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Abstract Atherosclerosis is a chronic inflammatory vas-
cular disease. As it is an inflammation process, many cellular
and molecular events are involved at each step of the pro-
gression of atherosclerosis from an early fatty streak lesion
to a highly dangerous rupture-prone plaque. Magnetic res-
onance imaging (MRI) is a well-established diagnostic tool
for many kinds of chronic inflammation in various systems
and organs, and recent improvements in spatial resolution
and contrast strategies make it a promising technique for the
characterization of inflammatory vessel walls. The first part
of this review will briefly introduce the main cellular and
molecular processes involved in atherosclerotic lesions; the
second part will focus on the use of high-resolution MRI and
present-generation contrast agents for plaque characteriza-
tion; and the third part will present some recent and ongoing
cellular and molecular MRI studies of atherosclerosis.
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Abbreviations

CAM Cell adhesion molecule (ICAM,
VCAM, Selectins)

CD44 Lymphocyte integrin, interaction with
extracellular matrix (hyaluronan)

CR3 or 4 Complement receptors for fragments 3
and 4 expressed on monocytes

CRP C-reactive protein
GP Ib-IX-V Glycoprotein complex (=GP Ibα, GP

Ibβ, GP IX and GP V), P selectin
ligand

ICAM Intercellular adhesion molecule,
LFA-1 ligand

IFN-α Interferon-alpha
IL Interleukin
LFA-1 Lymphocyte function-associated

antigen-1 (immunoglobulin)
MCP-1 Monocyte chemoattractant protein-1
MMP Matrix metalloproteinase
oxLDL Oxidized low-density lipoprotein
PCAM Platelet/endothelial cell adhesion

molecule
ROS Reactive oxygen species
sCD40L Soluble CD40 ligand
TNF-α Tumor necrosis factor-alpha
VCAM Vascular cell adhesion molecule,

VLA-4 ligand
VLA-4 Very late antigen-4, integrin

Introduction

Magnetic resonance imaging (MRI) has continuously devel-
oped, enhancing image quality and thereby providing more
information on the physiopathological status of biological
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tissue. The unique advantages of MR for tissue characteriza-
tion lie in its inherent contrast flexibility, combining different
sequences and various contrast media. For atherosclerosis,
recent advances in coil and acquisition chain technologies
in current clinical scanners have increased spatial resolution,
enabling carotid plaque to be imaged with a high signal-
to-noise ratio in patients. Carotid plaque is characterized by
MRI using multicontrast acquisition with or without nonspe-
cific contrast agent injection. However, for the diagnosis of
vulnerable plaque, new contrast agents dedicated to molecu-
lar imaging and in vivo biological targeting are required. The
question that remains unresolved is the choice of biological
target to achieve this goal.

Histopathologically, atherosclerosis is characterized by
a progressive accumulation of lipids, cells (smooth-muscle
cells, macrophages, and T-lymphocytes) and extracellular
matrix in the arterial wall. The progression of atheroscle-
rosis from an initial fatty streak to the complex advanced
lesion has been described using Stary’s six-stage histologi-
cal classification [1]. It is now established that molecular and
cellular inflammatory processes are involved at each step of
the pathology [2–4]. The initial events comprise disrupted
endothelial homeostasis, characterized by four elements:
adhesiveness, permeability, proliferation, and thrombogene-
sis. The initial steps of inflammation are thus clearly
described at the interface between blood and vessel wall.
The multiple molecular and cellular events explaining sub-
sequent progression are often viewed from the inside of the
vessel wall, except for the late event when a clear rupture
happens at the wall/blood interface, accompanied by throm-
bus formation. As these cellular and molecular processes are
also found in numerous other human disorders [5–8], any new
diagnostic technology for atherosclerosis would also have a
wider impact for the molecular imaging of chronic inflamma-
tory diseases. The increasing number of original articles and
reviews demonstrates that atherosclerosis and inflammation
are important new challenges for MRI. In the present review,
after a short description of the essential biological events, we
will focus on the potential diagnostic contribution of MRI and
MRI markers at each stage of the atherosclerotic disease and
for detecting a vulnerable lesion ahead of rupture.

Atherosclerosis: the molecular and cellular processes
involved in an inflammatory disease

Blood-side events

Activation of vascular endothelial cells and circulating blood
cells together with an increased plasma concentration of
inflammatory mediators is characteristic of ongoing inflam-
matory processes during the progression of atherosclerosis.
Some circulating markers of inflammation [e.g., C-reactive

protein (CRP), cell adhesion molecules (CAM), monocyte
chemoattractant protein (MCP-1), tumor necrosis factor-
alpha (TNFα), interleukins (IL), soluble CD40 ligand
(sCD40L), or von Willebrand factor] are currently under-
going clinical trials in patients suffering from cardiovascular
diseases [5–14].

