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Abstract
Crop type detection is of great importance in water resource allocation and planning mostly in arid and semi-arid regions 
of Iran. Landsat-OLI 16-day inter-annual images are invaluable sources obviating crop monitoring into issues of crop types 
detection, crop yield prediction, and crop pattern studies. Although many classification methods such as decision tree (DT), 
support vector machine (SVM), and maximum likelihood (ML) were implied for crop type mapping, recent researches often 
use an object-based classification approach. In this study, an object-based image analysis (OBIA) classifier based on rule-
based decision tree (RBDT) and object-based nearest neighbor (OBNN) used to delineate five common crop types (includes 
Wheat and Barley together in one class, rice, multiple crop (MC), Alfalfa and Spring crops) in Isfahan city and nearby areas. 
The classification was applied in five scenarios using different vegetation indexes including normalized difference vegetation 
index (NDVI), normalized difference water index (NDWI), green normalized difference vegetation index GNDVI and their 
combination. All scenarios property and accuracy assessed both with by class separation distance matrix and confusion 
matrix. The overall accuracy of classification with using only one vegetation index was lower than other scenarios. It was 
the lowest for GNDVI rating 37% whereas combination of Indexes resulted better accuracy. In final map with combination 
of NDVI, GNDVI and NDWI, overall accuracy and kappa achieved to 88% and 0/83 successively. Comparing individual 
accuracy of different crops showed that MC crops with 66% has the lowest accuracy and Wheat-Barely crops with 94.8% 
individual accuracy has the Maximum accuracy. Other crop types accuracy alters between 66 and 94.8%.
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Introduction

Crop type detection is a critical and important parameter 
in food security, land use monitoring, and water resource 
management affecting climate change and biodiversity. 
Knowledge of crop type and distribution across landscapes 
is essential for agricultural lands management and develop-
ment in a sustainable manner (Schreier et al., 2020). Water 
consumption of various crop types is a challenging issue 
in water resource management addressed by croplands 

mapping and monitoring. It is more highlighted in arid and 
semi-arid areas like the central part of Iran, facing with 
lots of water allocation challenges to agricultural activates 
(Asgarian et al. 2016). Also, crop type information obvi-
ates croplands water resources future planning and manage-
ment considering environmental factors like climate changes 
(Immitzer et al. 2016). Accordingly, an accurate crop type 
classification has become one of the main objectives in the 
field of agriculture and related domains.

While, manual and field approaches for mapping crop 
types (e.g., interviews with farmers and local communities) 
are time consuming and laborious, remote sensing meth-
ods are rich, reliable data sources for monitoring the earth 
surface, crop types, and temporal behaviors of croplands 
in growing seasons (Castillejo-González et al. 2009; Peña-
Barragán et al. 2011; Manakos and Lavender 2014). Moder-
ate spatial resolution satellite images (e.g., MODIS, Senti-
nel and Landsat images) are widely used to map Land Use 
Land Cover (LULC) and their changes over time (Huang 
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2007; Ulaby 1982; Sencan 2004). Besides, many vegetation 
indices synergic with satellite images have been developed 
to estimate the type of crop (Pani et al., 2020; Gerstmann 
et al., 2018). For example, global Cropland maps were pro-
duced using MODIS 250-m and 500-m NDVI yearly and 
seasonally time series (Wang et al. 2014a, b) and on some 
occasions has focused on rain-fed crops (global map of 
rain fed cropland areas (GMRCA)) or irrigated croplands 
(global irrigated area map (GIAM)) (Thenkabail et  al. 
2009). Understanding the phenology of croplands obviates 
crop type detection and reduce time series images for crop 
type mapping. Phenology map of OWA, the United States 
of America (USA) produced by using combination of Land-
sat 5, 7, 8, and MODIS data (Gao et al., 2017).although,, 
MODIS time series is a common source in croplands studies, 
due to the coarse spatial resolution of 250-m it is suitable for 
large open fields ((Lebourgeois et al., 2017)}and surges the 
uncertainties of the results especially in mixture crop types 
like Africa (Vancutsem et al. 2012). Therefore, using high 
resolution satellite images like Landsat, ASTER, Sentinel, 
and very high spatial resolution satellite images like Rapi-
dEye, GeoEye, and IRS-P5 has been considered as a viable 
source in the last decade (Gerstmann et al., 2018). Among 
medium spatial resolution satellite images, Landsat 16-day 
long-term and its cost-effective archive has been known as 
an invaluable data source used frequently to extract crop 
type classification (Khan et al., 2020; Chen et al., 2020).
However, using Landsat archive images has some limitation, 
cloud cover in cold seasons, 16-day revisit time and 30 m 
resolution which is not suitable for smallholder croplands. 
Therefore, recently, using Sentinel-1 and Sentinel-2 images 
has become more popular for crop type mapping (Chen 
et al., 2020). For example, Sentinel-2 and RapidEye images 
used to produce crop type maps of Austria and Germany 
(Immitzer et al. 2016; Gerstmann et al. 2016).while, Landsat 
images vegetation indices time series is using for national 
crop land classification National Agricultural Statistics Ser-
vice (NASS) of the United States Department of Agricul-
ture produced seven states, Arkansas, Illinois, Indiana, Iowa, 
Mississippi, New Mexico, and North Dakota, cropland map 
using Landsat-5 and Landsat-7 images in 2001 with other 
agricultural Agencies cooperation (Craig 2010). Integra-
tion of Landsat, ASTER, and MODIS images from April to 
August utilized to produce the Land cover map and crop type 
inventory of Tiffani watershed (Brooks et al. 2006). Addi-
tional to time series of (Landsat-Sentinel) images, different 
vegetation indices time-series. Normalized difference Vege-
tation Index (NDVI) and Normalized difference Water Index 
(NDWI) have being used in crop type detection. NDVI time 
series is the principle index using for vegetation dynamic/
phenology monitoring in crop type studies and NDWI usu-
ally utilize for determination of well-watered crops (Ferrant 
et al., 2017) (Gerstmann, 2018). Time series of NDVI, and 

