T1, and is more neg-

atively correlated with temperature than is arterial blood T2

(Table 1). The Hct-dependent T2 is an important factor for

calibrating OEF measurement since Hct could vary slightly

across individuals. All three parameters (Y, Temp and Hct)

are thus crucial for OEF and CMRO2 determinations.

Blood T2 also can be used to dissect the BOLD signal

contributions. The BOLD signal consists of and intravas-

cular (IV) and an extravascular (EV) component. The IV

BOLD component exists because blood deoxyhemoglobin

content strongly influences blood T2, as well as the sus-

ceptibility-induced frequency difference between blood

and surrounding tissue. At the same field strength (B0), as

demonstrated in the study, the IV contribution to BOLD

signal should increase as Y increases, and decrease as Hct

and Temp increase. At different B0, T2 decreases as B0

increases. One can expect, therefore, that the IV contri-

bution to the BOLD signal decreases with the increase of

B0. However, it is clear from previous and present studies

that T2 did not decrease as steeply at high fields ([7 T) [4,

13, 22]. This has strong implications in BOLD fMRI.

Signals can be improved at high fields by using spin-echo

acquisition because the intravascular venous signal is not

visible at high field values [4]. Our finding suggests that

going to higher field values may not result in further

reduction of the intravascular venous signal per se,

although BOLD contrast also increases overall.

Conclusion

This study analyzed the T1 and T2 values as a function of Y,

Temp, and Hct of rat blood at 11.7 T. Over the ranges of

physiological conditions investigated, change of arterial blood

T1 was negatively correlated with Hct (-883.7 ms per unit of

Hct change), but positively correlated with temperature

(51.8 ms/�C). T2 change was negatively correlated with

temperature (arterial T2, -0.36 ms/�C), and was non-linearly

correlated with Y and Hct. These results could have

Fig. 4 a T1 values of arterial and venous blood were both linearly

dependent on B0. For arterial blood, r = 0.99, P \ 0.001; data

citation: 1.5 T [3]; 3 T [9]; 4.7 T [12]; 7 T [12]; 9.4 T [12]; 11.7 T

[present study]. For venous blood, r = 1.0, P \ 0.02; data citation:

1.5 T [3]; 3 T [9]; 11.7 T [present study]. b T2 values of arterial and

venous blood as a function of magnetic field. For T2(a): 1.5 T [23]; 3 T

([11], Hct = 0.44, Y = 0.99); 4.7 T ([15], Y = 0.9–1.0); 7 T [present

study]; 9.4 T [13]; 11.7 T [present study]; for T2(v): 1.5 T [23]; 3 T

([10], Hct = 0.44, Y = 0.44); 4.7 T ([15], Y = 0.4); 7 T [22]; 9.4 T

[13]; 11.7 T [present study]
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implications in many physiological studies at 11.7 T [24–26],

including CBF using ASL, CBV using VASO, OEF using

TRUST, and high spatial specificity BOLD fMRI [4, 22].
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