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Abstract A method for finding
closed-form solutions for the normal
mode frequencies of systems with

circulant symmetry was in-

vestigated. This method is particular-
ly useful for questions of degeneracy
that arise when one considers paral-
lel imaging techniques like SENSE
and SMASH in MRI. It is applicable
to systems that include birdcage
coils as well as planar coils with the
appropriate rotational symmetry. A
proof is given that complete degen-
eracy of all normal mode frequencies
is impossible when all mutual induc-
tive couplings are included. We test-
ed the method against measurements
made on a planar coil array and on
an 8-element birdcage coil. The in-
clusion of the co-rotating end-ring

mode changes the fundamental sym-
metry of the system from circulant to
‘bordered circulant.’ Closed-form
solutions for the normal mode fre-
quencies of a bordered circulant
system are also given.
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A degeneracy study in the circulant 
and bordered-circulant approach to birdcage
and planar coils

Introduction

Several techniques exist for determining the normal
mode frequencies of the resonant circuits typically
found in the RF subsystem of modern MR scanners. [1,
2, 3]. While these numerical methods are quite useful
in practice, one also may make good progress using an-
alytic solutions. For certain geometries, it is possible to
find closed-form solutions for normal mode frequen-
cies. While some earlier work [2, 4, 5] considered only
nearest-neighbor couplings, Leifer [6] has included all
couplings in a ‘circulant’ approach [6] and closed-form
solutions were found for birdcage coils. In the present
paper, we have expanded the approach for coils having
‘circulant symmetry’ (to be defined). Some of the 

results of our work have already been discussed in [7,
8].

These closed-form solutions are particularly valuable
because of the current interest in degenerate normal
mode frequency spectra in SENSE and SMASH studies.
[9, 10]. For the case of SMASH, it is straightforward to
find a set of weightings such that sinusoidal field varia-
tions are approximated [10]. This process, however,
makes the key assumption that all the normal mode fre-
quencies are degenerate. Another approach to the degen-
eracy question is to design a coil that has an inherently
sinusoidal field variation mode as well as a uniform field
mode, then tune it such that these modes are degenerate
[11, 12, 13]. There are several techniques using different
forms of electronic decoupling to achieve degeneracy in
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practice. Some examples of these techniques include
those described in [14, 15, 16]. In an example discussed
below, one specific form of electronic decoupling, name-
ly, capacitive decoupling, is utilized.

The question of degeneracy has been previously ad-
dressed by [4, 5, 17, 18]. The approach discussed in this
paper is quite effective in determining the normal mode
frequencies and in understanding, in particular, the cir-
cumstances in which degeneracy is impossible. We will
present a general ‘impossibility’ proof for complete de-
generacy, thus limiting the maximum number of degener-
ate normal modes. It is important to note that the closed-
form solutions investigated here are of value in general,
not just in the context of questions of degeneracy.

In the typical analysis of a birdcage coil, one of the
modes (the so-called co-rotating end-ring mode) is usu-
ally ignored because it does not produce significant field
components in the transverse plane [2]. We will also find
a closed-form solution for a birdcage including this
mode using the notion of a ‘bordered circulant.’ The nor-
mal modes and frequencies will be compared to the re-
sults for the case when the co-rotating mode is ignored.

The analysis used for both the systems with circulant
and bordered circulant symmetry neglects loss in both
the coil and the coil load. The loss in the system can be
separated into two parts: the loss due to the small resis-
tance in the coil copper strips and that due to the sample
resistance. It is reasonable to assume that the loss in the
coil strips has circulant symmetry and therefore we may
still derive closed-form expressions. The inclusion of the
sample loss in the model is not as straightforward. The
details of the shape and internal structure of the sample
need to be taken into consideration, making it unlikely
that the resulting Kirchhoff’s law impedance matrix has
circulant symmetry. We call attention to the fact that, al-
though for any real coil the losses are nonzero, we have
been able to completely neglect the loss in the system
and still have good agreement with experiments. Suc-
cessful comparisons have been made between the theo-
retical frequency spectrum and that experimentally mea-
sured for a planar array coil and a birdcage coil con-
structed for testing purposes.

