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Abstract Electrocardiogram (ECG)
acquisition is still a challenge as
gradient artefacts superimposed on
the electrophysiological signal can
only be partially removed. The signal
shape of theses artefacts can be
similar to the QRS-complex, causing
possible misinterpretation during
patient monitoring and false
triggering/gating of the MRI. For
their real-time suppression, an
adaptive filter is proposed. The
adaptive filter is based on the
noise-canceller configuration with
LMS coefficient updates. The
references of the noise canceller are
the three gradient signals that are
acquired simultaneously with the
noisy ECG. Tests were done on
patients, on volunteers and using an
MR-safe ECG simulator. The noise
canceller’s performance was
measured offline, simulating
real-time processing by
point-by-point operations. To create
worst-case scenarios, clinical

sequences with strong- and
fast-switching gradients have been
chosen. The noise-cancelling filter
reduces the gradient artefacts’ peak
amplitudes by 80–99% after
adaptation, without changing the
desired ECG signal shape. The
estimated reduction of total average
power of the MR gradient artefacts
is 62–98%. The proposed filter is
capable of reducing artefacts due to
strong- and fast-switching gradients
in real-time applications and
worst-case situations. The quality of
the ECG is sufficiently high that a
standard one-lead QRS-detector can
be used for gating/triggering the
MRI. For permanent patient
monitoring, further improvements
are needed.

Keywords ECG · Gradient artefacts ·
Magnetic resonance imaging · MRI
triggering/gating · Physiologic
monitoring

Introduction

The acquisition of electrophysiological signals (such as
ECG or EEG) at diagnostic signal quality during MRI
has become the focus of a number of research laboratories,
with the aim of finding a correlation between the physi-
ological signal and the MR image. The EEG can be cor-
related with the fMRI, while the ECG or SpO2 is needed
for gating/triggering the MRI, especially for cardiac MRI.
Imaging a moving organ such as the heart requires about
10–15 heart cycles, for which each MR sequence must be

triggered exactly at the same location within the cardiac
cycle. Peripheral pulseoxymetry (SpO2) is sometimes con-
sidered a more robust method than the electrocardiogram
(ECG). Its acquisition and transmission is purely optical
so that no interference with the MR equipment occurs,
minimizing the risk of burns for the patient. However,
ECG is preferred as the electrical activity of the heart
bears a constant relationship to its mechanical activity,
and also in cases where patient monitoring is required.
Furthermore, the R-wave, the most easily recognized fea-
ture, precedes the mechanical systole. Unfortunately, the
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ECG suffers from interference with the MR scanner caus-
ing possible misinterpretation during patient monitoring
and false triggering/gating of the MRI. To overcome the
problem of such interference when triggering/gating the
MRI, a solution based on the vector cardiogram [1] and
another solution based on the MR image [2] have been
proposed. Unfortunately, these solutions are not applica-
ble to patient monitoring.

The main interferences overlying the desired electro-
physiological signal are the following: (1) Artefacts due to
magnetic induction. It can easily be seen that whenever the
magnetic flux changes, a voltage is induced. The change
of magnetic flux can either be caused by a movement of the
lead wires or electrodes due to patient movement, or by
a change of the local magnetic field due to switching MR
gradients. (2) Voltages induced by the blood flow [3] (the
Hall effect is often referred to as a magnetohydrodynamic
effect in the case of the ECG, and as a cardioballisto-
gram in the case of the EEG). (3) Artefacts due to radio-
frequency (RF) induction that the MR scanner emits at
the corresponding Lamor frequency.

The frequency of the RF induction exceeds the
maximum frequency of the desired physiological signal
by factors. The RF induction problem is usually solved
by shielding the ECG sensor and using adequate HF fil-
ters. Artefacts due to patient movement can be partially
prevented by asking the patient for cooperation or fix-
ing the patient’s position. Median templates are calculated
for partial suppression of the artefacts due to Hall effect
[4]. Gradient artefacts (due to the switching MR gradient
field) can be partially reduced by minimizing the size of
the ECG acquisition system and using optical transmis-
sion instead of long lead wires [5].

