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Abstract
Although numerous studies have investigated the validity of satellite-derived precipitation datasets, there has been a lack of 
emphasis on their practical applications. This study aims to explore the implications of such datasets in designing rain gauge 
networks, which are essential for acquiring reliable precipitation data. Initially, four satellite-derived precipitation datasets 
(PERSIANN, PERSIANN-CDR, PERSIANN-CCS, and TRMM 3B43 V.7) were statistically compared to ground-based 
observations from 23 synoptic stations within the Fars province in southwestern Iran, the designated study area, to assess 
their validity. Furthermore, to provide a technical comparison, the degree of spatial independence (variogram) derived from 
these datasets was compared to that obtained from ground-based observations. To meet the study's objectives, a detrending 
process was implemented to render the datasets isotropic and bounded. Among the aforementioned satellite-derived data-
sets, PERSIANN-CCS and TRMM 3B43 V.7 demonstrated promise for enhancement to be utilized in rain gauge network 
design through a hybrid method combining multivariate analysis incorporating factor analysis and a geostatistical approach 
incorporating ordinary (point and block) kriging. Based on the PERSIANN-CCS and TRMM 3B43 V.7 satellite-derived 
datasets, rain gauge grids containing 70 and 56 rain gauges were initially proposed using a scree diagram. However, after 
considering a predetermined level of accuracy (block variance of residuals set to 10 mm2 ), the numbers were subsequently 
reduced to 56 and 28 rain gauges, respectively. Consequently, this research sheds light on the practical utility of satellite-
based precipitation datasets in the development of rain gauge networks in regions with insufficient data coverage or for 
evaluating existing networks.
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Introduction

Evaluating the efficiency of open- or closed-loop systems, 
including hydrological models, requires monitoring the input 
signals and measuring the quantity and quality indicators 
of the output products. Rainfall monitoring, being the most 
significant process in the water cycle, plays a crucial role 
in enhancing the efficiency of applied hydrological models 
such as flood forecasting and control operators, and water 
resources management programs (Chahine 1992; Georgaka-
kos and Kavvas 1987; Worden et al. 2007). Precipitation 

measurement instruments, such as ground rain gauges, 
radars, and satellites, are the monitoring technologies used 
in various rainfall-related environmental models (Joss et al. 
1990; Michaelides et al.) 2009; Tapiador et al. 2012.

Satellite-derived precipitation products have become 
widely used for monitoring rainfall, among other methods 
(Joseph et al. 2009; Khojand et al. 2022; New et al. 2001; 
Pettorelli et al. 2005; Xie and Arkin 1995). While there are 
both advantages and disadvantages to using this type of data, 
including concerns about reliability and validity (Loew et al. 
2017), one major benefit is the ability to access continu-
ously updated measurements at small spatiotemporal scales. 
However, to generate rainfall data from signals sent by the 
satellites, secondary inference algorithms are required to 
convert primary signals and images into related values such 
as depth and intensity. The accuracy and reliability of these 
algorithms and input signals can affect the validity and reli-
ability of satellite-derived precipitation data. Despite the 
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availability of comprehensive satellite-derived precipitation 
data, which is made publicly accessible by individuals, insti-
tutions, and governments for scientific promotion, using this 
data alone in hydrological models is not yet entirely reliable 
(Chen et al. 2022).

Compared to satellite-derived precipitation data, ground-
based rainfall measurement using rain gauges is considered 
the most reliable method for estimating rainfall, and the 
quantities obtained from them are widely used in hydro-
logical models and water resources management (Chen et al. 
2018). The main advantage of using rain gauges is that they 
provide direct measurement without the need for inference 
algorithms or significant modifications. Rain gauges range 
from traditional standard tools to modern remote devices 
and are the most common tool for directly estimating point 
precipitation at ground level. However, measuring the accu-
racy of the rainfall may be compromised by environmental 
conditions such as evaporation, wind (Zhou et al. 2019), 
and wetting, in addition to topographic setting (flat, rolling, 
and mountainous) of the site location (Shi et al. 2020) and 
accessibility to the stations. To solve these issues and expand 
the spatial range of measurement, a network of rain gauges 
called a "rain gauge network" is used.

Designing a rain gauge network requires not only col-
lection of hydrological data but also application of compu-
tational and statistical principles to derive reliable rainfall 
attributes, such as rainfall depth, duration, and hyetographs 
(Abu Salleh et al. 2019; Shaghaghian and Abedini 2013). 
Computational principles, including optimization algorithms 
such as exhaustive search (Bastin et al. 1984), tabu search 
(Ming-Hsu, et al. 2006), genetic algorithms (ADIB, A. and 
M. MOSLEMZADEH 2016), and simulated annealing 
(Pardo-Igúzquiza 1998), as well as objective functions such 
as entropy (Su and You 2014; Wang et al. 2019; Wei et al. 
2014; Xu et al. 2015), variance (Adhikary et al. 2015; Cheng 
et al. 2008; Huynh, et al. 2021; Krajewski 1987; Mohd Aziz, 
et al. 2019), and fractal dimension (Korvin et al. 1990; Maz-
zarella and Tranfaglia 2000), are essential in establishing 
the basic structure of rainfall monitoring network design 
procedures. Environmental data, such as spatiotemporal 
distribution of precipitation over the study area, must be fed 
into the design procedures to adapt the existing conditions 
to the model. Therefore, easy access and ensured reliabil-
ity of environmental data are critical requirements for the 
rain gauge design methods for proper performance of the 
process.

The combined use of satellite data and rain gauges has 
proven to be common and beneficial. One example is the 
calibration of satellite-derived precipitation algorithms using 
ground-based observations. The TMPA 3B42-V7 algorithm, 
for instance, utilizes the Global Precipitation Climatology 
Centre (GPCC) gauge analyses to improve the integration 
of estimates (Liu 2015; Yong et al. 2014; Yong et al. 2013). 

Additionally, satellite-based products have been employed 
to compensate for the limitations of ground-based obser-
vations. Studies have applied satellite-based products to 
enhance data gathered from rain gauges (Akbari and Torabi 
Haghighi 2020; Khoshchehreh et al. 2020; Li and Shao 
2010). Due to the scarcity of databases with regular high 
spatiotemporal resolutions, remotely sensed meteorological 
measurements, particularly satellite-derived precipitation 
products, have recently garnered increased attention in rain 
gauge network design (Bradley et al. 2002; Dai et al. 2017; 
Yeh et al. 2017). Various methodologies have been pro-
posed for designing rain gauge networks, which incorporate 
satellite-derived precipitation products. These range from 
analyzing data in ungauged catchments (Liu et al. 2021) to 
incorporating them into existing design algorithms (Contre-
ras et al. 2019; Huang et al. 2020).

Overall, in the past two decades, numerous studies have 
been conducted to assess the accuracy and validity of satel-
lite-derived data. As a result, this field of study has become 
saturated. Now, it is crucial to progress and apply this type 
of data in practical scenarios. Despite the existence of some 
studies in this field (Liu et al. 2021; Gadhawe et al. 2021), 
there are still some aspects that need to be explored, indicat-
ing that this vision is not entirely new. This article is part of 
a series that discusses the utilization of satellite-derived pre-
cipitation data in hydrometeorological applications. In the 
first paper (Khojand et al. 2022), the examination focused 
on the impact of climate indices on the validity, reliability, 
and certainty of satellite-derived precipitation data. Build-
ing upon this research, the current paper concentrates on 
the integration of satellite-derived precipitation data into a 
commonly used model for rain gauge network design (Sha-
ghaghian and Abedini 2013). This novel approach has the 
potential to enhance the creation of new rain gauge networks 
and evaluate existing monitoring systems in the study area. 
The findings from this study have significant implications 
and can provide valuable insights for various hydromete-
orological applications.