Upon activation, circulating white blood cells express
adhesion glycoproteins at their surface (Fig. 1). Activated
platelets also play a key role as a link between inflamma-
tion, thrombosis, and atherogenesis [15,16]. Like leukocytes,
platelets can roll on the surface of inflamed endothelium. This
process is mediated by endothelial P-selectin and a counter-
receptor for P-selectin [17–19]. This glycoprotein is part of
the GPIb-IX-V complex, which mediates platelet adhesion to
exposed subendothelial von Willebrand factor at injury sites
[20]. Its involvement in platelet adhesion to both activated
endothelium and exposed subendothelium makes GPIbα, one
of the four polypeptides of the complex, an attractive model
for the design of mimetic compounds [21]. Activated endo-
thelial cells express CAMs, which favor the recruitment of
leukocytes into the arterial wall [22]. The main receptors
expressed in the vascular components (Fig. 1) are divided
into five groups [23]:

1. Integrins: integrins are heterodimers of αα subunits and
αβ subunits. The integrin family has subfamilies, desig-
nated as β1 through β8. The most widely studied sub-
families are β1 [CD29 or very late activation (VLA)
members],β2 (leukocyte integrins such as CD11a/CD18,
CD11b/CD18, CD11c/CD18, and αdβ2), β3 (CD61 and
CD51/CD61 or ανβ3 integrin or vitronectin receptor),
and β7 (α4β7 and αEβ7). A particular integrin may rec-
ognize several proteins.

2. Immunoglobulins: the immunoglobulin superfamily
includes leukocyte function antigen-2 (LFA-2 or CD2),
leukocyte function antigen-3 (LFA-3 or CD58), intercel-
lular adhesion molecules (ICAMs), vascular adhesion
molecule-1 (VCAM-1), platelet-endothelial cell adhe-
sion molecule-1 (PECAM-1), and mucosal addressing
cell adhesion molecule-1 (MAdCAM-1). The binding
sites are different for each of these cell-adhesion
molecules.

3. Cadherins: cadherins are major cell–cell adhesion
molecules. The most extensively studied are N-cadherin,
E-cadherin, P-cadherin, and NgCAM. One unique fea-
ture of the cadherin family is homophilic binding, i.e.,
cadherins bind identical cadherins on other cells.

4. Selectins: the selectin family (CD62) includes E-selectin,
P-selectin, and L-selectin. Selectins are well-known
examples of proteins interacting with saccharide struc-
tures. Selectins are type-1 glycoproteins that share
common structural determinants. P-selectin (CD62P,
PADGEM, GMP-140) and E-selectin (CD62E, ELAM-1)
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Fig. 1 Adhesion molecules and
ligands involved in the initial
phases of vascular inflammation
(a), and cell responses in the
vessel wall during inflammation
and plaque formation (b). The
initial inflammation cascade is
shown with monocyte activation
and secretion of TNF-α and IL1,
followed by pathways involving
monocytes, T-lymphocytes,
endothelial cells, and platelets
(a). Endothelial cells are then
activated and favor adherence of
activated platelets and
leukocytes (b). Smooth muscle
cells are activated and changed
their phenotype. Plaque
formation is also characterized
by the presence of oxidized
lipids, monocyte migration, and
homing of macrophages, with
the final interrelationship
between inflammation and
thrombosis (b)

are inducible receptors expressed on activated
endothelial cells and/or platelets and binding to glyco-
conjugates on most leukocytes [24]. L-selectin (CD62L,
previously known as MEL-14 antigen or LECAM-1)
is constitutively expressed on circulating lymphocytes,
neutrophils, monocytes, and platelets, and recognizes
specific ligands on endothelial cells.

5. Proteoglycans: the proteoglycans encompass a large
group of core proteins with attached sulfated glycosami-
noglycans (GAG). The specificity of their interactions
with vascular components is related to the nature and
distribution of the GAG chains [25].

Thus, arterial wall dysfunction is modulated by interac-
tion between blood elements (circulating leukocytes, plate-
lets, and microparticles derived from platelets or damaged
endothelial cells), circulating or local bioactive molecules,
cellular and molecular arterial wall components, and the

lesion’s microenvironment (blood flow, wall shear stress, and
thrombogenic elements). The goal is then to identify lesions
at risk of acute event, i.e., rupture and thrombosis.

Inside the wall inflammation cascade

Precursor signs of atherogenesis are early phenotypic
modulations of intimal smooth-muscle cells and cellular acti-
vation of the vessel wall by oxidized lipids (oxLDL) and reac-
tive oxygen species (ROS) (Fig. 1). Endothelial cells and
macrophages are mainly involved in these early processes
(Fig. 1). For later evolution, pathological examination has
demonstrated that plaques with thin ulceration-prone fibrous
caps with inflammatory characteristics are responsible for
fatal acute thrombosis. This finding has led to the concept
of vulnerable lesions, independently of stenosis degree and
plaque volume [2,26–28].
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Fig. 2 Establishing a new
standard for plaque
characterization, from histology
to MRI (ex vivo MRI of a
calcified lesion in a Watanabe
rabbit). Top row standard
Hematoxylin, Eosin and Saffron
(HES) histology and Von Kossa
staining for calcification. Bottom
row Ex vivo multicontrast MR
images (T1 and T2 spin echo).
No signal for calcified tissue is
seen with either sequence
(adapted from Chaabane et al.
[116])

Macrophages and foam cells (lipid-laden macrophages
originating from monocytes or from smooth-muscle cells)
are seen as the central actors in the vicious circle of the
establishment of atherosclerosis, but many other cells are
also involved in the process. Cell recruitment from the blood
stream is followed by migration of cells such as T cells
and mast cells from the immune system. In the vessel wall,
smooth-muscle cells are activated to a proliferating and
secretory phenotype (Fig. 1). A cascade of signaling and pro-
cesses such as activation, proliferation, angiogenesis, enzy-
matic reactions, and apoptosis causes evolution to move
towards the formation of a complex plaque.