In a recent paper, Lui et al. [6] have theoretically shown
that the time-varying magnetic field affects the cardiac
electric activity, increasing the risk of cardiac arrhythmia
in patients with cardiac disease. To analyse this influence
(i.e. possible heart arrhythmia) and to ensure accurate
monitoring of such patients, an ECG of sufficient quality
is needed. Several methods for reducing signal artefacts
superimposed on the biomedical signal have been pro-
posed. Most of them concentrate on the EEG for fMRI
applications and often use a predefined MR image se-
quence [4,7–9]. Offline suppression of signal artefacts due
to MR gradients on ECG has already been proposed in
[10], although this is not applicable to the real-time case,
and in [11], for which unfortunately no performance re-
sults are given.

In summary, we are looking for a real-time filter with
the following goals. Firstly, accurate and constant delayed
online detection of the R-wave should be possible in order
to get cardiac MR images of sufficient quality [12]. Sec-
ondly, the person supervising the patient lying in the MRI
tunnel can only interpret the physiological signal accu-
rately when the signal quality prevents false interpretation

of physiological heart activity. And thirdly, the real-time
filter should work for any clinically relevant MR sequence.

Methods

The real-time suppression of gradient artefacts is based on the
noise-canceller configuration for adaptive filters [15,16]. This
configuration needs a primary input including the desired signal
and additive noise. The noise must be correlated with the refer-
ence input. In our case (Fig. 1), we use three different filters (each
calculates on one spacial axis). Therefore, three reference signals
Gx, Gy and Gz are acquired from the gradient amplifier of the
MR scanner. The gradient-disturbed ECG is acquired as the
primary input with an optical sensor, with short high-resistive
carbon wires lying near the patient. This minimizes the risk of
burns due to RF interference during ECG acquisition [13,14].

The tests were performed on a 1.5-T MRI (GE Signa with
Excite II, Milwaukee, MI, USA). The ECG was acquired us-
ing the optical ECG sensor of the patient-monitoring system
Maglife (SCHILLER Médical, France). Gradients and ECG
were acquired simultaneously on a PC with 10-kHz sampling
frequency. In order to get a large range for the estimated total
average power of the MR gradient artefacts, clinical sequences
were chosen by varying their parameters and placing the elec-
trodes on different locations on the chest. To create worst-case
scenarios, sequences with strong- and fast-switching magnetic
gradients (diffusion with FOV smaller than 10 cm, black-blood
sequences, head images etc.) were also chosen. The ECG was
acquired from five volunteers working at our laboratory (aged
from 21 to 42, weight from 65 kg to 83 kg), seven patients or using
an MR-safe ECG simulator. The ECG simulator was designed
to obtain more comparable and objective ECG recordings.

Fig. 1 The gradient artefact overlying the desired ECG is suppressed
by the noise-canceller filter with LMS coefficient updates using three
reference signals (Gx, Gy and Gz). The MR gradient artefact A[n]
(which is the sum of three artefacts Ax [n], Ay [n], Az[n]) is assumed
to be additive noise and to be correlated with the reference signals
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Fig. 2 Simplified model of the gradient artefact generation and our
acquisition system. Each part of the acquisition system is mod-
elled by a subtask in order to describe its physical behaviour. The
unknown total transfer function of the acquired gradient signals
G [n] = (Gx [n] ,Gy [n] ,Gz [n])T to the gradient artefact A[n] must
be found by the adaptive noise canceller

Our home-made MR-safe ECG simulator consists of a signal
generator protected by a double copper Faraday cage simulating
a heart rate from 60 to 90 beats per minute.