Methods and discussion

Circulant theory

An n×n matrix has ‘circulant’ symmetry when each row
is a cyclic permutation of the previous row, such as:

(1)

In this case, its determinant can be written in a powerful-
ly simple form [19] that follows directly from the ability
to diagonalize the matrix A as is given by:

(2)

Let us examine how one arrives at Eq. 2. There exists a
unitary transformation that diagonalizes Eq. 1:

(3)

A unitary matrix that diagonalizes the circulant matrix

can be represented in terms of the n-roots of one, ,

(4)

With U given by Eq. 4 and A given by Eq. 1, it follows
that the diagonal elements of the matrix in Eq. 3 are giv-

en by . In the diagonal form, the

determinant is a trivial calculation and it is clear the
form given in Eq. 2 is recovered, recalling that
Det(U†AU)=Det(A).

The presence of mirror planes in the system results in
a matrix with an additional symmetry. The matrix repre-
sentation of a system with circulant symmetry as well as
mirror planes is given by:

(5)

This allows the determinant to be written in the follow-
ing form:

(6)

Both these forms should remind the reader of the dis-
crete Fourier transformation (see the remarks in [6]).

The reason for interest in the determinant of a matrix
of the forms discussed above is that matrices such as A
and Ã are found in the circuit equations for systems like
the birdcage. Kirchhoff’s laws may be written in matrix
form as:

(7)
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The matrix elements of Aij are proportional to the emf
drops in the ith loop associated with the current in the jth

loop. Let ω denote the normal mode frequency. The gen-
eral form of the impedances due to the self-inductive
term is iωL, the mutual inductive form is iωM, and the

capacitive form is assuming the current in the

system has an eiωt time dependence.
The normal mode frequencies are found by solving

Det(A)=0 or . The closed-form solutions giv-
en above have automatically factored the general (2n)th-
order polynomial into a product of n quadratic polynomi-
als in the normal mode frequencies, ω. Solving for the
frequencies is now much easier, and in practice all solu-
tions can be found in closed form. This technique has
been used in the present paper to find the normal mode

frequencies of all problems involving symmetric
structures. In contrast, determining the roots of the original
(2n)th-order polynomial using numerical techniques such
as Newton’s method can be computationally expensive and
may in some case need very high precision to find the root
accurately. We have found it necessary to use GNU-MP, a
C-library for arbitrary precision arithmetic. For the root-
finding algorithm to produce results that agree with the an-
alytic results to double precision, it was necessary to keep
at least 60 digits of precision while calculating the determi-
nant. Keeping this large amount of precision slows down
the code greatly; it also produces code that is much more
cumbersome. In practice, on a five-loop example the arbi-
trary precision code took about a weekend to run while the
code that evaluated the analytic expressions was instanta-
neous. Thus, it is clear that closed-form solutions signifi-
cantly reduce the amount of computing power required to
find the normal mode frequencies.

We may illustrate the difference in finding the roots
of a determinant. With closed-form solutions, the zeros
of an Nth-order polynomial are an problem. An it-

Exact degeneracy of all frequencies

Starting from Kirchhoff’s law given by Eq. 7 , we may
examine the possibility of having complete degeneracy
of all normal mode frequencies of any resonant circuit.

Defining the matrix , we see that it is real and

symmetric which is a special case of Hermiticity. For
any Hermitian matrix, there exists a unitary transforma-
tion that diagonalizes . Thus Eq. 7 may be rewritten as:

(8)

where

(9)

The matrix B is diagonal and the diagonal values Bii are
its eigenvalues, λi, and are a function of the same param-
eters that appear in . Complete degeneracy requires all
eigenvalues to be the same. The additional constraint
that Eq. 8 be satisfied for nontrivial I′ implies that B is a
zero matrix:

(10)

The inverse unitary transformation takes us back to the
original basis, revealing that must therefore have the
same null form:

(11)

However, there is a fundamental contradiction here. If
we consider a four axial-element birdcage, the matrix 
has the following form:
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erative approach for factoring this polynomial is at least
. Other numerical methods that do not involve this

determinant calculation may be faster, of course. Howev-
er, none can be expected to better an method.

We consider this coil as the simplest birdcage in which
next-nearest-neighbor coupling is important. The obsta-
cle to degeneracy posed by the next-nearest neighbors is
now evident. Notice there are no capacitive terms to can-
cel the Mfar term of the matrix . For certain geometries,
one may be able to contrive a situation in which Mfar is
zero. However, Mfar is typically nonzero and for this case
exact degeneracy is impossible. This situation is attained

(12)



for any lattice of loops for which inductive couplings be-
yond nearest-neighbor (loops that share a common leg)
are considered. In the example above, the effects of load-
ing the coil have been neglected. However, it is still im-
possible to obtain a zero matrix when the load is includ-
ed. This can most easily be understood by realizing that
the addition of a real impedance cannot cancel the imagi-
nary term corresponding to Mfar, which was described
previously.