Study area and data

Study area

The Fars province, located in the southwest region of Iran 
(27˚-32˚ N, 50˚-55˚ E), has an arid and semiarid climate 
which encompasses mountainous areas and dry plains. The 
study area spans a total of 122,608 km2 (Fig. 1), primarily 
composed of mountainous regions situated in the northern 
and northwestern sectors of the province. Approximately, 
54% of the area is covered by elevations greater than 1500m 
above M.S.L. However, the southern and eastern parts of the 
study area are characterized by flat lands, including southern 
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coastal plains and eastern deserts, where average slopes are 
less than 5% and elevation is less than 1000 m above M.S.L. 
Thus, the study area has a diverse range of landforms. The 
area is influenced by three main air masses: Mediterranean, 
which is the most active and impacts most parts of the study 
area; continental tropical (also known as Sudan), which 
enters from the south and affects the entire study area (with 
the southern part being impacted the most); and maritime 
tropical which causes summer rainfall over the southeast of 
the study area. The Mediterranean and continental tropical 
air masses are dominant from December to March, known 
as the wet period, while the maritime tropical air mass occa-
sionally supplies moisture from the Arabian Sea and the 
Indian Ocean to the southeast and south of the study area 
during July and August, which are part of the dry period.

Dataset

Available rain gauge network

The reference dataset employed in the present work is 
based on the daily rainfall observations derived from 
23 synoptic stations. The synoptic station data were pro-
vided by Iran Meteorological Organization (IMO), and the 
recording period of the stations varied in duration, but all 
had data from 2000 to 2020 which temporally covers the 

satellite-derived datasets. The spatial distribution of the syn-
optic gauge stations over the study area is shown in Fig. 1.

Satellite‑derived precipitation datasets

The primary goal of this study is to employ a readily available 
dataset of satellite-derived precipitation to design a network of 
ground-based rain gauges. While numerous satellite-derived 
datasets are available, they must be properly organized to gen-
erate values over an extended period of time. As such, the 
following datasets have been selected and adjusted to suit the 
objectives of this study:

PERSIANN family

The study utilizes three satellite-derived datasets from the 
PERSIANN family, which are PERSIANN, PERSIANN-CCS, 
and PERSIAN-CDR. These datasets incorporate artificial neu-
ral network models to assess rainfall rate utilizing a combina-
tion of satellite data and ground-based rain gauge observations. 
These datasets have spatial quasi-global coverage of 60°N 
to 60°S at a spatial resolution of 0.25° from the turn of the 
millennium. While PERSIANN and PERSIANN-CCS have 
hourly temporal resolution data, PERSIANN-CDR has lower 
temporal resolution data (daily) due to the data preparation 
procedure. The long-term temporal resolution dataset used in 
this study was obtained directly from the following website 
https:// chrsd ata. eng. uci. edu. As an example, Fig. 2 displays 
the spatial distribution of annual precipitation in the study area 
in 2019 using data from three PERSIANN family satellite-
derived precipitation datasets. To mitigate inconsistencies 
between spatial resolutions of some of the datasets used in this 
study, slight improvements have been made on some of them.

TRMM 3B43 Version 7

The TRMM 3B43 Version 7 is a monthly satellite-derived 
dataset that has been processed and calibrated with the GPCC's 
gauge-based observations. It is one of the TMPA products and 
can be downloaded from NASA's Earth Observing System 
Data and Information System (https:// disc. gsfc. nasa. gov/ datas 
ets/ trmm_ 3b43_7). This dataset covers the latitude belt from 
50°N to 50°S at a spatial resolution of 0.25° and spans from 
1998 to 2020. To suit our needs, we accumulated the monthly 
data to obtain the annual total precipitation by summing up 
the twelve values for each grid point in every year. We then 
calculated the mean annual precipitation and assigned it to 
each grid point.

Overall, Table 1 offers a concise summary of the character-
istics of the datasets used in this study.

Fig. 1  Spatial distribution of available ground-based and satellite-
based observation, regional climate division, and direction of air 
masses affecting the study area (Khojand et al. 2022)

https://chrsdata.eng.uci.edu
https://disc.gsfc.nasa.gov/datasets/trmm_3b43_7
https://disc.gsfc.nasa.gov/datasets/trmm_3b43_7
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Methodology

In this research, a procedure for designing a ground-based rain-
fall monitoring network is proposed. The procedure combines 
satellite-derived precipitation data with a clustering strategy 
based on the correlation structure of the regionalized variable 
used in the model, following a method used in previous studies 
(Shaghaghian and Abedini 2013). The two main components 
of the proposed method are a reliable satellite-derived dataset 
and the clustering strategy. Below is a brief overview of the 
procedure's components.

Satellite‑derived annual precipitation data

The rainfall monitoring network's objective should align 
with the temporal-scale of the satellite-derived precipitation 
data used in the design process. For example, flood routing 
methods require high temporal resolution precipitation data, 
such as minutely data, which may not be available from the 
above-mentioned satellite-derived datasets. However, the 
current datasets can provide long-term rainfall data, which 
is adequate for determining a region's prevailing climate 
conditions, as this study's purpose. Hence, the initial phase 

Fig. 2  Spatial distribution of 
annual precipitation over the 
study area in 2019 utilizing 
PERSIANN, PERSIANN-CDR, 
and PERSIANN-CCS satellite-
derived precipitation datasets, 
sourced from https:// chrsd ata. 
eng. uci. edu

PERSIANN PERSIANN-CDR

PERSIANN-CCS

Table 1  Overview of the characteristics of the datasets used in the current study

Data set Spatial resolution Frequency Period Data source

Ground-based observations Sparce daily 1970-present Iranian meteorological organization
TRMM 3B43 0.25˚ monthly 1998–2020 TMI, TRMM combined Instrument, SSM/I, SSMIS, AMSR-E, 

AMSU-B, MHS, and GEO IR
PERSIANN 0.25˚ hourly 2000-present
PERSIANN-CSS 0.04˚ hourly 2003-present Meteosat, GOES, GMS, SSM/I, polar/near polar precipitation radar, 

TMI, AMSR
PERSIANN-CDR 0.25˚ daily 1983-present GOES 8, GOES 10, GMS-5, Metsat-6, and Metsat-7, TRMM, 

NOAA 15, 16, 17, DMSP F13, F14, F15

https://chrsdata.eng.uci.edu
https://chrsdata.eng.uci.edu
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of the rain gauge network design algorithm necessitates pre-
paring a mean annual precipitation (MAP) dataset at every 
available point.

Besides the temporal-scale characteristics, low reliabil-
ity can also pose a practical barrier to the effectiveness of 
satellite-derived datasets. Hence, in the rain gauge network 
design algorithm, the second step involves assessing the reli-
ability and validity of satellite-derived precipitation data. 
Satellite-derived precipitation datasets verification employs 
several indicators, and the following five parameters are typ-
ically used to gauge the accuracy of satellite-derived data:

where S and G are Satellite-derived precipitation data and 
the ground-based observations, Sr and Gr are rank variables 
of the previously-mentioned parameters, and Si and Gi are 
corresponding annual Satellite-derived precipitation data 
and the rain gauge observations.