The following events are linked to atherosclerotic plaque
evolution:

– activation of an inflammatory process;
– oxidative stress and production of reactive oxygen species

(ROS);
– modified phenotypes (activation, proliferation);
– apoptosis;
– angiogenesis;
– thrombogenesis.

These processes involve many cellular and molecular
agents. The frequently cited inflammatory mediators or
markers (both circulating and tissue bound) are naturally con-
sidered as targets for diagnostic and therapeutic approaches
[5,6,14,26,28–32].

The presence of key players in circulating blood, at the
blood/tissue interface or inside the vessel wall is leading to
a new concept of vulnerability. Vulnerable plaques are rup-
ture-prone lesions with a prothrombotic microenvironment.
A vulnerable patient is a patient at risk of an acute vascular
event, presenting a combination of local and systemic risk
factors. Clinical biomarkers and molecular imaging of key
identified targets will help guide indications and treatment
of vulnerable plaque [2,5,9,14,28].

MRI techniques for vessel wall imaging: the role
of contrast agents in plaque characterization

For any imaging modality, the first step is to visualize the ves-
sel wall in vivo. This is technically challenging as it requires
both high spatial resolution and a high signal-to-noise ratio
with a minimal acquisition time. Historically, attempts to
characterize atherosclerotic plaque components were made
ex vivo, to determine whether the contrast versatility of MRI
was helpful. From these initial studies, it was found neces-
sary to associate multiple sequences—i.e., T1, T2, proton
density and diffusion-weighted sequences—to obtain useful
information about plaque composition (Fig. 2).

MR characteristics of plaque components

Recent reviews have described plaque components exam-
ined by MRI in experimental and clinical studies. Lipid and
necrotic components, fibrous tissue with a dense or loose
matrix and extracellular lipids, fibrocellular tissue, calcifica-
tion with cholesterol crystals, and fresh and old thrombi have
been extensively explored [32–41]. Calcification is unequiv-
ocally characterized by absence of signal on MR sequences
(Fig. 2), dense fibrosis by a high signal on T2, lipid-necrotic
core by a low signal on T2 and a variable signal on T1, and
fresh thrombus by a high signal on T1. Many studies are now
focusing on characterizing the fibrous cap—thickness, pres-
ence of fissures or inflammation sites—as elements for the
assessment of lesion vulnerability or instability. MR contrast
agents are very useful here, to delineate the fibrous cap and
ulcerations and enhance inflamed tissues [42–47].

In vivo high-resolution MRI techniques in clinical
and experimental settings

In vivo techniques involve high-resolution sequences with
the best compromise for temporal resolution. Until recently,
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spin echo sequences were considered the most useful, despite
their relatively long acquisition time.

In humans, most clinical plaque imaging studies have
been performed on the carotids. Carotid imaging in patients
involves four prerequisites:

– optimized coil for a small field of view (carotid coil);
– carefully adjusted coil and patient position, to ensure

patient comfort;
– multicontrast high-resolution sequences in minimal

acquisition time;
– electrocardiograph (ECG) synchronization and bright and

black blood acquisitions, with swallowing and respiratory
motion under control.

Imaging with 3 T or higher magnetic fields is beneficial
in terms of increased signal-to-noise ratio [48], but limita-
tions such as specific absorption rate (SAR) deposition and
optimal coil design still need to be fully explored.

Experimentally, high resolution is even more crucial in
animal models of atherosclerosis such as hypercholesterol-
emic rabbits or genetically modified mice. In these studies,
the main focus of research is seldom plaque component iden-
tification but rather physiopathological exploration by molec-
ular targeting and bioengineering, with MRI being used in a
multimodal exploration context [49].

Role of clinically available contrast agents

Plaque permeability and neovascularization are explored
with MRI via conventional nonspecific contrast agents [43,

46,47,50]. Either a compromise low-resolution sequence for
dynamic acquisition or a single postcontrast time point with
a spatial resolution T1 sequence can be used. Nonspecific
contrast agents diffuse rapidly in the fibrous cap, enabling
measurement of thickness and assessment of reactivity
[42,44–46]. In MR acquisition using T1 agents, a sufficiently
robust T1 sequence, meeting all the requirements of in vivo
acquisition [black blood, ECG synchronization, stable T1
weighting, exclusion of respiratory artifacts, multislice two-
(2D) or three-dimensional (3D) imaging], remains to be
obtained [51–53]. The main studies using gadolinium che-
lates have dealt with vasa vasorum in the adventitia and
angiogenesis. Kinetic models are then applied to evaluate
parameters such as blood volume and permeability index
[46,50]. The principal limitations of kinetic modeling are
those encountered for tumoral angiogenesis measurement,
i.e., interstitial diffusion of nonspecific contrast agents, and
the nonlinear relationship between MR signal and contrast
agent concentration. The additional difficulty for kinetic stud-
ies in the vessel wall is to combine strong and fast T1-
weighted MR acquisition, high spatial resolution, a reference
blood curve kinetic, and blood and fat signal suppression.