Simple system

Before we apply the results from circulant theory to our
modeling, let us examine a simple system for which
closed-form solutions are readily achievable. Consider a
planar array as shown in Fig. 1. Note that this coil is to-
pologically equivalent to a four-rung (four axial-ele-
ment) birdcage. That is, one can continuously deform
one coil into the other. We have been able to show ana-
lytically that there exists a solution with four identically
degenerate frequencies in this five-loop array. A previ-
ous study has demonstrated experimentally that a similar
five-loop array has multiple degenerate frequencies [17].
Note this does not contradict the unitary matrix proof
that was offered in the previous section; that proof leads
to the impossibility of all normal-mode frequencies be-
ing equal in such coils. In the present case, one frequen-
cy differs from the other four. It is associated with the
small (‘parasitic’) central coil.

We briefly outline the analytic work behind this pro-
gress. An experimental verification is described after-

ward. The matrix A in Eq. 7 for the circuit in Fig. 1 can
be written as:

where .

The five normal-mode frequencies of the system are
found by using Mathematica’s analytical tools (for find-

ing the roots of a fifth-order polynomial in and the
results are

(14)

(15)

(16)

(17)

(18)
where mi are effective inductances given by:

(19)

(20)

(21)

(22)

(23)

and the self-inductances are defined in Fig. 1. Mij is the
mutual inductance between the ith and jth circuit elements
and c and f refer to ‘close’ and ‘far.’ For instance, the
coupling between segments a1 and a2 in Fig. 1 would 
be denoted M13c and between segments a1 and a3 
would be denoted M13f. The quantity β is defined to
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Fig. 1 Small decoupling loop embedded in a four-loop square. De-
generacy of four modes can be achieved with the additional de-
grees of freedom of the small loop

(13)

be , with

.



Through further use of Mathematica’s analytical
tools, the values of C1 and C3 have been found such that
four of the five normal-modes are degenerate. They are:

(24)

(25)

(26)

The last capacitance value C2 may be adjusted to give
the desired overall frequency scale.

To test the analysis, an experimental ‘square-pin-
wheel’ coil was constructed according to Fig. 1 with the
length of the side for the larger square being 30 cm and
for the smaller square being 5 cm. All conductors are
made of copper tape with a rectangular cross-section of
1.0 cm×0.009 cm. From the theoretical formulas and the
constraint that the scale of the degenerate frequency
match a 1.5-Tesla Larmor precession frequency, the ca-
pacitors on the outside square were found to be C1=
50 pF. The capacitors on the inside and the capacitors on
the legs that connected the outside to the inside were de-
termined to be C3=130 pF and C2=102.2 pF, respectively.
Experimental measurements led to four normal-mode
frequencies lying between 62.3 MHz and 63.4 MHz and
a fifth mode at 84.9 MHz. This is in excellent agreement
with the predicted values of four degenerate modes at
63.7 MHz and the fifth mode at 90 MHz, particularly in
view of the uncertainties represented by the capacitor
tolerance and the stray inductance associated with the
capacitance attachment.

A near-degenerate circulant 8-rung birdcage

Although perfect degeneracy is not possible, we consider
the construction of a birdcage with ‘cage’ modes that are
almost degenerate. We apply the results from the deter-
minant of a circulant matrix to find nearly degenerate
normal mode frequencies of an 8-rung birdcage. These
theoretical results are then compared to experiment. A
coil of radius 11.74 cm and axial length of 24.5 cm 

was both constructed and theoretically modeled with
C1=C3=59.8 pF and C2=49.2 pF as depicted in Fig. 2.
Copper tape was again used with rectangular cross-sec-
tion dimensions 1.0 cm×0.009 cm in both the model and
the construction. Using the closed form from the deter-
minant of a circulant matrix, the calculation results for
the normal mode frequencies yielded very good agree-
ment with the experimental data. The matrix A is an 8×8
matrix that is a symmetric matrix which has 36 indepen-
dent matrix elements. The details of this calculation are
similar to those discussed in the previous section on the
square-pinwheel coil and can be found in Appendix A.
The magnitude of the inductive couplings were deter-
mined by numerical integration. Using the dimensions
and capacitive values given above, the normal mode fre-
quencies of the seven cage modes were determined to be
in the range 63.42 MHz to 64.66 MHz. The end-ring
mode was calculated to resonate at 76 MHz.