In order to assess the effectiveness of the proposed rain 
gauge network design algorithm using satellite-derived data-
sets, a method for comparing the structure of the regional-
ized variable (variogram) obtained from Satellite-derived 
precipitation data with rain gauge observations is utilized. 
This comparison will be further explained in the upcoming 
sections when variogram modeling is discussed.

Variogram modeling

A variogram model represents the extent of spatial depend-
ence of a regionalized random variable. In the process of 
variogram modeling, the experimental variogram is a math-
ematical expression that determines the correlation between 
two points in terms of their distance and direction. This 
expression is computed from observed data as follows:

(1)Pearson correlation coefficient ∶ � =
cov(S,G)

�S�G

(2)

Spearman’s rank correlation coefficient ∶ �r =
cov(Sr,Gr)

�Sr�Gr

(3)Ei = Si − Gi Mean Error (ME) ∶ E

(4)Mean Absolute Error (MAE) ∶
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|
E
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(
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)
 and Z

(
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)
 are values of 

the observed variable Z , measured at the corresponding 
locations xi and 

(
xi + h�

)
 , respectively. After deriving the 

unprocessed variogram from the observed data, which is 
an experimental variogram that may not have the necessary 
mathematical properties for direct use, the next step is to 
fit a permissible theoretical variogram for practical appli-
cations in geostatistical models. In the field of hydrology, 
three theoretical bounded models1 have gained significant 
attention: exponential, Gaussian, and spherical variogram 
models. These models are expressed as follows:

where N0 , r� and 
(
N0 + S�

)
 , commonly called as variogram 

parameters in � direction, are nugget, range and sill, respec-
tively. When these parameters do not vary with direction, 
the variogram is said to be isotropic, and spatial dependence 
only changes with distance between locations. On the other 
hand, if the variogram parameters vary with direction, the 
variogram is considered anisotropic. There are three types of 
anisotropy: geometric anisotropy, which is characterized by 
varying ranges at different angles; zonal anisotropy, where 
only the sill values vary in different directions; and mixed 
anisotropy, where both range and sill values vary in multiple 
directions.

To model theoretical variogram, the next step is to 
approximate its parameters. There are two methods for esti-
mating the parameters: fitting the best curve to the experi-
mental variogram and using cross-validation in the kriging 
method. In the first method, the parameters (nugget, sill, and 
range coefficients) are iteratively changed to minimize the 
root mean square error2 (RMSE) as specified in Eq. 8. The 
latter method involves changing the parameters to minimize 
the error3 index and achieve the best prediction in the kriging 
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1 In bounded models, the variance has a maximum, which is priori 
variance of the process.
2 The error is the difference between the values   of the experimental 
variogram and the theoretical variogram.
3 The error is the difference between the observed and predicted val-
ues with the kriging model at one point after its removal.
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model. It is important to note that the type of fit influences 
the estimation error, E , which is proportional to Eq. 8.

Ordinary point and block kriging

One crucial aspect of designing a rainfall monitoring net-
work involves utilizing kriging methods, including simple, 
ordinary, and universal kriging, in either point or block for-
mats. These methods are closely linked to the use of spa-
tially-related variables. When considering such variables, a 
randomly assigned value, such as the annual rainfall depth 
recorded at specific locations, can be seen as a manifesta-
tion of a random function, P(x, y) . This function can be bro-
ken down into deterministic and stochastic components, as 
follows:

where m(x, y) and W(x, y) are algebraic trend model and 
small-scale variations with zero expectation, respectively. 
Moreover, in linear simulation, the estimated value ( ̂P ) at 
spatial location 

(
x0, y0

)
 is obtained as a linear combination 

of the observed values ( P ) at spatial locations 
(
xi, yi

)
:

where the weight factors �i correspond to the observed val-
ues at 

(
xi,yi

)
 , and N refers to the total number of points with 

observed values. Various methods are available for deter-
mining the weight factors by minimizing the residual (esti-
mation error) and making assumptions about estimating the 
deterministic component of the regionalized random vari-
able. These methods give rise to different types of kriging.

Equation  11 defines the residual as the discrepancy 
between the predicted value and the actual value. Equa-
tion 12 demonstrates that minimizing residuals and assum-
ing a mean of zero are two fundamental principles in kriging 
models.

In a typical point kriging model, the value of m(x, y) 
is assumed constant across the entire domain, denoted as 
m . This value, referred to as the Lagrange multiplier, is 
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typically unknown and calculated during the solution of the 
model equations. Similarly, in ordinary block kriging, the 
Lagrange multiplier for the block is usually determined by 
calculating the arithmetic mean of the estimated values of 
the discrete grid points within the domain. As a result, the 
weight values for the equations, as well as the m value, are 
derived by solving a system of linear equations, as presented 
in Eq. 13 and Eq. 14, for ordinary point and block kriging, 
respectively.

where M is the number of discretized points inside a typical 
block, and apostrophes corresponds to them. After deriving 
the weights ( �OK

i
 and �BK

i
 ), the variance of the block residual 

is obtained as follows:

Factor analysis

The present study also utilizes factor analysis to process 
satellite-derived data. Factor analysis is a highly benefi-
cial multivariate statistical technique that reorganizes and 
streamlines the original variables ( N variables) into fewer 
underlying non-correlated factors ( A factors where A < N ), 
denoted as F1,F2,… ,FA (also known as common factors), to 
preserve as much information contained in the original vari-
ables as possible. In this analysis, each variable is deemed 
a linear combination of a group of unobserved, underlying, 
and latent variables plus an error component. To ensure uni-
formity among the original variables, standardized variables 
are employed as the first step. Thus, if such variables are 
considered random regionalized variables, we have:
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where P(xi, yi
) represents the standardized original regional-

ized random variable, Lij is the loading coefficient of the j 
th common factor, and �i is the uncorrelated component that 
cannot be accounted for by the common factors.

The next step in factor analysis is to determine the load-
ing coefficient of common factors by using the correlation 
pattern between the main data. Geostatistical calculations 
can simplify elements of the correlation matrix to terms of 
loading coefficients (Eq. 17). While the number of equa-
tions is not the same as the number of loading coefficients, 
extra assumptions are needed to determine these coef-
ficients. One well-known method for this is the principal 
component method (PCM), which ignores the variance of 
unrelated components ( �i ). By merging this method with 
eigen-decomposition of the correlation matrix ( PN×N ), N 
original random variables can be factorized and truncated 
into A significant common factors. Equation 18 shows the 
eigen-decomposition, where VN×A is the truncated modal 
matrix constructed with the most significant eigenvectors 
( ��⃗V1,

��⃗V2,… , ��⃗VA ) corresponding to the m largest eigenvalues 
( �1, �1,… , �A ). Additionally, ΛA×A is a diagonal matrix that 
includes these eigenvalues.

The correlation matrix used in factor analysis is derived 
from the semi-positive theoretical variogram, resulting in 
eigenvalues that are either zero or positive. As a result, 
according to Eq. 17 and Eq. 18, the correlation between the 
i th original value and the j th common factor ( Lij ) is repre-
sented as Vij

√
�i , where Vij is the j th element of ��⃗Vi , and Lij 

ranges from −1 to +1. To improve the correlation between 
the main variables and a number of common factors while 
making them independent of the rest, L can be rotated to 
maximize certain elements while others approach zero. This 
rotation is intended to maximize the shared variance among 
items, resulting in more discrete representations of how the 
data correlates with each principal component. Maximizing 
the variance involves increasing the squared correlation of 
items related to one factor while decreasing correlations on 
any other factor. This type of rotation is known as varimax 
rotation, which simplifies the item loadings by eliminating 
insignificant factors and identifying the factors that the data 
is more closely related to.