Two main issues are awaiting the arrival on the market
of new blood pool agents [54]. First, blood pharmacoki-
netics is far more appropriate for the study of plaque per-
meability and neovascularization [55] (Fig. 3). Second, the
capacity to shorten either tissue T1, T2 or T2* is extended
by using macromolecular platforms or nanoparticles [28,
31,56–58]. The efficiency of a paramagnetic MR contrast
agent is described by its relaxivities r1 and r2, which are the
constants of proportionality between contrast agent concen-

Fig. 3 Dynamic contrast enhancement in the abdominal ApoE-/- mouse aorta with a macromolecular paramagnetic blood pool agent (from
Chaabane et al. [55], with permission)
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Fig. 4 Inflammation imaging
with iron oxide particles:
susceptibility-induced signal
loss in a cholesterol-fed rabbit
after denudation and balloon
angioplasty of the infra-renal
abdominal aorta (adapted from
M. Sigovan et al., Magn Reson
Med, submitted). Top row
In vivo gradient echo imaging
(pre- and post-contrast). Bottom
row Histology with Perls
staining shows iron in blue at the
shoulder of the lesion. Ex vivo
multicontrast images (from left
to right proton density, gradient
echo, and T2 spin echo) show
signal loss at the same location

tration and change in longitudinal or transversal relaxation
rate, expressed in s−1 mM−1 per gadolinium or iron unit.
With a nonspecific gadolinium contrast agent, r1 efficiency is
rather low (3–5 s−1 mM−1) at a 1.5 T clinical magnetic field.
Moreover, commercial gadolinium complexes are composed
of a single gadolinium entity, whereas blood pool agents may
contain several tens of contrast ions. The ratio between r2 and
r1 determines whether a contrast agent can be better used for
contrast-enhanced T1-weighted or T2/T2*-weighted imag-
ing. The gadolinium-based contrast agents (see example in
Fig. 3) are generally employed as T1 agents, generating posi-
tive contrast (bright spot), as their r2/r1 ratio is low (typically
between 1.1 and 2), whereas iron oxide particles are more
often viewed as T2* or susceptibility agents with dark spots
(Fig. 4).

Ultrasmall iron oxide particles (USPIO) have versatile
behavior, depending on their coating and the size of the iron
crystal. They are used either as T1 agents for MR angiogra-
phy applications or as T2/T2* agents for cell-labeling pur-
poses [31,54,59–62]. When injected into the blood stream,
iron oxide particles encounter phagocytosis by cells of the
reticulo-endothelial system. In atherosclerosis, small or ultra-
small iron oxide particles (SPIO or USPIO) have been eval-
uated both experimentally [61–70] and clinically [71–75] as
markers of activated monocytes/macrophages, using gradi-
ent echo sequences and the T2* effect. Intraplaque iron par-
ticle deposition is visualized as susceptibility-induced signal
loss [64]. Contrast changes are related to macrophage iron

uptake inside the plaque. However, the intensity of contrast
changes depends on many critical factors, i.e., the animal
model (genetically modified mice, Watanabe rabbits, or New
Zealand rabbits with endothelial denudation and fat diet),
and the MRI protocol (USPIO dose and characteristics, MR
sequences and imaging window), as discussed in dedicated
papers [67,76].

Studies using iron oxide nanoparticles as markers of acti-
vated macrophages in various inflammatory contexts such as
stroke or multiple sclerosis have shown that signal loss is
a combination of iron particle uptake by macrophages and
nonspecific diffusion of nanoparticles as a consequence of
increased permeability and neovascularization in inflamed
tissue [77]. Discriminating T1, T2, and T2* effects is then
thought to help the determination of iron location in the extra-
cellular space (T1 effect) and its cellular internalization (T2*
effect) [61]. The combination of both should allow follow-up
of iron uptake and cell trafficking after iron uptake. Speci-
ficity could also be improved by modified coatings or by
conjugating the particles with specific ligands (see the next
section). Thus, ongoing USPIO research aims at improving
the specificity and quantification of iron nanoparticles:

1. by combining T2/T2* and T1 effects on the MR signal
using different MR sequences to improve iron location
and quantification [61,77]

2. by developing MR sequences to generate positive signal
from susceptibility effects [78,79]
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3. by functionalizing USPIOs to target the inflammatory
process [28,49]

4. by performing direct tracking of iron or fluorescently
labeled monocytes by a combination of optical and MR
techniques [80].

Cellular and molecular targeting of atherosclerosis
by MRI markers

MRI markers can be designed to target either cellular players
at the blood/vessel interface or deeper inside the vessel wall,
or molecular components identified as key biomarkers (i.e.,
soluble markers circulating in blood or in the interstitium, or
molecules expressed at the surface of activated cells). The
main targets and protocols are summarized in Table 1.

In a first approach, nonspecific contrast agents or blood
pool contrast agents with dynamic contrast enhancement pro-
tocols can be used to evaluate inflammatory consequences
such as increased permeability and neovascularization [45,
50,55,81,82] (Fig. 3).

Cellular MRI in atherosclerosis is mainly represented by
monocyte/macrophage imaging. Macrophages were the first
targeted cells to be explored by MRI for two reasons: they
have a central role in the inflammatory process, and their MR
labeling by iron oxide particles is well known [64,71–73].
They have been characterized in various experimental animal
models (Watanabe rabbit or New Zealand rabbit, fed with a
fatty diet after endothelial injury). After iron oxide uptake by
macrophages, a susceptibility effect and a focal signal loss
is induced, collocated with inflammation on histopathology
(Fig. 4). Ongoing studies are exploring the influence of the
pharmacokinetic behavior and surface coating of the particles
(starch, dextran, polyethylene glycol, anionic charges, etc.)
on increasing macrophage uptake and MR response spec-
ificity, thereby decreasing the nonspecific signal from the
passive diffusion of iron oxide [31,62,66–69]. The funda-
mental requirements to go on to large-scale clinical trials with
USPIOs are: first, to improve specificity and quantification
of iron-induced signal changes in the vessel wall; second, to
design standardized protocols on clinical scanners at 1.5 and
3 T; and lastly, to document late iron particle biotransfor-
mations in inflammatory tissue and their consequences for
longitudinal intraplaque signal intensity monitoring [67,76].