Physical behaviour

In order to choose an adequate adaptive filter and inter-
pret its performance, we need to analyse the acquisition
system (Fig. 2). We assumed that the noise and signal arte-
facts which overlie the desired ECG are additive. From the
sequence parameters (TE, TR, FOV, image matrix, orien-
tation of slices, number of slices and so on), which are en-
tered into the MR station, the sequence calculator unit cal-
culates the gradient curves G(t)= [

Gx(t),Gy(t),Gz(t)
]T

for the x, y and z axes in the MR bore. These gradient
signals are used by the gradient amplifier, which powers
the gradient coils. The changing magnetic field in the MR
tunnel provokes the gradient artefacts overlying the ECG
signal. Many different sequences and sequence parameters
exist. For simplification, the gradient signals can be inter-
preted as a set of stochastic signals (the output of a sys-
tem with stochastic input). The sequence calculation unit,
modelled by h1(t), is a time-invariant and deterministic
system as long as the sequence is not changed or sequence
parameters are not modified (which is not the case during
one MRI session). The gradient amplifier and the gradient
coils are always time-invariant and deterministic systems.
Therefore, they can be modelled by time-invariant system
blocks with corresponding transfer functions h2(t) and
h3(t). The transfer function h1(t) is not of primary inter-
est in our design. The transfer function h2(t) corresponds
to the conversion of the gradient signal into gradient coil

currents. The transfer function h3(t) is based on the physi-
cal law of Biot–Savart. However, the design of the gradient
coils for perfect linear magnetic gradients in the MR bore
is much more complicated and not known in full detail.
The transfer function h4(t), which is the induction of the
magnetic gradients into the human tissue, the ECG sensor
and the lead wires provoking the gradient artefacts in the
ECG signal, is very difficult to model and has not yet been
calculated. The coaxial cables between the gradient signal
outputs of the gradient amplifier and the acquisition PC
can be described by a transmission line that is modelled by
h5(t). The AD conversion is summarized by the transfer
function h6(t).

The designed, adaptive filter simulates the convolution
of h2(t) to h4(t). Simplifying the overall transfer function
as much as possible to get a global idea of the physical
effects inside the MR bore yields:

A [n] = f
(
�B(t)

)
≈−dφ

dt
=−

d
(
�B·A

)

dt

= −
d

(( �G(t) · �r(t)
)

·A(t)
)

dt
.

where A[n] is the discrete acquired signal of the gradient
artefact due to the changing magnet gradient, B(t) is the
magnetic field in the MR tunnel, G(t) is the vector con-
taining the three gradient signals Gx, Gy, and Gz, r(t) are
the coordinates x, y and z in the MR tunnel where induc-
tion occurs and A(t) is the active area where the magnetic
flux flows through the human tissue, the lead wires and
the ECG sensor. Furthermore, the adaptive filter needs
to perform the inversion of h5(t) and h6(t) because the
discrete version of the acquired gradient signal is fed into
the adaptive noise canceller. Thus, the adaptive filter must
calculate the three transfer functions in order to estimate
the MR gradient artefacts for each axis (x, y and z) as
follows:

Āi [n]=hGi
[n]∗Gi [n] , i =x, y, z.
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Where the transfer function for each direction is defined
as:

hGi
[n] = h4i

[n]∗h3i
[n]∗h2i

[n]∗h−1
5i

[n]∗h−1
6i

[n]
∗Gi [n] , i =x, y, z.

The three transfer functions hGx , hGy and hGz are
unknown and must be found by the three filter parts of our
noise canceller. If all transfer functions remain unchanged,
a discrete linear time-invariant system with fixed impulse
responses could be used instead of the adaptive filter [9].
In this case, each impulse response must be found based
on the corresponding gradient signal where the other two
gradient signals need to be zero. Every time the sequence
is changed, a new set of impulse responses is required.
Furthermore, as soon as the electrodes, the lead wire or
the ECG sensor moves in the MR tunnel or the magnetic
behaviour of the human tissue changes, the transfer func-
tions can become time-variant. As the patient breathes,
at least the electrodes and the connected lead wires will
move and force a change in the induction of the switch-
ing magnetic gradients (change of vector r and magnetic
active area A(t)). Thus an adaptive filter, which contin-
uously follows such changes, would be a more adequate
solution.