Clustering method

In the proposed rain gauge network design algorithm men-
tioned in this study, the dataset used, as well as the study 

(17)

�ij = COV
[
P
(
xi, yi

)
,P

(
xj, yj

)]
=

A∑

k=1

LikLjk + �i ⇒ PN×N = LN×AL
T
N×A

(18)COV
[
P
(
xi, yi

)
,P

(
xj, yj

)]
= PN×N = VN×AΛA×AV

T
N×A

area, exhibit spatial clustering. Clustering refers to group-
ing primary data into classes based on their similar char-
acteristics. The utilization of clustering in the rain gauge 
network design procedures has the implication of narrow-
ing down the search space and reducing the computational 
effort needed to explore potential solutions, allowing for the 
identification of more optimal outcomes.

A combination of factor analysis and the kriging method 
is an innovative and practical approach utilized in this 
research (Shaghaghian and Abedini 2013; Shyu et al. 2011; 
Venkatramanan et al. 2016). In brief, the weight factors 
obtained from Eq. 13 and Eq. 14 determine the coefficients 
of each known variable (observed value) in an algebraic lin-
ear combination equation. This equation is used to compute 
the variance of residuals, which serves as the objective func-
tion for the rainfall monitoring network. Since there may be 
some correlation among the known variables, factor analysis 
aids in identifying common information derived from these 
variables and categorizes them into clusters. Mathemati-
cally, the j th factor holds significance in the calculation of 
the objective function (Eq. 15).

where L′ij is the rotated loading coefficient of j th common 
factor. Therefore, higher values of �j can be selected as the 
more significant factors which are here interpreted as clus-
ters. Moreover, �BK

i
L′ij can also be considered as the share of 

the i th observation in the j th cluster, and according to this 
contribution, the observation can also be relatively clustered.

Rain gauge network design strategy

The approach to rain gauge network design in this study 
draws inspiration from numerous established methods. How-
ever, a significant distinction lies in the primary data source 
utilized, which predominantly comprises satellite-derived 
precipitation datasets. Moreover, the proposed strategy can 
be delineated into the following two phases:

1- In the initial phase, it is essential to establish the spatial 
pattern of precipitation variability within the region. 
This determination necessitates access to rainfall data 
from various locations. Satellite-derived precipitation 
data is utilized in this study to delineate this pattern. 
Notably, for the proposed methodology, summarizing 
temporal variations in precipitation calls for a simpli-
fied index. Hence, the average annual precipitation at 
each location serves as the basis. The structure of spa-
tial precipitation variation is represented as a bounded 
and isotropic variogram model. Therefore, it becomes 
imperative to examine the feasibility of attaining an iso-

(19)�j =

N∑

i=1

�BK
i
L�ij
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tropic bounded variogram by eliminating the determin-
istic component.

2- In the subsequent stage, following the construction of 
an isotropic bounded variogram, one of the traditional 
approaches can be employed to configure the rain gauge 
network. In this investigation, a geostatistical multivari-
ate analysis technique (Shaghaghian and Abedini 2013) 
is utilized to divide the area into uncorrelated clusters. 
By refining the search area, the configuration is then car-
ried out individually for each cluster. This design may 
involve the addition or removal of rain gauge stations 
from the current set or the creation of a rain gauge net-
work within the cluster without regard to the existing 
stations.

Processing utilized datasets to generate relevant and 
actionable data, in addition to the design strategy, neces-
sitates specific computational procedures outlined in 
detail in Fig. 3.

Results and discussion

Satellite-derived precipitation datasets can aid in mitigat-
ing data deficiencies and difficulties encountered in hydro-
logical modeling. However, it is crucial to process the data 
efficiently to derive necessary model parameters. Once 
processed, the data is inputted into the model to generate 
outputs that are valuable in hydrological application and 
further modeling. In this section, we assess four annual 
precipitation datasets that are obtained from satellite-
based databases through statistical and geostatistical com-
parisons with ground-based observations. Based on this 
evaluation, we select more appropriate satellite-derived 
precipitation datasets, and use them in designing an effec-
tive ground-based rain gauge network. Finally, we analyze 
and compare the performance of both the proposed and the 
available rain gauge networks.

Fig. 3  Flowchart illustrating the process of designing a rain gauge network using a satellite-derived precipitation dataset

Table 2  Summary of error metrics used to validate the PERSIANN, PERSIANN-CDR, PERSIANN, and TRMM 3B43 V.7 with respect to 
ground-based observations of annual mean precipitation over Fars province, Iran

PERSIANN PERSIANN-CDR PERSIANN-CCS TRMM 3B43 V. 7

Pearson correlation coefficient ( �) 0.58 0.60 0.56 0.82
Spearman’s rank correlation coefficient ( �

r
) 0.50 0.61 0.35 0.91

Coefficient of determination ( R2) 0.34 0.36 0.32 0.67
Mean Error (ME) mm/year  − 146.1  − 42.3 20.9 75.7
Mean Absolute Error (MAE) mm/year 146.4 67.7 72.2 84.2
Root Mean Square Error (RMSE)  mm/year 175.96 102.14 95.28 109.48
Relative Bias (RB) %  − 50.45  − 14.60 7.22 26.14
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Assessing validity of annual satellite‑derived 
precipitation

The reliability of satellite-based hydrological models is 
heavily dependent on the accuracy of the input data. It 
is necessary for the input data to be consistent with the 
ground-based observations or improved to ensure con-
sistency. Table 2 and Fig. 4 provide statistical compari-
son metrics for the evaluation of four satellite-derived 
precipitation datasets. The TRMM 3B43 V.7 dataset 
exhibits the highest compatibility with the ground-based 
observations among the evaluated satellite-based data-
sets in Fars. According to Table 2, moderate correlation 
( 0.35 < 𝜌 ≤ 0.67 ) is observed between datasets derived 
from the PERSIANN family and the ground-based obser-
vations, while strong correlation ( 0.67 < 𝜌 ≤ 1.00 ) is 
observed between TRMM 3B43 V.7 and ground-based 
observations (Hemphill 2003; Schober et al. 2018; Taylor 
1990). In addition to the correlation coefficient, the coef-
ficient of determination ( R2 ) also indicates a higher level 
of agreement between TRMM 3B43 V.7 and ground-based 
observations than the agreement between datasets derived 
from the PERSIANN family and ground-based observa-
tions (Galbraith et al. 1991). However, some conflicting 
interpretations are associated with other error metrics 
calculated for the satellite-derived datasets. The mean 

error ( ME ) and relative bias ( RB ) values suggest that, in 
comparison to datasets derived from PESIANN and PER-
SIANN-CDR, the TRMM 3B43 V.7 and PERSIANN-CCS 
overestimate the annual rainfall rates over the study period 
in the study area. The closeness of the aforementioned 
values to zero for the dataset derived from PERSIANN-
CCS attests to its higher precision, but as shown in Fig. 4, 
this may be due to the inappropriate temporal distribution 
of data.

Numerous studies have been carried out in the study 
area to evaluate the reliability of satellite-derived pre-
cipitation data using probability distributions as a tool 
(Khojand et  al. 2022; Salmani-Dehaghi and Samani 
2019). While these studies have found that data aligns 
with ground-based observations, there have been some 
discrepancies in the results. For instance, certain research 
suggests that TRMM family products are more depend-
able than the PERSIANN family in the Fars region of 
Iran (Khojand et al. 2022; Moazami et al. 2013), which is 
consistent with this research's findings. In contrast, other 
studies that compared three members of the PERSIANN 
family differed from the outcomes of this research (Salm-
ani-Dehaghi and Samani 2019).

