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Abstract
Objective Coil arrays with large number of receive elements
allow improved imaging performance and higher signal-to-
noise-ratio. The MR systems supporting these arrays have to
handle an increased amount of data and higher reconstruction
burden. To overcome these problems, data reduction tech-
niques need to be applied, realized either by linear combi-
nation of the original coil data prior to reconstruction or by
discarding particular data from unimportant coil elements.
Materials and methods This work focuses on the latter
approach and presents an efficient algorithm for automatic
coil selection applicable to SENSE imaging. A singular value
decomposition (SVD)-based coil selection is proposed that
performs a coil element ranking quantifying the contribution
of each coil element to the image reconstruction allowing
appropriate coil selection. This approach makes use of the
coil sensitivity information and takes reduction factor and
phase encoding direction into account.
Results Simulations, phantom and in vivo experiments were
performed to validate the SVD-based coil selection algo-
rithm. The proposed approach proved to be computationally
efficient without remarkable image quality degradation.
Conclusion The SVD-based approach offers the opportunity
for fast automatic coil selection. This could simplify clinical
workflow and may, furthermore, pave the way for various 2D
real-time and interventional applications.
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Introduction

Parallel imaging using coil arrays with a large number of
independent coil elements provides improved imaging per-
formance and increased signal-to-noise-ratio (SNR) [2,17,
20,22]. Today, there is a fundamental trend to considerably
increase the number of coil elements used for reception.
Recently, 32-element coils [12,13,18] have been introduced
to boost SNR and to allow for higher reduction factors. Even
more complex coil arrays have been proposed and realized,
consisting of up to 128 individual elements [4,8,15]. How-
ever, a number of these coil arrays have been used on systems
supporting only 32 receive channels [21]. The use of a large
number of coil array elements can lead to memory storage
problems and to increased reconstruction times.

To overcome these problems, data reduction techniques
could be applied. These can be realized by a linear com-
bination of the original coil data prior to reception, using
an appropriate hardware combiner [7,19], data compression
of the sampled data before reconstruction [1,5], or by dis-
carding particular data from coil elements with low signal
content (either before or after reception) [9,11]. The concept
of a hardware combiner for the realization of the linear com-
bination of the coil signals was presented by King et al. [7]
and Reykowski et al. [19].

Data compression can be based on the properties of the
measured data, without the knowledge of the coil sensitivi-
ties. The software compression method, proposed by
Huang et al. [5], applies principle component analysis for
data reduction before the actual reconstruction. This
data reduction strategy is appropriate for k-space based
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reconstruction techniques [2,22], where the coil sensitivities
are not known.

Buehrer et al. [1] presented a technique for coil array com-
pression that finds an orthogonal space spanned by the totality
of coil sensitivities and discards the unimportant directions in
this space. The MR data can be projected to this lower dimen-
sional space of virtual coils, balanced between all pixels in
a defined region of interest (ROI). In this way, the number
of “coils” used in the reconstruction can be decreased in a
preprocessing step without significant loss of SNR.

For the situation of a limited number of channels, a greater
number of available receive coils and no hardware-based sig-
nal combination, a selection rule is needed to find the coil ele-
ment configuration leading to optimal image quality. The coil
elements used could either be a fixed set of individual coils,
optimal for a given measurement, or could be dynamically
selected during the image acquisition satisfying a local opti-
mality criterion. On the other hand, such coil selection could
also be used prior to the image reconstruction to reduce the
reconstruction time, which is important for real-time imaging
applications.

The dynamic coil selection (DCS) algorithm, proposed by
Mueller et al. [11], selects a subset of receive coils to reduce
the image reconstruction time in interventional imaging. This
algorithm performs coil ranking based on two criteria: (i)
the distance between the location with highest sensitivity for
each coil and the current slice and (ii) the signal intensity in
each coil. The algorithm is simple and thus allows for fast
coil selection, but this choice of coil elements might be sub-
optimal for acceleration factors greater than one, since no
optimization for parallel imaging is included.

The method presented in this work reduce the dimension-
ality of the problem by discarding the data from the least
important coils. An algorithm for automatic coil selection
applicable to SENSE imaging is presented. The decision
rules applied are related to the noise propagation in paral-
lel imaging; thus, the coil selection depends on the partic-
ular parallel imaging conditions like reduction factor and
phase encoding direction. The singular value decomposition
(SVD)-based coil element selection is described and evalu-
ated, based on simulated, phantom and in vivo data.