For molecular imaging, targeting can address the main
events of atherosclerosis evolution, i.e., inflammation and
angiogenesis, oxidative stress, proliferation and apoptosis,
and thrombosis (Table 1).

Inflammation and angiogenesis targeting

The main inflammation targets are cell adhesion molecules
(CAM) (Fig. 1). MR markers have been designed to target

immunoglobulins, such as VCAM-1 [49,83], the selectin
family, such as E selectins [84–87] and integrins (alpha-ν
beta-3) [88–90]. As the expression of adhesion molecules on
activated endothelial cells has been extensively explored in
biology and biochemistry, targeting specificity is generally
tested on these cells. For VCAM-1, a very small iron oxide
particle (CLIO) is used as a contrast carrier, combined with
a mimetic of VLA4 (Fig. 1), the main ligand of VCAM-1.
A fluorochrome is added on the iron particles to enable dual
optical and MR detection [49,83]. Targeting efficiency was
demonstrated by an extensive in vitro study [83], confirmed
in vivo in mice and improved by the phage display technique
[49,91] (Fig. 5). For E-selectin, two targeting strategies have
been employed, one by adding a monoclonal antibody frag-
ment to the CLIO particles [84], and the second by grafting
a mimetic of the E-selectin ligand onto a gadolinium com-
plex [85]. The specificity of the new markers was evaluated
in vitro [84,85], ex vivo and in vivo in animal models [86,87].
In addition, a strategy using a mimic of a P-selectin ligand
was recently evaluated in mice by our own team to target
plaque inflammation [92].

Alpha-ν beta-3 integrin was targeted by addition of the
RGD peptide or RGD mimetic on either perfluorocarbon
Gd platforms [89,90] or iron oxide particles [93,94]. The
general applications were neovascularization in tumors and
angiogenesis [94], but the strategy was also applied to plaque
inflammation diagnosis with the exciting new option of tar-
geted drug delivery [88,89].

Oxidative stress

As vessel-wall accumulation of lipids triggers oxidative
stress, lipophilic or LDL particle markers are of particular
interest for plaque imaging. One study investigated specific
binding to LDL via the LDL receptor interaction: a lipophilic
gadolinium-based agent with an additional fluorophore was
synthesized to label LDL particles in vitro and to track labeled
LDL in vivo [95]. Other lipophilic gadolinium agents such as
gadofluorine [96] or gadolinium micelles [82] were applied
to plaque imaging in rabbits and mice, and gadolinium lipo-
somes [81] and functionalized HDL particles [97] to plaque
imaging in mice. Gadolinium micelles have been success-
fully immunolabeled using the biotin–avidin–biotin bridge
technique to target the macrophage scavenger receptor [98].

Oxidative stress is also under investigation by targeting
enzymes such as matrix metalloproteinase [99] or myelop-
eroxidase [100].

Proliferation and apoptosis

Smooth-muscle cell proliferation is involved in the response
to vessel wall injury (Fig. 1). For proliferation, two options
have already been tried on cell cultures, one for molecular

123



136 Magn Reson Mater Phy (2007) 20:129–142

Ta
bl

e
1

Ta
rg

et
s

of
th

e
m

ai
n

pa
th

ol
og

ic
al

pr
oc

es
se

s
as

se
ss

ed
us

in
g

sp
ec

ifi
c

M
R

m
ar

ke
rs

an
d

th
ei

r
as

so
ci

at
ed

M
R

pr
ot

oc
ol

s

Pa
th

ol
og

ic
al

pr
oc

es
se

s
M

R
m

ar
ke

rs
Ta

rg
et

M
R

m
et

ho
do

lo
gy

,s
pe

ci
es

R
ef

er
en

ce
s

In
fla

m
m

at
io

n
(a

ng
io

ge
ne

si
s)

G
d

C
he

la
te

s
N

on
sp

ec
ifi

c:
pe

rm
ea

bi
lit

y
an

d
le

ak
ag

e
C

lin
ic

al
,

dy
na

m
ic

T
1,

in
cr

ea
se

d
pe

rm
e-

ab
ili

ty
an

d
va

sc
ul

ar
ity

[4
2,

46
,5

0]

B
lo

od
po

ol
ag

en
ts

(G
d

lip
os

om
es

,G
d

m
ac

ro
m

ol
ec

ul
es

)
N

on
sp

ec
ifi

c:
pe

rm
ea

bi
lit

y
an

d
le

ak
ag

e
T

1,
an

im
al

s
(r

ab
bi

ts
,m

ic
e)

,i
nc

re
as

ed
pe

r-
m

ea
bi

lit
y

an
d

va
sc

ul
ar

ity
[5

5,
81

]