Fig. 4  Scatterplots of Mean 
Annual SDPD and RGBO over 
the study area
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Variogram and correlation model for mean 
annual satellite‑derived precipitation data 
and ground‑based observations

Many rain gauge network design strategies rely on analyz-
ing the spatial discrepancy, or variogram, of rainfall data. 
In this study, the first step in variogram modeling involves 
creating an experimental variogram. This type of vari-
ogram plots the averaged semivariogram of mean annual 
satellite-derived precipitation data and ground-based rainfall 
observations for pairs of points located at specific intervals 
against the Euclidean distance using Eq. 6. The resulting 
diagrams can detect any non-random trend or anisotropy pre-
sent in the spatial datasets. It is important to note that most 
geostatistical-based methods in rain gauge network design 
assume stationary and isotropic spatial datasets, which can 
be represented by bounded variograms. Therefore, the next 
step is to remove any disturbing components from the data. 
The resulting semivariogram, which corresponds to the pro-
cessed data after removing these components, should be best 
fitted by an appropriate theoretical variogram.

Figure 5 illustrates the experimental variograms acquired 
from various datasets, including PERSIANN, PERSIAN-
CDR, PERSIAN-CCS, TRMM 3B43 V.7 satellite-derived 
datasets, as well as ground-based observations. The vari-
ograms are shown for both the original (unprocessed) data-
sets and the detrended datasets which will be explained in 
detail later. The variograms are presented for three direc-
tions: east–west ( � = 0◦ ), northwest-southeast ( � = −60◦ ), 
and northeast-southwest ( � = +60◦ ) across the study area. 
Diagrams derived from original datasets reveal the presence 
of non-random trends and directional dependency, which are 
significant limitations if they are directly used in rain gauge 
design strategies. Additionally, Fig. 6 provides a visual rep-
resentation of the distribution of mean annual rainfall in the 
study area using the four satellite-derived precipitation data-
sets and ground-based observations. Most datasets exhibit 
noticeable trends, with the PERSIANN satellite-derived 
dataset showing a decreasing trend from northwest to south-
east. This information can help in understanding the spatial 
patterns of rainfall in the study area.

Unbounded variograms display an increasing level of 
variability as distance increases, suggesting the existence of 
a continuous variation trend in a particular direction beyond 
the examined area. The power model is a commonly used 
unbounded variogram model. In this model, the coefficient 
represents the intensity of the process, while the power 
parameter describes the curvature and must be between 0 
and 2 (excluding these limits). If the power is lower than 
1, the curve is convex upwards. If it equals 1, the variance 
increases linearly with distance. On the other hand, if the 
power is greater than 1, the curve is concave upwards. 
Therefore, in the fitted power variogram model, the value 

of the power serves as an indicator of the presence of an 
underlying oriented trend. This trend should be removed for 
the purposes of the study.

Table 3 presents the power values for the power model 
variogram of the original satellite-derived and ground-based 
datasets, along with the processed datasets where first- and 
second-order polynomials are removed as non-random com-
ponents. It is evident from the table that the power values 
decrease as the first- and second-order polynomials are 
removed from the original datasets. To meet our design 
strategy with an acceptable value of 1, the PERSIANN-
CCS dataset is initially suitable, while the PERSIANN and 
PERSIANN-CDR datasets require a first-order polynomial 
detrend to be applicable in the current study. Additionally, 
addressing this issue requires a second-order polynomial 
detrend for the TRMM 3B43 V.7 satellite-derived dataset.

In this study, the variograms for the processed datasets 
(referred to as trend removed datasets) are also displayed in 
Fig. 5. It is evident that the variograms exhibit isotropy, as 
they are assumed to be the same and bounded in multiple 
directions. Thus, the omnidirectional variogram, where the 
semivariogram is solely a function of the distance between 
two points, is used due to its independence from direction. 
This allows for the utilization of the bounded theoretical 
variograms described in Eq. 7 for variogram modeling. 
The variogram parameters and fitting index values are 
shown in Table 4 for one member of the PERSIANN family 
(PERSIANN-CCS), TRMM 3B43 V.7, and ground-based 
observed data. The PERSIANN-CCS dataset is selected due 
to its highest trend-free and random characteristics. The vari-
ogram models and their corresponding fitting curves are pre-
sented in Fig. 7. According to the fitting index (Root Mean 
Squared Error, RMSE, defined in Eq. 8), all of the models 
appear to have acceptable fits. However, the Gaussian model 
exhibits a unique characteristic where the rate of variogram 
increases within a specific interval, and the variogram is 
convex upward within this interval. This distinct feature is 
clearly observed in the experimental semivariograms. There-
fore, among the proposed models, the Gaussian model seems 
to be slightly more suitable and is recommended for further 
variogram modeling.

The final step in this stage entails developing a correlation 
model. In the context of a bounded variogram, the sill rep-
resents the overall covariance of spatial data. Consequently, 
calculating the covariance between variables separated by 
distance 'h' can be achieved by subtracting the variogram 
values from the sill value. Moreover, the correlation can be 
easily computed by dividing the covariance by the sill value.

Rain gauge network design

In geostatistical-based rain gauge network design algo-
rithms, the spatial dependency structure of precipitation 



459Paddy and Water Environment (2024) 22:449–466 

plays a critical role. In this study, the comparison between 
four satellite-derived datasets and ground-based obser-
vations was conducted to evaluate their suitability for 

determining this dependency structure. Two datasets, one 
from the TRMM family and another from the PERSIANN 
family, were identified as suitable for further investigation. 

Original Data Detrended Data
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Fig. 5  Experimental variogram modeling (using original and detrended data) for PERSIANN group and TRMM 3B43 V. 7 satellite-derived 
datasets
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Theoretical variograms derived from these datasets will be 
used as the basis for designing the rain gauge network strat-
egy in this study.

In this research, the algorithm used to design the rain 
gauge monitoring network combines geostatistical con-
cepts and multivariate analysis. The study area is divided 

into sub-regions, and if the amount of rainfall in these sub-
regions is not dependent on each other, a monitoring gauge 
is assigned to each sub-region to track the rainfall for the 
entire region. In the first step of this research, several rain 
gauge grids with different densities are compared. Figure 8 
illustrates the relationship between the explained variance 

Fig. 6  Three-dimensional 
graphical representation of spa-
tial variation of the long-term 
satellite-derived precipitation 
data and ground-based rainfall 
observation over the study area

PERSIANN PERSIANN-CDR

PERSIANN-CCS TRMM 3B43 V. 7
Satellite-Derived Percipita�on Data (SDPD)

Ground-Based Rainfall Observa�ons (GBRO)

Table 3  Non-stationarity index for variograms fitted to the original and deterended SDPD

Original data First-order (linear) polynomial
detrended data

Second-order (quadra�c) 
polynomial detrended data

= − 60°
= 0°

= + 60° = − 60°
= 0°

= + 60° = − 60°
= 0°

= + 60°

SD
PD

PERSIANN 1.45 1.67 0.89 0.28 0.52 0.07 0.22 0.34 0.25
PERSIAN-CDR 0.99 1.41 1.03 0.67 0.74 0.56 0.27 0.61 0.25
PERSIANN-CCS 0.29 0.33 0.03 0.16 0.32 0.02 0.13 0.31 0.01
TRMM 3B43 V. 7 1.71 1.27 0.14 1.30 0.53 0.17 0.85 0.47 0.02