Methods

Theory

Coil element selection refers to dimensionality reduction, in
which an optimal subset of physical or virtual coils is selected
for image reconstruction. In principle, it is necessary to con-
sider all possible subsets, since combinations of variables
can provide significant information which is not available in
any of the individual variables separately. With an increasing

number of available coils, however, the number of possible
subsets grows very rapidly and an exhaustive search becomes
unpractical.

Another possibility is to preprocess the data and to select
variables according to heuristics, based on general character-
istics of the data, such as orthogonality and high information
content. This approach usually runs much faster, because no
explicit search is needed. However, it could lead to subopti-
mal results.

SVD-based coil selection

SENSE reconstruction of uniformly undersampled Cartesian
data consists of solving a linear system of L equations with
R variables, where L is the number of coil elements, and R
is the reduction factor. The R unknowns could be uniquely
determined if they were measured with a basis of R orthogo-
nal coils. Solving this system of equations could be presented
as projecting the problem from the L to the R dimensional
space and then solving it in the lower dimensional space.

Ohliger et al. [14] proposed a method to estimate the ulti-
mate SNR for parallel imaging by successively adding plane
wave modes until SNR saturation, such that the coil sensitiv-
ity functions that were added up to this point, build an ideal
basis for solving the reconstruction problem. This basis can
be used as a measure for the ultimate SNR.

In a similar way, if the best subset of a given coil set has
to be selected, the upper SNR limit would be given by the
full coil set. Finding those coils that have the most similar
projection of the R dimensional problem space to the pro-
jection of the full coil set will result in an optimal SNR coil
configuration of the given size. Based on this idea, a selec-
tion method is presented using the SVD factorization [16] of
the sensitivity matrices and will be, therefore, denoted as the
SVD-based coil selection method.

Consider a SENSE reconstruction problem with Cartesian
k-space sampling at a reduction factor R in an arbitrary direc-
tion [17] using an L-element coil array. The reconstruction
problem at each pixel is given by:

a = Sb + n. (1)

The vector a consists of the complex pixel intensities in
the reduced field of view (FOV) images for each coil, S is
the L × R sensitivity matrix, b is a vector containing the
original image pixels, which are superimposed in the aliased
images, and n is a noise vector. The reconstruction consists
of solving the linear system of (1) for each aliased pixel in
the reduced FOV. This system is overdetermined; thus, an
estimation technique has to be used for finding the solution.
Assuming Gaussian statistics for the noise, the best linear
unbiased estimator (BLUE) [10] of vector b is given by:

b =
(

SH �−1S
)−1

SH �−1a, (2)
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where � is the L×L receiver noise covariance matrix, which
helps to optimize SNR during the reconstruction. The noise
covariance matrix may be replaced by an identity matrix,
leading to the least squares estimator for b. In this case, the
unfolding is still ensured, yet at an SNR penalty, which will
be the more significant, the less equivalent the receivers are
with respect to load, gain, and mutual coupling.

Alternatively, matrix factorization techniques might be
used to obtain the linear least squares solution in a numeri-
cally stable fashion. The most common matrix factorization
technique used for solving an overdetermined system of lin-
ear equations is the SVD [16].

Using SVD, the sensitivity matrix S can be factorized as
S = U�VH , and the SVD solution of (1) is given by:

b = V�+UH a, (3)

where �+ is the transposed of � with every value, greater
than a preset threshold, replaced with its reciprocal.

Equation (3) can be written in the form:

UH a = UH Sb = �VH b (4)

considering only the rows of UH , �, and V corresponding
to singular values greater than the threshold. The matrix UH

projects both the data and the sensitivity matrix into lower
dimensional space, corresponding to the rank of the matrix
S. Let us denote this projection of the coil sensitivity matrix
with S′, the corresponding projection of the data vector with
a′ and the projection matrix, which transforms S to S′ with
P, where P = UH .

a′ = UH a = Pa

S′ = UH S = PS. (5)

The rows of the new sensitivity matrix S′ can be considered
as sensitivities of a set of virtual coils, which sensitivity vec-
tors are obtained as a superposition of the real physical coil
sensitivities. The coils can be ranked according to their rela-
tive contribution to the virtual coils. The i th row vector of S′
can be written as a linear combination of the rows of S

s′
i =

∑
k

piksk, (6)

where the weighting factors P(i, k) = pik (k = 1, . . . , nc)

are the i th row entries of matrix P. The magnitude of pik

represents the contribution of the kth physical coil to the i th
virtual coil. In this way, the coil array elements can be ranked
according to the weighting function:

wk =
∑

i

|pik |. (7)

The weighting function can be calculated for each recon-
structed pixel in the full FOV image or for a given ROI, and
the optimal coil set is chosen according to the total weight

for this region.