In
fla

m
m

at
io

n
Ir

on
ox

id
e

pa
rt

ic
le

s
(S

PI
O

,U
SP

IO
)

A
ct

iv
at

ed
m

ac
ro

ph
ag

es
E

x
vi

vo
T

2*
(S

PI
O

)
[7

1]

In
vi

vo
T

2*
(U

SP
IO

),
ra

bb
its

[6
4,

66
,6

8,
69

,1
15

]

C
lin

ic
al

,T
2*

(a
or

ta
,c

ar
ot

id
s)

[6
5,

72
–7

5]

Ir
on

ox
id

e
pa

rt
ic

le
s

(m
im

et
ic

A
b

V
L

A
4+

flu
or

oc
hr

om
e)

A
dh

es
io

n
m

ol
ec

ul
es

V
C

A
M

-1
,T

1/
T

2*
ex

vi
vo

,i
n

vi
vo

(m
ic

e)
[4

9,
83

,9
1]

G
d

pl
at

fo
rm

s
(b

io
m

im
et

ic
ca

rb
ox

ym
et

hy
ld

ex
tr

an
-G

d)
A

dh
es

io
n

m
ol

ec
ul

es
Se

le
ct

in
s,

T
1,

in
vi

vo
(m

ic
e)

[9
2]

G
d

pl
at

fo
rm

s
(p

er
flu

or
oc

ar
bo

n
em

ul
si

on
In

te
gr

in
s

(α
vs

β
3)

In
vi

vo
ra

bb
it

ao
rt

a
(f

at
di

et
),

T
1

[8
9,

90
]

+
pe

pt
id

om
im

et
ic

vi
br

on
ec

tin
an

ta
go

ni
st

=
R

G
D

)

G
d

m
ic

el
le

s
M

ac
ro

ph
ag

e
sc

av
en

ge
r

re
ce

pt
or

M
ic

e
[9

8,
11

7]

T
he

ra
no

st
ic

s
na

no
pa

rt
ic

le
s

(m
ul

tif
un

ct
io

na
lU

SP
IO

)
M

ac
ro

ph
ag

es
M

ic
e

[1
18

]

In
vi

tr
o

la
be

lin
g

(i
ro

n
pa

rt
ic

le
s,

In
di

um
11

1)
M

on
oc

yt
es

/m
ac

ro
ph

ag
es

M
ic

e
[8

0,
11

9,
12

0]

O
xi

da
tiv

e
st

re
ss

L
D

L
la

be
le

d
(G

d
ch

el
at

es
+

flu
or

oc
hr

om
e)

L
ip

id
di

st
ri

bu
tio

n
In

vi
tr

o
L

D
L

la
be

lin
g

[9
5]

L
ip

op
hi

lic
G

d
ch

el
at

es
,H

D
L

or
lip

id
-b

as
ed

G
d

na
no

pa
rt

ic
le

s
L

ip
id

di
st

ri
bu

tio
n

G
ad

ofl
uo

ri
ne

,m
ic

el
le

s
or

lip
os

om
es

,
ra

bb
it

ao
rt

a,
T

1
[8

1,
82

,9
6,

97
]

Fu
nc

tio
na

liz
ed

G
d

ch
el

at
e

M
M

Ps
In

vi
vo

T
1,

m
ic

e
[9

9,
12

1]

Se
ro

to
ni

n
G

d
ch

el
at

e
(S

M
A

R
T

)
M

ye
lo

pe
ro

xi
da

se
T

1
up

on
en

zy
m

e
ac

tiv
at

io
n,

in
vi

tr
o

[1
00

]

Pr
ol

if
er

at
io

n
G

d
pl

at
fo

rm
s

(p
er

flu
or

oc
ar

bo
n

em
ul

si
on

+
B

io
tin

)
SM

C
In

vi
tr

o,
cu

ltu
re

d
SM

C
,1

9F
im

ag
in

g
[1

01
]

T
is

su
e

fa
ct

or
(v

ia
T

F-
A

b-
av

id
in

)
T

1/
T

2
re

la
xi

vi
tie

s
(=

f(
B

0)
)

[5
6]

A
ng

io
ge

ne
si

s
Ir

on
ox

id
e

pa
rt

ic
le

s
(m

im
et

ic
A

b
V

L
A

4
+

flu
or

oc
hr

om
e)

A
ct

iv
at

ed
en

do
th

el
ia

lc
el

ls
In

vi
vo

,A
po

E
m

ic
e,

T
2

[4
9,

91
]

Ir
on

ox
id

e
pa

rt
ic

le
s

(C
D

62
E

A
b

fr
ag

m
an

t)
E

se
le

ct
in

C
ul

tu
re

ce
lls

[8
4]

Fu
nc

tio
nn

al
iz

ed
G

d
co

m
pl

ex
es

E
se

le
ct

in
C

ul
tu

re
ce

lls
,m

ic
e

(b
ra

in
)

[8
5,

87
]

G
d

pl
at

fo
rm

s
(p

er
flu

or
oc

ar
bo

n
em

ul
si

on
In

te
gr

in
s

(α
vβ

3)
,

In
vi

vo
ra

bb
it

ao
rt

a
(f

at
di

et
),

T
1

[8
9]

+
Pe

pt
id

om
im

et
ic

vi
br

on
ec

tii
n

an
ta

go
ni

st
)

In
vi

vo
ra

bb
it

ao
rt

a
(+

dr
ug

),
T

1
[8

8]