Adaptive noise cancelling

We have seen that the overall transfer function is based
on nonlinear physical effects. We used a linear time-
varying finite impulse response (FIR) kernel to verify that
it is possible to track the nonlinear physical effects:

Ai [n] =
N−1∑

k=0

wi [k] ·Gi [n−k], i =x, y, z

where N (=256/1 kHz) is the filter window length and wi [k]
are the changing filter coefficients. Our goal was to use
a simple adaptive filter that does not need any type of
higher-order calculation or include matrix calculations.
We therefore used the least-mean-square (LMS) algorithm
proposed by Widrow et al. [16] to update the filter coeffi-
cients by replacing the error signal ε[n] with the corrected
ECG (i.e. the output of the noise canceller):

wi [n+1]=wi [n]+2µ · ε [n] ·Gi [n] , i =x, y, z

The step size µ, which controls the convergence rate,
was set to 0.15/(window filter length times variance of
reference signal). The transfer functions are learned by
the filter coefficients during the MR parameter optimiza-
tion phase (prescan) and applied when the image sequence
starts. During the image sequence, the noise canceller con-
tinues to adapt, following the changes in the MR bore. The
noise canceller’s performance was measured using Mat-
lab (Mathworks – MA) simulating real-time processing

by point-by-point operations. Two variants for the refer-
ence signals G= [Gx,Gy,Gz]T have been tested: (1) they
have been resampled to 500 Hz including anti-aliasing fil-
tering without any further preprocessing. (2) They have
been resampled to 500 Hz including anti-aliasing filtering,
whereby the DC values of the three gradient buffers Gi [0,
N-1] were subtracted.

Tests and evaluation of filter efficiency

In noise suppression cases where the performance of a fil-
ter is measured, the signal-to-noise ratio (SNR), defined
as the ratio between the total average power of the desired
signal and the total average power of the noise, is used:

SNR= E
[
s2(n)

]

E
[
n2(n)

] =
E

[
(ECG(n))2

]

E
[
A2(n)

] .

In other cases, the mean square error (MSE) defined
as the expected value of the squared difference between
the desired signal and its estimate, can also be used:

MSE=E
[(

s(n)− ŝ(n)
)2

]
.

In our case, we want to change the ECG signal as little
as possible meaning that the total average power of the
ECG, E[(ECG(n))2], remains as constant as possible. Tak-
ing the SNR as a measurement of the performance of our
filter therefore does not make much sense, as the total
average power of the ECG can vary considerably between
different subjects. In such cases, the SNR is improved even
if the total average power of the noise remains constant.
A intra-subject comparison between different cases would
therefore be possible, but not an inter-subject comparison.
Tracking the total average power of the noise is preferable.
Unfortunately, this value can only be estimated.

Using the ECG simulator, the total average power of
the noise can be estimated by deducting the ECG from the
acquired signal as the ECG curve does not change and
is already known. The total average power of the noise
can thereby be accurately calculated. For volunteers or
patients, the average of the ECG beats of a subject can
be estimated and then deducted from the acquired signal.
In this case, two error sources can be identified. Firstly,
the uncorrelated noise is filtered out of the average ECG
beat, but correlated noise (as the MR gradient artefact
can be when the ECG is used for triggering/gating) will
remain. Secondly, the average ECG beat does not include
changes in the ECG (amplitude modulation due to res-
piration, heart rate changes, arrhythmias and similar ef-
fects). To summarize, the estimated noise signal does not
always contain all noise components and could contain
signal parts of the ECG. For the correct calculation of
the mean square error (MSE), the artefact-free signal and
the filtered signal must be known. Another performance
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measurement may be to calculate of the reduction of the
MR gradient artefacts’ peak amplitudes. For each signal
the peaks of the MR gradient artefacts are identified and
their amplitudes measured. The results before and after
filtering are compared.

We propose five different test methods to evaluate the
performance of the adaptive filter.