Wk =
∑

r∈RO I wk(r)
NRO I

. (8)

In this way, a single step coil selection is performed using
the SVD of the sensitivity matrix.

To validate the performance of the method, it should be
compared with the results of the exhaustive search through
all possible coil sets that determines the optimal coil set in
SNR sense. However, the number of possible coil combi-
nations makes this task impossible. A faster search using a
sequential backward elimination [3] allows the selection in
manageable times. We will denote this algorithm as the SNR-
based coil selection method and will use it as a reference.

SNR-based coil selection with sequential backward
elimination search

In the context of coil element selection, an appropriate cri-
terion (or cost function) should refer to the image quality if
the image acquisition is performed with a given coil config-
uration. One of such quality measures is the SNR.

Unlike in conventional Fourier MRI, the transforms used
in sensitivity encoded image reconstruction are generally not
unitary, and spatially variable noise amplification occurs [14,
17]. As a result, the SNR is also variable over the FOV. For
the SNR at position rn holds [14]:

SNR(rn) ∝ 1√
Xn

, (9)

where Xn is the total noise power at pixel position rn , which
in the case of regular Cartesian sampling is given by [17]:

Xn = 1

Nx Ny
[(SH �−1S)−1]nn, (10)

where S is the sensitivity matrix, � is the receiver noise
matrix, and Nx Ny denotes the number of samples acquired
in the k-space. The SNR is, therefore, proportional to the
following:

SNR(rn) ∝
√

Nx Ny√[(SH �−1S)−1]nn

. (11)

The expression on the right-hand side represents the SNR
dependency on the reconstruction and will be further denoted
as the SNR-factor. The SNR in parallel imaging is spatially
variable, so optimizing the local SNR-factor will lead to a
different coil configuration for each pixel. A better approach
would be to consider a global value, such as the mean SNR-
factor, for the decision.

Another characteristic of the image quality is the smallest
value of the SNR in the reconstructed image; thus, consid-
ering only the pixels within a given ROI, or the fraction of
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the pixels with lowest SNR-factor may lead to a better selec-
tion criterion than averaging over the complete FOV. The cost
function, determined by the mean SNR-factor over a selected
ROI is given by:

J (Xl) =
∑

ri ∈ROI SNR-factor(ri )

NROI
, (12)

where NROI denotes the number of samples in the ROI. The
SNR criterion is used together with the sequential backward
elimination search technique for coil element selection. This
SNR-based coil selection method represents the “gold stan-
dard” in this work that will be used to evaluate feasibility of
the SVD-based coil selection.

In the two coil selection algorithms described here, derived
for Cartesian sampling of k-space, the cost function is ini-
tially calculated on a pixel basis, and then a global decision
is made using a mean cost function for a given ROI. Alter-
natively, an average reconstruction problem might be consi-
dered, like the one proposed by Buehrer et al. [1], and then
a single value for the cost function would be obtained.

The fact that coil sensitivities vary slowly over the FOV
allows further acceleration of the selection algorithms, by
considering only a subset of the coil sensitivity values for the
selection.

The SVD-based coil ranking evaluates the contribution of
each individual coil to the full coil set at a single step; thus, it
performs a fast decision, but may lead to suboptimal results,
because it does not take the group performance into account.
The SNR-based coil selection takes into account the group
performance of the considered coil sets, but requires multiple
evaluations of coil sets and, therefore, more time for reaching
a decision.

It is important to note, that the coil selection process can
be locally optimized. This can mean that in a 2D case optimi-
zation is restricted only to a part of the FOV, whereas in 3D
or multi-slice imaging the selection can be performed, e.g.,
for each individual slice.

Experimental

The SVD-based coil selection algorithm was evaluated on
the basis of simulated data as well as phantom and in vivo
measurements.