A typical bandpass birdcage was constructed and a
range of the capacitance values were studied to achieve
near degeneracy. The normal mode frequencies of the
seven cage modes were found via a ‘two-loop coupled
flux measurement’ to vary from 65.26 MHz to
66.74 MHz. The end-ring-mode was found to be at ap-
proximately 76 MHz. The values of C1 and C2 were
found experimentally to minimize the spread in frequen-
cies of the seven cage modes (1.48 MHz in the above
case). Note that one could not use the capacitance/induc-
tance relations given in the references [4, 5] owing to the
importance of the non-nearest-neighbor couplings.

Extra mode for the birdcage

Many standard treatments of the birdcage tend to ignore
one of the normal modes on the grounds that it produces
a field that is not predominantly in the transverse plane.
However, if one is interested in investigating the use of
birdcages in vertical field systems, for instance, this
mode may become of more interest and utility. Our con-
cern is finding a closed-form solution for the normal
mode frequencies of a system when the ‘co-rotating’
mode (Fig. 3) is included in the analysis. (A different
and simple approach to the extra mode has been dis-
cussed previously in [6].) There is an immediate problem
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Fig. 2 a A typical bandpass
birdcage with complete circul-
ant symmetry. b The concomi-
tant circuit diagram for this
birdcage



when one writes down Kirchhoff’s laws including this
mode. The matrix A no longer has the circulant symme-
try required for the closed-form given in Eq. 1. However,
it does have a form known as a bordered circulant. The
determinant of this form also has a closed-form expres-
sion, to which we now turn our attention.

Bordered circulant

A bordered circulant is a matrix of the form:

(27)

One can construct a new unitary transformation (U) from
the matrix U given in Eq. 4 in which:

(28)

One now applies this new unitary transformation to A:

In this form one can readily verify that by doing the co-
factor expansion the determinant of A is given by:

(30)

where

(31)

and (v1,···,vn)=(y1,···,yn)U. We note that the work present-
ed in the previous section for the planar array coil uti-
lized brute-force factoring. However, as the number of
coils increases, the degree of the polynomial that one
needs to factor increases. Thus, the brute force method
becomes unwieldy. The bordered circulant approach pro-
duces the same analytic solutions with an economy of ef-
fort.

Let us examine the square-pinwheel coil in the light
of the results from the bordered circulant. One of the
most significant features that should be noted is that in
Eq. 13all the border elements are the same. This is sig-
nificant because it forces the vector v to be reduced to
the form ; by symmetry, the vector w
has a similar form. Now, we turn our attention to Eq. 30.
With w and v given above, the Det( ) can be simplified
in the following way:

(32)

An examination of Eq. 32 closely reveals that modes 2
through n are unchanged by the addition of a border of
this type. At this point we repeat our observation that the
square-pinwheel coil presented in Fig. 1 is topologically
equivalent to a four-rung birdcage.

Comparison of n-mode and n+1-mode birdcages

For comparison, a four-rung birdcage coil was built with
radius 10.75 cm and an axial length 19.5 cm. Two modes
were experimentally measured to resonate at 62.82 MHz
and 63.07 MHz for an unloaded coil. The one end-ring
capacitor was 20 pF, the other end-ring capacitor was
150 pF, and the axial capacitor was 68 pF. The frequen-
cies were calculated to be 62.87 MHz and 63.59 MHz, in
excellent agreement with the experimental values. For
the four-mode birdcage with four axial elements, we
have calculated the normalized current normal modes
and frequencies, as given in Table 1. We note that the
modes presented in Table 1 are obtained exactly from
closed-form expressions and are good within the accura-
cy that the impedances are known.

Now let us consider the inclusion of the co-rotating
end-ring mode in the theoretical calculations. As noted
previously, this changes the fundamental symmetry for
the system from circulant to bordered circulant. For the
five-mode birdcage (with bordered circulant symmetry)
with four axial legs, we have found the normal modes
shown in Table 2. The original end-ring mode now splits
into two modes (modes 1 and 5 in Table 2). The magni-
tude of this split is directly related to of the asymmetry
between C1 and C3. When C1=C3, this splitting is mini-
mized; however, in practice, one typically uses either C1
or C3 for impedance matching. For the case described
above, when the series equivalent capacitance is equally
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Fig. 3 A circuit diagram for a typical bandpass birdcage with the
co-rotating mode labeled

(29)



distributed on both end-ring capacitors, we have
C1=C3=35.29 pF and the split between the co-rotating
and counter-rotating mode is 2.55 MHz. In general, the
cage modes are unchanged by the inclusion of the co-ro-
tating mode. When C1=C3, one of the two end-ring mode
frequencies is unchanged as well. Thus, it is valid to ig-
nore the additional end-ring mode for situations when
both end-ring capacitors are identical. This can easily be
understood through Eq. 32 since Kirchoff’s laws for a
four axial-element birdcage including the co-rotating
end-ring have a similar form to those presented for the
square-pinwheel coil. In addition, for most applications
it is sufficient to consider only the original n-modes used
in the model above, because the end-ring modes do not
produce a field direction useful for imaging in conven-
tional horizontal-field magnets. This point has been
made previously by Jin [2].