1) Calculating the MSE between the ECG signals before
and after filtering for zero gradient signals (i.e. no MR
imaging and no MR gradient artefacts). This test is
needed to show that the filter does not change the ECG
when no MR image is taken.

2) Calculating the MSE between the ECG signal before
and after filtering if no (or very small) artefacts could
be found on the acquired signal. This test will show by
how much the adaptive filter suppresses ECG signal
parts which could be correlated with the MR gradient
signals.

3) Calculating the reduction of the estimated signal
power and amplitude peaks of the MR gradient
artefacts before and after filtering using the home-
made ECG simulator. This test directly measures the
efficiency of MR gradient artefact suppression but will
not include MR gradient artefacts induced in human
tissue.

4) Calculating the reduction of total average power and
peak amplitudes in the acquired signals which only
include MR gradient artefacts (ECG is measured on
leg or arm, where no or very small parts of the ECG
signal are present).

5) Calculating the reduction of the estimated signal
power of the complete acquired signal, and compar-
ing the peak amplitudes of the MR gradient artefacts
before and after filtering on ECG signals recorded on
volunteers and patients.

Results

In tests 1 and 2 (zero MR gradient signals and no MR
gradient artefacts), the adaptive noise canceller filter does
not change the ECG, as the largest value of MSE remains
minimal (8.0×10−4 µV2 in the case of zero gradient sig-
nals and 6.2×10−2 µV2 in the case of zero MR gradient
artefacts). Nevertheless, the unprocessed gradient signals
always provoke greater MSE values (the logarithmic ra-
tio between MSE is never negative). The question as to
why this difference can become so large (>37 dB in the
case of zero MR gradients) arises. The difference between
the ECG signal before and after filtering for both cases
has therefore been investigated in more detail. It has been
found that the unprocessed gradient signals (even if they
are zero) introduced some small DC values into the filtered
ECG signal (Fig. 3, Line 2). The adaptive filter with LMS
coefficient updates requires zero-mean reference signals

Fig. 3 The filter does not affect the ECG signal with zero MR gra-
dient and when MR gradient artefacts do not occur (Line 1). The
absolute value of the error signal (the difference between the unfil-
tered and filtered signals) is smaller than 1.1×10−2 when unprocessed
gradient are used. It is smaller than 4.8×10−4 in the case of prepro-
cessed gradients. The difference between the error signal for unpro-
cessed gradients (Line 2) and preprocessed gradients (Line 3) is due
a DC value which is provoked by the unprocessed gradients

[16], otherwise it can become unstable. Even the smallest
DC noise component in the gradient signals (when gradi-
ent signals are zero, some weak noise will still be present)
provokes such small DC components in the filtered ECG
signal, the difference between unprocessed and prepro-
cessed gradient signals may be an indicator of the stability
of the filter (Table 1).

Good results have been found in the performance mea-
surements with the ECG simulator. The reduction of the
total average power of the noise was above 62% in all cases.
The reduction of peak amplitudes is even greater (>80%).
This is due to a bias in the total average power caused by
signal components that are not part of the MR gradient
artefacts: firstly, the complete signal is used to estimate
the total average power (even if no MR artefacts occurred
during a signal segment), whereas only the MR gradient
artefact segments of the acquired signal are used in the
case of amplitude reduction. Therefore, any type of small
noise (due to analogue–digital conversion, thermal noise,
etc.) will be included in the calculation of the total aver-
age power. The value zero for the estimated total average
power of the filtered signal is not possible for such signal
segments. Furthermore, some small signal components of
the ECG simulator signal are present in the estimated
noise signal due to errors (the finite precision of the loca-
tion of the R-wave) in the subtraction of the ECG from the
acquired noisy signal (Fig. 4, Line 3). Secondly, the MR
gradient artefact segments are not reduced equally. The
reduction is highest for the peak amplitudes (see Fig. 4,
Line 2 and Fig. 5) (Table 2).
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Fig. 4 The ECG simulator gave us the opportunity to extract the
MR gradient noise (line 3) accurately and measure its total average
power as well as the peak amplitudes for the performance tests of the
adaptive filter