Simulations

One hundred different sets of computer generated coil sen-
sitivity maps were used in the simulation, while each set
consisted of 32 coil elements. The coil array elements were
modeled as circular coils with 40 mm radius. The coil ele-
ment positions were randomly chosen within the area con-
straint by two coaxial cylinders, whereas their orientation was
chosen tangentially to the cylinders (Fig. 1). By using this

Fig. 1 Simulation setup. Coil element positions were randomly cho-
sen within the two coaxial cylinders with radii 271.5 and 300 mm and
length of 400 mm, oriented tangentially to the cylinder. Sensitivity maps
were calculated for a 384 × 384 matrix arranged as a plane, orthogonal
to the cylinder axes. A sample coil element shown schematically

approach simple wraparound coils were modeled. Sensitivity
maps were calculated using the Biot–Savart law for a 384 ×
384 pixel matrix and FOV 384 × 384 mm2 arranged as a
plane, orthogonal to the cylinder axis. The radii of the cylin-
ders were chosen to be r = 271.5 and R = 300 mm such that
all coils lie outside the FOV. In the z direction, the coil posi-
tions vary between −200 and 200 mm from the considered
FOV.

The SENSE direction was assumed to be along the y axis
using a reduction factor of R = 2. The SVD-based and the
SNR-based coil selection methods were compared in the task
of choosing the optimal 16 out of 32 coil elements. The spe-
cific choice of the ROI used for the coil selection is problem
dependent and could be a subject of further optimization.

In the current simulation, first an SNR-factor evaluation
was performed for the full coil set, and a mask was formed
choosing the 25% of pixels having a lowest SNR-factor.

m25(ri ) =
{

1 if SNR-factor(ri ) < Q1(SNR-factor)
0 else

,

(13)

where m25(ri ) denotes the value of the mask at position ri ,
and Q1(SNR-factor) is the first quartile of the SNR-factor.

For each of the 100 cases, a list of the 16 coils selected
from each of the two coil selection algorithms was obtained.
The results from the SNR-based and the SVD-based coil
selection methods were compared on the basis of the mean
SNR-factor in the potential images, reconstructed with the
chosen coil sets

µ25 =
∑

i SNR-factor(ri )m25(ri )∑
m25(ri )

. (14)

The ratio of the mean SNR-factor for the two decision
cases
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q = µ25(SVD selection)

µ25(SNR selection)
(15)

is additionally considered as a comparison measure.
To understand the effect of the coil selection on the pixels

that were not included in the selection algorithms, the eva-
luations of the mean SNR-factor and the ratio q were also
performed on the complete FOV.

Phantom and in vivo measurements

All measurements were made on a clinical scanner operating
at 1.5T (Achieva, Philips Medical Systems). RF transmis-
sion was performed using the homogeneous RF body coil,
while a 32-element coil array, which was designed for car-
diac applications, was employed for signal reception. The
coil array consists of two independent parts, an anterior and
a posterior part, each composed of 16 hexagonal receive coil
elements with 60 mm edge length [23]. While exhibiting a
slightly different coil element arrangement, both parts basi-
cally consist of three rows of elements in feet-head (FH)
direction, each composed of 5–6 elements in left–right (LR).
With the anterior and posterior part in place the entire coil
arrangement has a FH/LR coverage of 270/540 mm, respec-
tively. The anterior coil is flexible and can be bent around the
patient for an optimal coverage. The posterior part has a pre-
bent structure in LR direction and is fixed to the patient table.

Phantom measurements The 2D images of the phantom were
acquired using a steady state free precession sequence with
balanced gradients (balanced FFE, true FISP) with TE =
1.5 ms, TR = 3 ms, flip angle α = 60◦, FOV = 410 × 410
mm2, matrix size 288 × 288 pixels and slice thickness of 7
mm, R = 2 in anterior–posterior (AP).

In vivo measurements In vivo measurements were performed
on five healthy volunteers (two for the 2D and three for the

3D measurements), after informed consent obtained. The 2D
abdominal data were obtained using the same imaging proto-
col as in the phantom measurement. Additionally, 3D pelvis
measurements were performed with TE = 2 ms, TR = 4 ms,
balanced FFE, flip angle α = 50◦, FOV = 450 × 450 × 192
mm3, matrix size 192×192×48 voxels R = 6 (2 in AP and
3 in FH).