Table 4  Variogram parameters for 'detrended' ground-based rainfall observations and datasets obtained from chosen satellite-derived products

Sill Range RMSE

Exponential Gaussian Spherical Exponential Gaussian Spherical Exponential Gaussian Spherical

Ground-based 5341 5399 5325 88,995 74,146 101,899 1654.1 1601.5 1816.6
Satellite PERSIANN-CCS 1069 1062 1061 31,075 31,835 40,321 66.4 67.4 67.5

TRMM 3B43 V. 7 5051 4928 4940 87,096 86,892 115,376 524.9 457.0 456.5
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ratio and the rain gauge cover area for ground-based obser-
vation and two selected satellite-derived observations. The 
explained variance ratio is calculated by summing the values 
of the elements of the characteristic vector of the correla-
tion matrix that are greater than 1 and dividing it by the 
total number of elements. This value can be obtained from 

the scree graph of the correlation matrix. Figure 9 shows 
an example of this graph for five types of grids based on 
ground-based observations. For instance, in the case of a 
1600 km2 grid (40 km by 40 km), the correlation matrix 
contains 25 elements, out of which 10 are significant (greater 
than 1). The sum of these 10 elements is 14.8, indicating that 

Fig. 7  Theoretical variogram 
modeling (Exponential, 
Gaussian and Spherical) for 
ground-based observations and 
two satellite-based datasets 
(PERSIANN-CCS and TRMM 
3B43 V. 7)

Fig. 8  Impact of rain gauge 
network density on explained 
variance ratios resulted from 
ground-based observations, 
TRMM 3B43 V. 7 and PER-
SIANN-CCS satellite-derived 
datasets
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59% of the overall variance can be explained by selecting 10 
rain gauges out of the available 25 gauges.

The figures mentioned above serve as the basis for our 
rain gauge design strategy. Prior to utilizing these figures, 
users need to determine the desired accuracy of their design 
network, which is measured by explained variance. This 
accuracy factor influences the density of the rain gauge 
network. Additionally, the model correlation structure 
of the data is crucial. Table 4 provides the parameters for 
the Gaussian model, which is recommended among other 
variogram models. The correlation-distance relations for 

ground-based observations, PERSIANN-CCS, and TRMM 
3B43 V. 7 satellite-derived datasets are determined as 
ρ(h) = exp

(
−2.96 × 10−3h2

)
 , ρ(h) = exp

(
−0.40 × 10−3h2

)
 , 

and ρ(h) = exp
(
−0.55 × 10−3h2

)
 respectively. With these 

assumptions in mind, it becomes feasible to establish an 
initial network for our purpose. For instance, referring to 
Fig. 8, if the goal is to account for 75% of the total vari-
ance of precipitation over the study area, using the correla-
tion (variogram) function obtained from the PERSIANN-
CCS satellite-derived dataset indicates that each rain gauge 
should cover an area of 222.9 km2 . On the other hand, for 
TRMM 3B43 V. 7, this value increases to 1290.7 km2 , which 
is closer to the 942.7 km2 calculated from the correlation 
function derived from ground-based observations.

In addition to the aforementioned procedure, this method 
can be compared to a widely used algorithm at this stage, 
which investigates the impact of reducing the variance of 
residuals by increasing the number of rain gauges (Bastin 

et al. 1984). Figure 10 illustrates the variations in residual 
variance of a gridded rain gauge network based on the con-
sidered coverage area for each rain gauge, using ground-
based observations and the two satellite-derived datasets 
mentioned earlier. As expected, the variance of residuals 
increases with the expansion of the rain gauge coverage area 
(resulting in a decrease in gauge density) for all cases. To 
illustrate the concept, let's consider the design of a grid-
ded rain gauge network using variograms derived from 
either ground-based observations, TRMM 3B43 V.7, or 

Fig. 9  Scree diagrams generated from correlation matrices obtained 
from ground-based observations for 5 grid network scenarios

Fig. 10  Impact of rain gauge 
network density on block 
variance of residual (accuracy) 
resulted from ground-based 
observations, TRMM 3B43 V. 7 
and PERSIANN-CCS satellite-
derived datasets
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PERSIANN-CCS satellite-derived datasets. The objective 
is to reduce the variance of residuals to 10 mm2 . For this 
purpose, each rain gauge within the gridded network should 
cover specific areas: 1955.6, 2204.9, and 1776.1 square kilo-
meters, respectively. To achieve this, a grid network of either 
44.2 by 44.2, 46.9 by 46.9, or 42.1 by 42.1 is required, cor-
responding to the aforementioned area sizes.

Up until this point in the study, a grid rain gauge network 
has been proposed using only multivariate analysis and a 
geostatistical approach. The spatial dependency/independ-
ency structures were determined based on ground-based 
observations and two satellite-derived datasets. The next 
step involves improving the design strategy by incorporat-
ing these two concepts. Previous studies have commonly 
used a hybrid method, but the variograms employed in those 
studies were derived solely from ground-based observations 
(Shaghaghian and Abedini 2013). The hybrid method offers 
a significant advantage in making dense grids sparser by 
eliminating redundant rain gauges that can be covered by 
others. This means that a dense rain gauge network can be 
initially designed and then effectively sparsened using this 
hybrid method.

After developing a dense grid network where each node 
represents a potential rain gauge, the total variance resulting 
from these nodes is taken into account. The study area is then 
clustered using a hybrid method, and a rain gauge is assigned 
to each cluster, establishing a rain gauge network. Figure 11 
illustrates the decreasing variance of residuals as the number 
of clusters (represented by rain gauges) increases. This pro-
cess is carried out using three previously described datasets: 

ground-based observations, PERSIANN-CCS, and TRMM 
3B43 V. 7 satellite-derived datasets. To elaborate further, in 
order to achieve a residuals variance of 10 mm2 , it is nec-
essary to have a rain gauge network consisting of 35, 56, 
and 28 rain gauges for these respective datasets. Comparing 
these values with the grid network designed initially, which 
indicated a need for 62, 70, and 56 rain gauges (by dividing 
the study area, which spans 122,608 km2 , by the rain gauge 
coverage area), the effectiveness of the hybrid method for 
the rain gauge network becomes apparent.

All available methods used to observe rain gauge net-
works can only identify redundant rain gauges or, at best, 
identify areas with a lack of rain gauges. Our approach to 
designing a rain gauge network is centered on utilizing sat-
ellite-derived precipitation datasets, which are distributed 
across the study area in grids (e.g., 0.25° × 0.25° for TRMM 
satellite-derived precipitation datasets as illustrated in Fig. 1, 
or with higher density for PERSIANN-CCS). As a result, 
the resulting rain gauge network should be structured in a 
grid pattern. The optimization of this grid, such as relocat-
ing some stations closer to accessible locations, is a chal-
lenge that has not been addressed in this study. Therefore, 
Fig. 12 showcases the proposed rain gauge network based on 
TRMM 3B43 V. 7 satellite-derived datasets, with a detailed 
explanation of the design process provided in preceding 
paragraphs.