Fig. 5 The acquired ECG (lines 1 and 2) and the filtered ECG (lines 3
and 4) from a patient during a diffusion sequence (worst-case param-
eters: B=1000, FOV=10 cm, head image) is shown. The segments of
the MR gradient artefacts of the signals have been marked by brack-
ets for both cases. The reduction of the MR gradient artefacts is by
80% in the first segment and by more than 90% in the second part
of the third segment. For small MR gradient artefacts (segments 1
and 2), the MR gradient artefacts partially remain. The MR gradi-
ent artefact suppression is more efficient for large amplitudes than
for small ones, whereas some minor noise will always remain

It is best to use test 4 to mitigate errors caused by the
subtraction of an estimated ECG (as in test 3 or 5). In

fact, the results for amplitude reduction are excellent for
electrode placement on the arm or the leg as long as the
total average power of the unfiltered MR gradient noise
is greater than 0.010 µV2. In all other cases, the filtered
noise is so small that it is covered by the other noise com-
ponents and the calculation of the total average power of
the filtered noise and the measurement of the amplitude
reduction (could be rated as 100%) become impossible or
may not be applicable for the performance measurement.

In the fifth test, the performance is calculated for sig-
nals that include MR gradient artefacts acquired from vol-
unteers and patients. The total average power estimation
of the MR gradient artefacts becomes impossible when-
ever worst-case scenarios have been used. The triggering
of the acquired signal is impossible without prior knowl-
edge. With prior ECG annotation, the signal-averaging
techniques can be used to calculate the average ECG beat
and subtract it from the noisy signal. This allows the
estimation of the total average power. The total average
power estimation of the acquired signal segments in which

no MR gradient artefacts occurred and the total average
power estimation of the noisy signal (without subtraction
of the ECG) has therefore been made. The results can be
used as long as the total average power of the MR gradient
noise is greater than the total average power of the ECG
signal without MR gradient artefacts. If the total average
power of the noisy signal becomes smaller than three times
the total average power of the clear ECG, the measurement
of the total average power reduction is biased (Patients 5,
6 and 7 in Table 4). The comparison of the MR gradient
artefact amplitude peaks leads to a reduction of at least
80%. These results are comparable to the results of test 3.
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Table 2 Calculation of total average power of simulator ECG signals before filtering, which is related to the heart rate; comparison between
total average power and peak amplitudes of estimated MR gradient noise before and after filtering

ECG simulator Total average power Reduction of total average Amplitude reduction
heart rate (bpm) power of noise (%) of noise peaks (%)

ECG (µV 2) Estimated Estimated filtered
noise (µV 2) noise (µV 2)

60 0.160 0.016 0.004 74 96–98
0.161 0.015 0.004 75 99–100

65 0.186 0.030 0.010 66 85–89
0.186 0.048 0.009 81 89–97

70 0.208 0.060 0.020 67 88–92
0.210 0.060 0.023 62 80–99

80 0.260 0.107 0.032 71 85–97
0.290 0.173 0.058 67 80–91

90 0.329 0.198 0.070 65 80–85
0.391 0.280 0.074 74 80–93

Table 3 Comparison between total average power and peak amplitudes of signal acquired on volunteer’s leg and arm, including MR gradient
artefacts only. For each configuration, nine different acquisitions were done with a large range of total average power of the acquired MR
gradient artefacts. The results in brackets are biased as the total average power of the filtered signal becomes so small that it is covered by
other noise. In such cases, the calculation of the peak amplitude reduction has not been done (could be rated as 100%)

ECG recordings Total average power Comparison of total Amplitude reduction
average powers (%) of noise peaks (%)

Unfiltered MR Filtered MR gradient
gradient artefacts (µV 2) artefacts (µV 2)