To quantify the experimental results, SNR evaluations
were performed. Precise SNR measurement for parallel
imaging is not trivial, since the SNR varies within the FOV
and background noise estimation is often difficult [6]. To cir-
cumvent this and to give experimental values, a very simple
SNR measure was chosen. This was defined as the ratio of the
mean and the standard deviation of the MR signal in homoge-
neous regions (100 pixels) in the reconstructed images. To get
a more global measure, the average was formed over several
(5–6) spatially distant regions of similar signal amplitude.
Although this is a rather rough measure, it shows the rela-
tion between the different coil configurations, since this SNR
evaluation is performed at the same locations for a given scan.
Additionally, the mean SNR-factor, which is based on the coil
sensitivity information was calculated for comparison.

Results

Simulation

Figure 2a shows the scatter plot of the mean SNR-factor
according to (14) for the pixels that were used for coil selec-
tion. The mean SNR-factor is very well correlated between
the two algorithms for all 100 simulated data sets. The his-
togram of q (Fig. 2b) shows that both algorithms lead to the
same result in almost half of the cases, while the SNR loss
due to suboptimal decision of the SVD-based algorithm is
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Fig. 2 Comparison between SVD-based and SNR-based coil selection
algorithms. The ROI, used for coil selection was defined by the 25% of
the data with lowest SNR in the FOV. This evaluation is based on the
mean SNR-factor on the ROI used for coil selection. a Scatter plot of

the mean SNR factor for the coil configurations selected by the SNR-
based and SVD-based coil selection. b Histogram of the ratio of the
mean SNR-factor for the coil configuration found by the two different
approaches (q)
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Fig. 3 Comparison between SVD- and SNR-based coil selection algo-
rithms. The same coil element selection underlying the analysis shown
in Fig. 2 is here evaluated on the complete FOV. a Scatter plot of the
mean SNR for the coil configurations selected by the SNR-based and
SVD-based coil selection. b Histogram of the ratio q of the mean SNR-

factor for the coil configuration found by the SVD- and SNR-based
selection algorithms for 100 simulation sets. Compared with Fig. 2,
this distribution includes values greater than one and shows a higher
mean value and standard deviation

not more than 10% in the other cases. The mean value of the
given distribution µ(q) = 0.982, and the standard deviation
σ(q) = 0.025. Thus, the mean SNR loss in the decision ROI
for coil configuration chosen with the SVD-based selection,
compared with the SNR-based selection, was less that 2%
for the 100 simulation sets.

Figure 3a shows the scatter plot of the mean SNR-factor
for the same selected coil sets, evaluated on the entire FOV.
Again, the mean SNR-factor for the two algorithms shows
very good correlation. The ratio q of the mean SNR-factor
for the two selections has a greater variance for the com-
plete FOV σ(q) = 0.044, which could be explained by the
inclusion of pixels that were not used in the coil selection.
However, the mean value µ(q) = 0.985 is slightly increased
in this case.

The results of the simulations show that the SVD-based
coil selection method gives comparable results to the SNR-
based selection at greatly reduced computational complexity.
Additionally, single coil set evaluation requires more calcu-
lations for the SNR-based coil selection than for the SVD-
based selection, which leads to an even greater factor for
the required computation times. The computation time for a
384 × 384 matrix was evaluated on a Xeon processor, CPU
2.4 GHz, 4 GByte memory. The time for the SVD-based coil
selection was tsvd = 0.02 s, and the time for the SNR-based
coil selection was tsnr = 16.3 s, which is far too long for the
clinical practice. For further evaluation, the algorithms were
applied on phantom and in vivo data.

Phantom measurements

Figure 4a and b show the images obtained with 16 coils
selected with the SVD-based and SNR-based coil selection
algorithms, respectively. These images were taken in the

transverse plane with reduction a factor R = 2 in AP direc-
tion and were reconstructed using SENSE. In both cases,
only pixels within the object were included in the decision
algorithm. For both algorithms, the images, reconstructed
with the reduced coil sets, show only a small decrease in
SNR compared with the image obtained with the full set of
32 coils (Fig. 4c). In comparison, a rather high noise level
is visible in the image reconstructed from the 16 coils that
were eliminated by the SVD-based coil selection (Fig. 4d).
The mean SNR-factor and mean measured SNR value are
summarized in Table 1. The mean measured SNR was eval-
uated in the regions indicated on Fig. 4c. The selected coil
set configuration is shown for each case on the coil geometry
diagrams below each image. The slice position is indicated
by the arrows leftmost coil geometry diagram.