A
po

pt
os

is
Ir

on
ox

id
e

pa
rt

ic
le

s
(C

L
IO

-A
nn

ex
in

V
+

C
y5

5)
A

nn
ex

in
V

C
el

ls
ex

pr
es

si
ng

ph
os

ph
at

id
yl

se
ri

ne
,

m
ic

e,
T

2
[1

02
]

L
ip

id
-b

as
ed

G
d

or
Fe

(+
qu

an
tu

m
do

ts
)

A
nn

ex
in

V
C

el
ls

ex
pr

es
si

ng
ph

os
ph

at
id

yl
se

ri
ne

,
T

1/
T

2
[1

03
,1

04
]

T
hr

om
bo

ge
ne

si
s

N
o

co
nt

ra
st

ag
en

ts
(n

at
ur

al
ir

on
de

ri
va

tiv
es

)
T

hr
om

bu
s

Sp
ec

ifi
c

M
R

se
qu

en
ce

s
5

[1
0,

33
,3

4]

T
hr

om
bo

ge
ne

si
s

Fu
nc

tio
nn

al
iz

ed
G

d
co

m
pl

ex
es

(E
P-

,E
PI

X
)

Fi
br

in
Fi

br
in

,
T

1
se

qu
en

ce
s,

in
vi

vo
(r

ab
bi

ts
,

sw
in

e)
[1

06
–1

08
]

G
d

pl
at

fo
rm

s
(p

er
flu

or
oc

ar
bo

n
em

ul
si

on
+

B
io

tin
)

Fi
br

in
Fi

br
in

(v
ia

Fi
br

in
-A

b-
av

id
in

),
T

1
an

d
19

F
[1

09
,1

10
,1

22
]

123



Magn Reson Mater Phy (2007) 20:129–142 137

Fig. 5 Molecular imaging of
inflammation in the mouse
aortic sinus. Cardiac and
respiratory gated MRI before
and after injection of iron oxide
nanoparticles targeted to the
VCAM-1 adhesion molecule.
The high specificity of the probe
was obtained by grafting a
peptide identified by phage
display technique (from
Nahrendorf et al. [91], with
permission)

imaging only and the second with addition of local drug
delivery [56,101]. The target was tissue factor, a transmem-
brane glycoprotein present at the surface of activated cells. It
is responsible for the initial phases of thrombosis and is also
involved in proliferation and angiogenesis. The marker was
designed to target proliferating smooth-muscle cells express-
ing tissue factor [56].

Apoptosis is a key process in many malignant progres-
sions, such as cancer, chronic inflammation, and atheroscle-
rosis. The membrane translocation of the apoptosis marker
phosphatidylserine (PS) was targeted in two ways: the design
of fluorescent CLIO particles with annexin V [102] and the
synthesis of annexin V-conjugated gadolinium or iron lipo-
some containing quantum dots for dual MRI and optical
detection [103,104].

Thrombosis

The final process is thrombosis, which can be detected either
by natural MR contrast of methemoglobin [34,105,106] or by
specific fibrin markers [106–110]. For fibrin marker valida-
tion, proof of concept and validation steps include imaging of
fibrin-labeled clots, in vitro experiments, and in vivo admin-
istration [107,109,110]. Perfluorocarbon particles enabled
enhanced specificity by additional 19F MRI [110].

Each new MR marker validation involves the following
steps: (1) establishing the relevance of the chosen strategy in
terms of targeting and specificity of the newly synthesized
compound; (2) MRI detection of the marker and the limit
of sensitivity; (3) collocation of the marker with the target,
confirmed by experimentally enhanced target expression or
by in vitro and in vivo competition protocols; and (4) in vivo
validation after a systemic injection with careful examina-
tion of pharmacokinetic profile and discrimination from non-
specific enhancement (for gadolinium) or background noise
(for iron particles). The first three phases are shared by any

sensor and have been handled with optical probes in confocal
microscopy. This is one reason for associating the gadolinium
or iron marker with a fluorophore in the development of new
MR markers. The second reason is the lack of sensitivity
with MRI. For gadolinium contrast agents, the limit for one
gadolinium unit is usually in the micromolar range. Sensitiv-
ity can be increased to the nanomolar or even the picomolar
range by increasing the relaxivity per gadolinium unit (high-
relaxivity agents) and by formulation with a high payload of
gadolinium per binding molecule (macromolecules, gadolin-
ium nanoparticles, or gadolinium liposomes) [56]. Another
way is to choose a target with a large number of binding sites,
such as fibrin [108]. For iron oxide particles, the susceptibil-
ity effect is more powerful than the paramagnetic effect and
iron particles are already loaded with multiple irons, with
an in vitro detection limit in the nano- to picomolar range.
However, in vivo detection with iron oxide particles requires
careful protocols, as a dark spot is more difficult to inter-
pret than a bright spot. Thus, the specificity of in vivo iron
oxide imaging is MR-sequence-dependent and new detection
strategies are still under intense investigation [78,79].

Limitations to the clinical use of Gd- and iron-based
platforms for molecular imaging in atherosclerosis

From the increasing amount of experimental data on athero-
sclerosis and targeted MR contrast agents, several limitations
can be identified.