Conclusions

We have investigated the utility of closed-form solutions
for birdcage coils and other coils with circulant symme-
try. These closed-form solutions give insights as to the
conditions that lead to degeneracy and the circumstances
that cause non-degeneracy. The existence of analytic ex-
pressions for the frequencies allows one to more easily
minimize the overall spread, or the spread of a subset of
frequencies. This is of particular interest in the field of
parallel imaging, since one may wish to investigate a coil
for both conventional usage as well as ‘accelerated’ us-
age. We note also the utility of closed-form solutions for
systems with bordered circulant symmetry as well as with
circulant symmetry, independent of the number of loops.

As noted previously, having the closed-form solutions
impacts directly on the amount of computing power re-
quired to find the normal mode frequencies and the asso-
ciated normal mode currents. Coupled with the expres-
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Table 1 Five-Mode Birdcage:
Complete Set of Normal Modes
where I1, I2, I3 and I4 are any
successive set of loop currents
in the birdcage and I5 is the
current on one of the end-rings
as depicted in Fig. 2b

Table 2 Four-Mode Birdcage: Incomplete Set of Normal Modes where I1, I2, I3 and I4 are any successive set of loop currents in the
birdcage as depicted in Fig. 3

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

f(MHz) 97.21 63.59 63.59 62.87 35.47

I1 0.4508 0 –0.5 0.0053

I2 0.4508 0 0.5 0.0053

I3 0.4508 0 –0.5 0.0053 

I4 0.4508 0 0.5 0.0053 

I5 0.4326 0 0 0 0.9999 

Mode 1 Mode 2 Mode 3 Mode 4

f(MHz) 74.43 63.59 63.59 62.87

I1 0.5 0 −0.5 

I2 0.5 0 0.5

I3 0.5 0 −0.5

I4 0.5 0 0.5 



sions for self- and mutual inductances given by Grover
[20], it is possible to have solutions for the normal mode
frequencies that are functions only of the physical di-
mensions of the coil and the values of the capacitors in
the system. Recall that the circulant symmetry requires

a rotational symmetry; this dictates that certain ca-

pacitors in the system have a common value. In practice,
one does not have capacitors with identical values; howev-
er, using capacitors with 5% tolerance we have achieved
excellent agreement between theory and experiment.
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Appendix A

The matrix element ai from Eq. 5 is given by:

(33)

and . M(i) is the self-inductance of the

axial leg for i=1 and, for i≠1, it is the mutual inductance between
the first and ith axial element. C2 is the capacitor on the axial leg.
The quantity, C1eff is the series equivalent capacitance on the end

ring and is given by . L(i) is the self inductance

of the end ring segment for i=1 and, for i≠1, it is the mutual induc-
tance between the first and ith end ring segments for both segments
on the same end ring. Mend(i) is the mutual inductance between the
first and ith end ring segments on the opposing end ring. The quan-
tity mod(k,n) is defined to be the remainder of division of k by n.
The analytic expressions for the frequencies are:

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

where
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Table 3 The value of the self
and mutual inductances used in
the model and calculated via
numerical integration

(42)

(43)

(44)

(45)

(46)

i 1 2 3 4 5

L(i) (nH) 62.8 10.2 0.285 −2.61 −3.48
Mend(i) (nH) 3.26 2.21 0.0434 −1.73 −2.39
M(i) (nH) 215 50.4 31.6 24.7 22.7

Table 4 The frequencies calculated from the closed-form solutions obtained via the circulant formalism

i 1 2 3 4 5 6 7 8

fi (MHz) 63.42 63.42 63.94 63.94 64.26 64.26 64.66 76.01
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The solutions presented have an automatic degeneracy of f1 with
f2, f5 with f6, and f7 with f8. Table 3 contains values for the induc-
tances that were calculated via numerical integration.

Using these values for the inductances together with
C1=C3=59.8 pF and C2=49.2 pF, the normal mode frequencies

were found. These results are displayed in Table 4. Note that
there are three pairs of exactly degenerate modes and seven of
the eight modes are ‘nearly’ degenerate due to the choices of C1
and C2.