In vivo measurements

Figure 5a and b show the 2D images (SENSE R = 2 in AP),
reconstructed with 16 coil elements selected with the SVD-
and SNR-based coil selection algorithms, respectively. In this
case, again, both algorithms yield similar results with respect
to coil selection, and no visible decrease in image quality is
observed in comparison with the total coil set image (Fig. 5c).
Figure 5d shows the image reconstructed from the 16 coils
rejected by the SVD-based algorithm, which is again clearly
noisier.

Figure 6a and b show a single slice from 3D image data
(central transversal slice), reconstructed with 16 coil ele-
ments selected with the SVD- and the SNR-based coil selec-
tion algorithms from the undersampled data (SENSE R = 6).
The coil selection was performed for the entire measured
3D volume. The two algorithms lead to similar coil selec-
tion patterns, evenly distributed between the anterior and
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POSTERIOR POSTERIOR POSTERIOR POSTERIOR

ANTERIOR ANTERIOR ANTERIOR ANTERIOR

(a) (b) (c) (d)

Fig. 4 Phantom experiments (16 out of 32). Images, reconstructed with
a 16 coils chosen with the SVD-based coil selection algorithm, b 16
coils chosen with the SNR-based coil selection algorithm, c the full set
of 32 coil elements and d the 16 coils eliminated by the SVD algorithm.
The two different coil selection approaches lead to quite similar coil
selection patterns as shown on the coil geometry diagrams below the
images. The images, reconstructed with the coil subsets, selected by the

two coil selection algorithms does not show a visible decrease in image
quality, compared to the full 32 coil set image. In contrast, in the central
part by the SVD-rejected image, a very high noise level is visible. The
slice position is indicated by the arrows in the anterior and posterior
part of the coil in the leftmost diagram. The 10 pixel regions used for
SNR evaluation are indicated on the full coil set image (c)

Table 1 Mean SNR comparison

Mean SNR-factor Mean measured SNR

SNR SVD Full coil set SNR SVD Full coil set

Phantom 2D 8.77 8.73 9.29 62.13 62.76 64.55

In vivo 2D 10.35 10.20 11.42 10.9 10.9 11.0

In vivo 3D 9.53 9.41 10.92 16.8 17.5 19.4

Mean SNR-factor and mean measured SNR values for the images,
reconstructed with 16 out of 32 coils, selected with SNR-based, SVD-
based coil selection and the full coil set of 32 elements, respectively

posterior part. SNR was measured and averaged over three
distant slices of the 3D data. In Fig. 6c the selected regions
for the given slice are indicated. The mean SNR-factor and
mean measured SNR values obtained are given in Table 1.
Applying higher reduction factors and measuring larger vol-
umes limit the number of coils that can be eliminated with-
out compromising the quality of the SENSE reconstruction.
Although for most of the images in the 3D set a good quality
was achieved with the reduced coil set, in some of the slices
residual aliasing artifacts were present. This is illustrated
in Fig. 7 that shows a different slice of the data shown in
Fig. 6. The aliasing artifact, indicated by the arrows in Fig. 7a
and b comes mainly from the FH direction due to incomplete
unfolding.

Performance can be improved by performing coil selec-
tion locally for each slice, including only the locally optimal
coil data in the reconstruction. As shown in Fig. 7c and d,

local optimization leads to improved image quality in the
chosen region, but could compromise image quality outside
this area. This local coil selection in 3D is only applicable if
all coil data have been measured. It helps to improve image
quality and reduces reconstruction time, but does not ease the
memory problem. The decision which coils should be used
for which slice can quickly be obtained in advance or during
the scan.

The decision time needed by the SVD-based coil selec-
tion for full 3D optimization was tsvd = 0.52 s. The SNR-
based coil selection needed about 5 min. The time necessary
to select the optimal elements for a single slice out of the
locally optimized decision time was tsvd = 0.08 s for the
SVD-based coil selection and tsnr = 22.7 s for the SNR-
based coil selection.

Discussion

Coil element selection could be a useful approach to cope
with increasing system demands in future parallel MRI. In
this work, an effective coil selection algorithm was presented,
and its basic feasibility was demonstrated for two and three
dimensional Cartesian imaging with various reduction
factors.