First, for gadolinium-based markers, nonspecific uptake
due to increased inflammatory tissue permeability makes a
dynamic follow-up from 1 to 24 h post-injection manda-
tory, to highlight differences between nonspecific and spe-
cific enhancement. The poor sensitivity of MRI is also an
important limitation when using gadolinium agents. An opti-
mal balance has to be found between the number of gad-
olinium units per macromolecule (i.e., >100), the stability
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of the gadolinium complex, a high relaxivity per gadolin-
ium unit and conserved macromolecule r1 relaxivity at high
magnetic fields. The poor sensitivity also limits the choice
of target, which needs to have a high expression level in the
lesion.

The steric hindrance of these gadolinium platforms
(nanoparticles >100 nm) determines specific routes for bio-
distribution and clearance, and sets limits to extracellular
targets. Moreover, clinical applications will be subject to
safety concerns, i.e., liver uptake and Gd complex stability,
which will have to be determined as a function of formula-
tion and biodistribution. For clinical applications, cheap and
easy chemistry will also be a major concern for synthesis
scale-up.

The limitations with iron oxide particles lie mainly in their
negative effect on the signal and in the lack of quantifica-
tion. On gradient echo, small signal loss at short TE is dif-
ficult to discriminate from artifacts: a long TE gives larger
susceptibility effects but with poor image quality and loca-
tion. In animal compared to human studies, larger USPIO
doses are injected (typically, 45 µmol Fe/kg in humans versus
200–1000 µmol Fe/kg in animals). The interspecies variabil-
ity of USPIOs’ blood half-life and pharmacokinetics, which
are also dose dependent (partly by saturation of the reticulo-
endothelial system), makes it difficult to extrapolate experi-
mental results to clinical findings. By testing different USPIO
preparations, it has been shown that prolonged blood res-
idence facilitates penetration into deep compartments such
as atherosclerotic lesions; but a long delay between injec-
tion and the imaging window is then a major issue for clin-
ical application. The time after injection to allow the signal
from blood to decrease as well as the nonspecific distribu-
tion by permeability gives an acquisition window that may
be delayed by as long as 5–7 days after USPIO administra-
tion. Lastly, for clinical applications, long-term follow-up
of iron nanoparticle biotransformation, and of the fate of
iron-labeled cells, will be required to fully understand their
behavior in inflammatory tissue.

The ultimate goal for clinical diagnosis is to characterize
vulnerable plaque by molecular imaging. Plaque rupture is
a major cause of atherothrombosis; unfortunately there is no
animal model for plaque rupture with consequences such as
sudden death, brain or myocardial infarction. Plaque rupture
has been reported in the innominate artery of ApoE KO mice,
but the interval between thrombus formation and thromboly-
sis is much shorter than in humans, making it very difficult to
observe [111–114]; also, the thrombus is very small in mice
compared to humans. Defining vulnerable plaque in animal
models has to take account of these kinetic factors, and plaque
vulnerability biomarkers also need to adapt to such interspe-
cies differences. In the literature, the ApoE KO mouse is the
most common animal model of atherosclerosis, often using a
Western diet for up to 6 months to study inflammation and the

key processes involved in plaque vulnerability. Another ani-
mal model is the Watanabe rabbit, which also has to be fed
a high-fat diet to increase plaque inflammation. For vessel
wall inflammation in the rabbit, the alternative is a surgi-
cally induced endothelial lesion, together with a high-fat diet.
Depending on the animal model used, very different results
are observed, as shown with USPIOs [63–66,68–70,115].

Conclusion

The present review deals with the interplay between the com-
plex vascular biology involved in plaque formation, inflam-
mation and atherothrombosis and the potential role of MR
contrast agents in this interplay. We focused on inflamma-
tion and adhesion molecules to illustrate their high poten-
tial for molecular imaging with MRI. They can be injected
directly, both to target elements in the blood stream, as adhe-
sion molecules are present both at the surface of immune cells
and platelets, and to characterize the vessel wall, as they are
highly expressed on activated endothelium and plaque com-
ponents. Moreover, a growing body of evidence shows their
importance in advanced lesions as a link between inflamma-
tion and immune response on the one hand and thrombosis on
the other. The triggering sequence leading to plaque rupture
is still a matter of debate. In humans, the definition of vul-
nerable plaque is moving towards a more integrated vision
of the vulnerable patient. In animal models, plaque rupture
is rarely seen, and moreover shows interspecies differences
that have to be taken into account in defining plaque vul-
nerability. Bringing molecular imaging and vascular biology
together will provide new information on dynamic processes,
such as inflammation and thrombogenesis.

Due to its contrast flexibility and high spatial resolution,
MRI is a promising new technique for the characterization
of inflammation in atherosclerosis. MRI of intraplaque mac-
rophage activity using iron oxide particles is already under
clinical investigation. Processes such as oxidative stress, pro-
liferation, apoptosis, and thrombogenesis have recently been
investigated by MRI. A fibrin marker for the diagnosis of
thrombosis is under development for clinical trials. Newly
designed gadolinium or iron oxide MR markers for molec-
ular imaging have targeted integrins, immunoglobulins, and
selectins to characterize vessel wall inflammation and angio-
genesis, but still have certain limitations for application in
large-scale clinical trials

In conclusion, molecular MRI of atherosclerosis is still
in its infancy, and numerous targets and imaging strategies
remain to be explored in close collaboration with molecular
biologists. Information needs to be gathered from multiple
modalities and experimental models to deal with the different
facets of this complex chronic vascular disease.
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