In summary, the main goal of the article is to utilize 
satellite-derived precipitation datasets for creating ground-
based rain gauge networks. Out of the four datasets exam-
ined, two were selected and improved: TRMM 3B43 V. 7 

Fig. 11  Impact of number of 
rain gauges on the block vari-
ance of residuals (accuracy) in 
rain gauge networks designed 
using ground-based observa-
tions, TRMM 3B43 V. 7, and 
PERSIANN-CCS satellite-
derived datasets
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and PERSIANN-CCS. Based on statistical comparisons 
conducted in this study and findings from other research, 
it can be concluded that TRMM satellite-derived precipita-
tion datasets are more reliable for the study area (Khojand 
et al. 2022; Salmani-Dehaghi and Samani 2019). However, 
the detrended version of PERSIANN-CCS can also be 
used for designing a rain gauge network in this study. The 
effectiveness of satellite-derived datasets depends on the 
desired level of accuracy. For instance, if a highly accurate 
rain gauge network is needed, PERSIANN-CCS suggests 
a denser network compared to TRMM-CCS. However, an 
optimized network derived from ground-based observations 
falls between these two options.

Concluding remarks

Developing an effective rain gauge network requires accurate 
precipitation data. However, obtaining reliable precipitation 
data depends on having a well-designed rain gauge network. 
This creates a challenging paradox. One potential solution 
to this dilemma is using satellite-derived precipitation 
data. In this study, we evaluate four satellite-derived pre-
cipitation datasets, namely, PERISANN, PESIANN-CDR, 
PERSIANN-CCS, and TRMM 3B43 V. 7, to determine 
their suitability for rain gauge network design algorithms. 

Among these datasets, PERSIANN-CCS, and TRMM 3B43 
V. 7 show promise for improvement. After enhancing these 
datasets and modeling a bounded variogram, the resulting 
models are incorporated into a geostatistical multivariate 
rain gauge network design approach. The study concludes 
by proposing an optimized rain gauge network based on 
the findings. Furthermore, according to the findings of this 
study, the following conclusions can be drawn:

1- The geostatistical multivariate approach for rain gauge 
network design has the benefit of attenuating charac-
teristics. It can be effectively employed to optimize the 
design of rain gauge networks, whether they are being 
newly implemented or already exist, with the aim of 
improving their cost-effectiveness.

2- The effectiveness of using satellite-derived precipita-
tion datasets for rain gauge network design cannot be 
solely determined through statistical comparison with 
ground-based observations. For example (as illustrated 
in Table 2), the comparison between the two datasets 
reveals that the PERSIANN-CCS satellite-derived data-
set exhibits a weaker correlation with the observations 
from ground rain gauge stations compared to other satel-
lite-derived datasets. However, following some straight-
forward adjustments to the spatial datasets (specifically, 
removing the overall trend), this dataset was able to 

Fig. 12  Rain gauge network 
designed utilizing TRMM 3B43 
V. 7 and PERSIANN-CSS 
satellite-derived precipitation 
datasets
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accurately model the spatial variations of rainfall values. 
Moreover, the variability does not escalate infinitely; 
after trend removal, a bounded variogram is obtained, 
as depicted in Fig. 5. As a result of these findings, the 
PERSIANN-CCS dataset has been effectively utilized 
in the algorithm for designing rain gauge networks.

3- The accuracy of information obtained from rain gauge 
networks can be assessed using two methods: "explained 
variance" and "block variance of residuals." The use 
of explained variance is suitable for conducting mul-
tivariate analysis techniques, while the block variance 
of residuals is more appropriate for geostatistical-based 
approaches.

4- The primary purpose of establishing a rain gauge net-
work is to monitor the spatial and temporal variations in 
rainfall across a particular area. Consequently, a higher 
degree of spatial variability necessitates a more exten-
sive deployment of rain gauges within this network. 
As illustrated in Fig. 6, the spatial variability in mean 
annual precipitation derived from the PERSIANN-CCS 
satellite dataset surpasses that of the TRMM 3B43 V. 
7 satellite dataset. Therefore, it is anticipated that to 
achieve a similar level of precision, the rain gauge net-
work derived from the PERSIANN-CCS satellite dataset 
would require a denser distribution of gauges compared 
to the network derived from the TRMM 3B43 V. 7 sat-
ellite dataset. For instance, as depicted in Fig. 11, if we 
set the accuracy threshold for the rain gauge network 
at 10 mm2 based on block variance residuals, the net-
work resulting from the PERSIANN-CCS dataset would 
necessitate 56 rain gauges, whereas the network derived 
from the TRMM 3B43 V. 7 dataset would only require 
28 rain gauges.

As a recommendation for further studies, the suggested 
rain gauge network in this research aims to capture long-
term precipitation parameters across the study area. The 
findings could prove valuable for macro-scale water man-
agement purposes. However, it is important to consider situ-
ations where lower temporal resolution of precipitation data 
is needed, such as for flood forecasting. In such cases, it is 
recommended to design the rain gauge network while tak-
ing this issue into account. Satellite-derived datasets like 
TRMM 3B42 RT, which provides semi-hourly data, can be 
utilized for rain gauge network design in these instances.

References

Abu Salleh NS, Mohd Aziz MKB, Adzhar N (2019) Optimal design 
of a rain gauge network models: review paper. J Phys: Conf Ser 
1366(1):012072

Adhikary SK, Yilmaz AG, Muttil N (2015) Optimal design of rain 
gauge network in the middle Yarra River catchment. Australia 
Hydrol Processes 29(11):2582–2599

Adib A, Moslemzadeh M (2016) Optimal selection of number of rain-
fall gauging stations by kriging and genetic algorithm methods. 
Int J Optim Civ Eng 6(4):581–594

Akbari M, Torabi Haghighi A (2020) Satellite data application to cover 
lack of in-situ observations for mapping precipitation and direct 
runoff in semi-arid Basin. In EGU General Assembly Conference 
Abstracts, p 13666

Bastin G et al (1984) Optimal estimation of the average areal rainfall 
and optimal selection of rain gauge locations. Water Resour Res 
20(4):463–470

Bradley AA et  al (2002) Raingage network design using nexrad 
precipitation estimates1. JAWRA J Am Water Resour Assoc 
38(5):1393–1407

Chahine MT (1992) The hydrological cycle and its influence on cli-
mate. Nature 359(6394):373–380

Chen A, Chen D, Azorin-Molina C (2018) Assessing reliability of 
precipitation data over the Mekong river basin: a comparison of 
ground-based, satellite, and reanalysis datasets. Int J Climatol 
38(11):4314–4334

Chen F et al (2022) Reliability of satellite-derived precipitation data in 
driving hydrological simulations: a case study of the upper Huaihe 
river basin. China Journal of Hydrology 612:128076

Cheng K-S, Lin Y-C, Liou J-J (2008) Rain-gauge network evalu-
ation and augmentation using geostatistics. Hydrol Process 
22(14):2554–2564

Contreras J et al (2019) Rainfall monitoring network design using 
conditioned Latin hypercube sampling and satellite precipitation 
estimates: an application in the ungauged Ecuadorian Amazon. 
Int J Climatol 39(4):2209–2226

Dai Q et al (2017) A scheme for rain gauge network design based 
on remotely sensed rainfall measurements. J Hydrometeorol 
18(2):363–379

Gadhawe MA, Guntu RK, Agarwal A (2021) Network-based explora-
tion of basin precipitation based on satellite and observed data. 
The Eur Phys J Spec Topics 230(16):3343–3357

Galbraith JI et al (1991) The interpretation of a regression coefficient. 
Biometrics 47(4):1593–1596

Georgakakos KP, Kavvas ML (1987) Precipitation analysis, modeling, 
and prediction in hydrology. Rev Geophys 25(2):163–178