Acquired on leg 0.004 <0.001 (82) –
0.006 <0.001 (85) –
0.018 <0.001 97 99
0.025 <0.001 98 99
0.026 <0.001 98 97–99
0.034 <0.001 98 99
0.036 0.002 94 96–99
0.037 <0.001 98 99
0.216 0.003 98 95–98

Acquired on arm 0.005 <0.001 (84) -
0.007 <0.001 (88) -
0.008 <0.001 (86) -
0.021 <0.001 97 99
0.022 <0.001 97 99
0.030 <0.001 98 98–99
0.033 <0.001 98 99
0.038 <0.001 98 97
0.079 0.002 98 93–95

Discussion and conclusion

The adaptive filter with LMS coefficient updates can
reduce gradient artefacts due to switching of the magnetic
gradient field in real-time applications. The filter does not
affect the desired ECG signal. Its computational efficiency
allows easy implementation on a digital signal processor
(DSP). The noise canceller can reduce nonlinear effects as

the MR gradient artefacts are reduced even if the reference
signals are resampled to 500 Hz. The gradient signals are
periodic and deterministic signals and their low- and high-
frequency components have a strong time correlation. The
adaptive filter therefore takes the low frequencies (which
are in the same frequency band as the acquired ECG) of
the gradient signal as reference for adaptation, even if the
high frequency is the cause of the gradient artefacts. In this
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Table 4 Calculation of total average power of ECG acquired on volunteers and patients before filtering; reduction of total average power
of noisy signal and comparison of peak amplitudes of estimated MR gradient artefacts before and after filtering. For each subject, two
different acquisitions were done. Results in brackets are biased as the total average power of the noisy signal is smaller than three times the
total average power of the clear ECG

Subject Total average power Reduction of total average Amplitude reduction
power of noisy ECG of noise peaks (%)

Clear Noisy Filtered NoisyECG−filteredECG
filteredECG (%)

ECG (µV 2) ECG (µV 2) ECG (µV 2)

Volunteer 3 0.033 1.201 0.048 96 93–99
0.047 0.207 0.044 79 88–99

Volunteer 4 0.010 0.261 0.021 92 98–99
0.013 1.174 0.044 96 95–99

Volunteer 5 0.023 1.066 0.047 96 98–99
0.024 0.059 0.022 63 84–87

Patient 5 1.900 1.982 1.903 (4) 85–97
1.908 2.780 2.090 (25) 92–94

Patient 6 0.730 1.563 0.761 (51) 89–97
0.741 2.123 0.750 65 83–86

Patient 7 0.157 0.189 0.158 (16) 80–82
0.156 0.201 0.160 (20) 80–83

case, frequency folding or frequency modulation effects,
which are nonlinear, will be taken into account by the
adaptive filter as well as purely linear effects occurring in
the frequency band of the acquired ECG. Furthermore,
the adaptive filter does not require learning/adaptation
when the amplitude in one gradient signal changes (i.e.
phase gradient) while the others remain unchanged, as
each gradient signal is taken as a single source of the gra-
dient artefact generation effect and is associated with a
separate transfer function. This is a major advantage over
other methods which use a four-bit version of the current
status of the MRI system [8] or a time-slice signal, as in [7].

The test methods 1 to 4 work well and in any case (even
in worst-case scenarios). For test 5, prior knowledge about
the trigger point and its annotation is required to estimate
the total average power of the MR gradient artefacts cor-
rectly.

In conclusion, the reduction of the MR gradient arte-
fact peaks was found to be 80–99%; the reduction of the
total average power of the estimated noise was found to

be 62–98%. The quality of the corrected ECG is suffi-
cient, that a standard one-lead QRS detector can be used
for correct triggering/gating of the MR machine, for any
type of MR imaging application. The ECG quality for
permanent monitoring of the patient during an MR scan
has not yet been achieved. Whenever the adaptive filter
needs to (re)learn or considerably adapt one of the three
transfer functions (due to changes such as: new sequence,
major changes in the MR bore, major change of location
of imaging slice, new patient, etc.), the gradient artefacts
remain or are only partially removed.
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