Leaving out data of insensitive elements could be advanta-
geously in practical situations. A low coil sensitivity could be
a physical fact, e.g., proximity reasons, but could also be an
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POSTERIOR POSTERIOR POSTERIOR POSTERIOR

ANTERIOR ANTERIOR ANTERIOR ANTERIOR

(a) (b) (c) (d)

Fig. 5 In vivo results (16 out of 32). Images reconstructed with a 16
coils selected with the SVD-based coil selection algorithm, b 16 coils
selected with the SNR-based coil selection algorithm, c the full set of
32 coils, d 16 coils rejected by the SVD coil selection algorithm. The
selected coils are shaded in the coil array geometry diagram below each
image and the slice position is indicated. The two algorithms show only

small differences in the selected coils. The resulting 16-coil element
images (a, b) are similar and do not show a visible decrease in SNR
compared to the full coil set image (c). In comparison, the image recon-
structed with the 16 coils, rejected by the SVD algorithm is visibly
noisier (d). The white squares in c indicate the regions used for SNR
evaluation

POSTERIOR

ANTERIOR

POSTERIOR

ANTERIOR

POSTERIOR

ANTERIOR

POSTERIOR

ANTERIOR

(a) (b) (c) (d)

Fig. 6 In vivo results (16 out of 32). A transversal slice extracted from
3D data reconstructed with a 16 coils selected with the SVD-based
coil selection algorithm, b 16 coils selected with the SNR-based coil
selection algorithm, c the full set of 32 coils, d 16 coils rejected by the
SVD coil selection algorithm. The selected coil elements and the slice
position are marked on the coil array geometry diagrams. The two algo-

rithms show only small differences in the coil selection. The resulting
images (a, b) are similar and do not show a visible decrease in SNR
compared to the full coil set image (c). The image of the SVD rejected
coils shows residual aliasing artifacts (d). The regions used for SNR
estimation in this slice are indicated on the image (c)

indication for a non-properly operating coil element. Those
elements could be malfunctioning giving rise to serious noise
or spike propagation into the final images, and it would be
reasonable to exclude them in the image generation process.

Coil element elimination could also be applied after digiti-
zation to decrease the reconstruction time [11]. Also in this
case, the SVD-based coil selection would be an appropriate
selection method, because of its short decision times.

123



Magn Reson Mater Phy (2008) 21:187–196 195

POSTERIOR

ANTERIOR
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(a) (b) (c) (d)

Fig. 7 In vivo results (16 out of 32). A transversal slice extracted from
the same 3D data shown in Fig. 6 at different slice position. Images,
reconstructed with (a) 16 coils selected with the SVD-based coil selec-
tion algorithm (b) 16 coils selected with the SNR-based coil selection

algorithm show residual fold-over artifacts (indicated by the arrow).
The same slice, reconstructed with the 16 coils, selected using local
optimization (c) using the SVD-based coil selection and (d) using the
SNR-based coil selection show improved image quality

Simulations, phantom and in vivo measurements were per-
formed to evaluate the SVD-based coil selection method by
comparing it to the more intuitive SNR-based coil selection.
The phantom and in vivo measurements confirmed the results
from the simulations that the two coil selection algorithms
lead to comparable results. This is also shown by the SNR
measures for the two selection algorithms summarized in
Table 1. The measured SNR shows very good correspon-
dence to the SNR-factor, theoretically derived from the coil
sensitivities. The slightly higher measured SNR-values for
the SVD-based selection approach are potentially caused by
the limited accuracy of the SNR measure chosen and are con-
sidered to be non-significant. Due to its lower computational
complexity, the SVD-based coil selection algorithm needed
much lower computation times. This approach could further
be improved by incorporating the noise correlation in the coil
ranking, which was not considered in the present paper.

However, there are also some limitations. In 3D imag-
ing extensive coil elimination might potentially compromise
image quality, especially in highly accelerated scans. In that
aspect a local coil selection can help to find an appropriate
compromise. On the other hand, coil element elimination can
be very advantageous if the coil array coverage is much larger
than the actual FOV that one is interested in, which can be the
case in many 2D applications, including multi-slice imaging.
A local coil selection in the latter case allows dynamical coil
switching, using the optimal coil subset for each slice, which
could decrease the required memory storage and speed up
the reconstruction.

The automatic coil selection could be used instead of man-
ual coil selection in conventional diagnostic imaging to avoid
suboptimal coil selection and for further automation of the
planning procedure, including for instance choosing the opti-
mal phase encoding direction. The data, acquired with the
selected coil subset, can be further reduced by applying one
of the data compression methods proposed in [1,5]. The short
selection time needed by the SVD-based coil selection makes
it also applicable for various applications such as 2D real-
time or interventional imaging, where the selection could
be performed locally for each slice, enabling dynamical coil
switching during image acquisition.
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