Hemphill JF (2003) Interpreting the magnitudes of correlation coef-
ficients. Am Psychol 58:78–79

Huang Y et al (2020) A method for the optimized design of a rain gauge 
network combined with satellite remote sensing data. Remote 
Sens 12(1):194

Huynh VM et al (2021) An optimal rain-gauge network using a GIS-
based approach with spatial interpolation techniques for the 
mekong river basin. J Coast Res 114:429–433

Joseph R et al (2009) A new high-resolution satellite-derived precipita-
tion dataset for climate studies. J Hydrometeorol 10(4):935–952

Joss J, Waldvogel A, Collier CG (1990) Precipitation Measurement and 
Hydrology. In: Atlas D (ed) Radar in meteorology: Battan memo-
rial and 40th anniversary radar meteorology conference. American 
Meteorological Society, Boston, MA, pp 577–606

Khojand K et al (2022) Validity, reliability and certainty of PERSIANN 
and TRMM satellite-derived daily precipitation data in arid and 
semiarid climates. Acta Geophys 70(4):1745–1767

Khoshchehreh M, Ghomeshi M, Shahbazi A (2020) Hydrological eval-
uation of global gridded precipitation datasets in a heterogeneous 
and data-scarce basin in Iran. J Earth Syst Sci 129(1):201

Korvin G, Boyd DM, O’Dowd R (1990) Fractal characterization 
of the south Australian gravity station network. Geophys J Int 
100(3):535–539



466 Paddy and Water Environment (2024) 22:449–466

Krajewski WF (1987) Cokriging radar-rainfall and rain gage data. J 
Geophys Res: Atmos 92(D8):9571–9580

Li M, Shao Q (2010) An improved statistical approach to merge satel-
lite rainfall estimates and raingauge data. J Hydrol 385(1):51–64

Liu Z (2015) Evaluation of precipitation climatology derived from 
TRMM multi-satellite precipitation analysis (TMPA) monthly 
product over land with two gauge-based products. Climate 
3(4):964–982

Liu Z et al (2021) Data mining of remotely-sensed rainfall for a large-
scale rain gauge network design. IEEE J Sel Top Appl Earth Obs 
Remote Sens 14:12300–12311

Loew A et al (2017) Validation practices for satellite-based earth obser-
vation data across communities. Rev Geophys 55(3):779–817

Mazzarella A, Tranfaglia G (2000) Fractal characterisation of geo-
physical measuring networks and its implication for an optimal 
location of additional stations: an application to a rain-gauge net-
work. Theoret Appl Climatol 65(3):157–163

Michaelides S et al (2009) Precipitation: measurement, remote sensing, 
climatology and modeling. Atmos Res 94(4):512–533

Minghsu L et al (2006) Estimating seasonal basin rainfall using tabu 
search. TAO Terr, Atmos Ocean Sci 17(1):295

Moazami S et al (2013) Comparison of PERSIANN and V7 TRMM 
multi-satellite precipitation analysis (TMPA) products with rain 
gauge data over Iran. Int J Remote Sens 34(22):8156–8171

Mohd Aziz MKB et al (2019) Comparison of semivariogram models 
in rain gauge network design. Matematika Malaysian J Ind Appl 
Math 35(2):157–170

New M et al (2001) Precipitation measurements and trends in the twen-
tieth century. Int J Climatol 21(15):1889–1922

Pardo-Igúzquiza E (1998) Optimal selection of number and location 
of rainfall gauges for areal rainfall estimation using geostatistics 
and simulated annealing. J Hydrol 210(1):206–220

Pettorelli N et al (2005) Using the satellite-derived NDVI to assess 
ecological responses to environmental change. Trends Ecol Evol 
20(9):503–510

Salmani-Dehaghi N, Samani N (2019) Spatiotemporal assessment of 
the PERSIANN family of satellite precipitation data over fars 
province. Iran Theor Appl Climatol 138(3):1333–1357

Schober P, Boer C, Schwarte LA (2018) Correlation coefficients: appro-
priate use and interpretation. Anesth Analg 126(5):1763–1768

Shaghaghian MR, Abedini MJ (2013) Rain gauge network design using 
coupled geostatistical and multivariate techniques. Scientia Iran-
ica 20(2):259–269

Shi H et al (2020) A new method for estimation of spatially distributed 
rainfall through merging satellite observations, raingauge records, 
and terrain digital elevation model data. J Hydro-Environ Res 
28:1–14

Shyu G-S et al (2011) Applying factor analysis combined with kriging 
and information entropy theory for mapping and evaluating the 
stability of groundwater quality variation in Taiwan. Int J Environ 
Res Public Health 8(4):1084–1109

Su H-T, You GJ-Y (2014) Developing an entropy-based model of spa-
tial information estimation and its application in the design of 
precipitation gauge networks. J Hydrol 519:3316–3327

Tapiador FJ et al (2012) Global precipitation measurement: methods, 
datasets and applications. Atmos Res 104–105:70–97

Taylor R (1990) Interpretation of the correlation coefficient: a basic 
review. J Diagn Med Sonogr 6(1):35–39

Venkatramanan S et al (2016) Geostatistical techniques to evaluate 
groundwater contamination and its sources in Miryang City, 
Korea. Environ Earth Sci 75(11):994

Wang W et al (2019) Evaluation of information transfer and data trans-
fer models of rain-gauge network design based on information 
entropy. Environ Res 178:108686

Wei C, Yeh H-C, Chen Y-C (2014) Spatiotemporal scaling effect on 
rainfall network design using entropy. Entropy 16(8):4626–4647

Worden J et al (2007) Importance of rain evaporation and continental 
convection in the tropical water cycle. Nature 445(7127):528–532

Xie P, Arkin PA (1995) An intercomparison of gauge observations 
and satellite estimates of monthly precipitation. J Appl Meteorol 
Climatol 34(5):1143–1160

Xu H et al (2015) Entropy theory based multi-criteria resampling of 
rain gauge networks for hydrological modelling – a case study of 
humid area in southern China. J Hydrol 525:138–151

Yeh H-C et al (2017) Rainfall network optimization using radar and 
entropy. Entropy 19(10):553

Yong B et al (2013) First evaluation of the climatological calibra-
tion algorithm in the real-time TMPA precipitation estimates 
over two basins at high and low latitudes. Water Resour Res 
49(5):2461–2472

Yong B et al (2014) Intercomparison of the version-6 and Version-7 
TMPA precipitation products over high and low latitudes basins 
with independent gauge networks: Is the newer version better in 
both real-time and post-real-time analysis for water resources and 
hydrologic extremes? J Hydrol 508:77–87

Zhou Z et al (2019) Preliminary evaluation of the HOBO data logging 
rain gauge at the chuzhou hydrological experiment station. China 
Advances in Meteorology 2019:5947976

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.


	Designing a rain gauge network: utilizing satellite-derived precipitation data with geostatistical multivariate techniques
	Abstract
	Introduction
	Study area and data
	Study area
	Dataset
	Available rain gauge network
	Satellite-derived precipitation datasets
	PERSIANN family
	TRMM 3B43 Version 7


	Methodology
	Satellite-derived annual precipitation data
	Variogram modeling
	Ordinary point and block kriging
	Factor analysis
	Clustering method
	Rain gauge network design strategy

	Results and discussion
	Assessing validity of annual satellite-derived precipitation
	Variogram and correlation model for mean annual satellite-derived precipitation data and ground-based observations
	Rain gauge network design

	Concluding remarks
	References