NDWI of Landsat-8 images used with decision tree classi-
fication method in R software to extract irrigated cropland 
pattern and fallow-lands rotation in six block in Gash Delta 
of Sudan (Fujihara, 2020). Although Landsat spatial resolu-
tion is better than MODIS images, the 16-day revisit time 
of images (which might increase to 32 or more according to 
the cloud covers in each region) is a hindrance in the detec-
tion of some crops growing promptly or harvesting in small 
growing periods (e.g., vegetables, cucumber) (Hilker et al. 
2009). So, NDVI times series of MODIS images are using 
as an assistant dataset to detect the crops calendar/phenology 
and for crop types with short growing seasons, daily NDVI 
(NDVI of MODIS images) offers better results (De Castro 
et al. 2018).

Crop type extraction accuracy using remote sensing data 
depends on some contributing factors: (1) spatial and tem-
poral resolution of satellite images, (2) crop types phenol-
ogy difference (Robson et al. 2012), (3) spectral similarity 
of each crop type with other land covers, (4) crops varia-
tion in each region (Fritz et al. 2011) and (5) methodology 
used for crop type classification. The factor (2),(3) and (4) 
are highly depend on the crops phenology and the physical 
parameters of studying area and also has less dependency 
to remote sensing datasets and classification methods. On 
the other hand, satellite image, their temporal and spatial 
resolution and more importantly, the method used for clas-
sification have a significant effect on the accuracy of the crop 
type mapping results. All image classification methods are 
categorized into pixel-based and object-based classification 
approaches. In pixel-based image classification methods, 
the rate of misclassification over the agricultural areas is 
high due to the several reasons: A) similar spectral charac-
teristics of some agricultural classes, B) spectral variabil-
ity of the canopy reflectance and the bare soil background 
within an agricultural field and, C) the presence of mixed 
pixels located at the boundary between classes (De Wit and 
Clevers, 2004). Also, small cropland pixels may be consid-
ered as noise in post-processing step and they might elimi-
nate. Consequently, evaluation of the accurate area of each 
cropland might be erroneous. To address these problems, 
OBIA has become more popular in remote sensing analy-
sis in which the whole shape of each land is preserved by 
assigning a correct class to the land. OBIA classifier creates 
homogenous cropland parcels based on spectral and spatial 
similarity of image objects (crop fields).In recent decades by 
the advancement of geomatics technologies in remote sens-
ing and GIS and the availability of medium to high spatial 
resolution images like Landsat-OLI, Sentinel-1 and 2, Spot, 
RapidEye, and Worldview, object-based image classification 
approaches are taken into action in crop discrimination (Tor-
bick et al., 2017; Kussul et al., 2017). Object-based image 
classification methods promised better crop detection studies 
in contrast with pixel-based classification (Zaki et al., 2020). 
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OBIA classification includes two basic steps, segmentation, 
and classification. 1) in the segmentation process the user 
can control the size and shape of the segments (croplands) 
as a desirable scale and 2) classification conducts by using 
textural, morphological, and shape indicators and also the 
spectral indicators for each segments, (crop lands) in this 
study. In this case, each cropland not only extracts based 
on its spectral factors but also based on its’ spatial factors 
like rectangular fitness, compactness, similarity and tex-
ture and finally OBIA classifier extracts croplands similar 
to human vision. OBIA method used for crop type classi-
fication of Southwest Missouri based on combination of 
NDVI time series of Landsat and MODIS images (Li et al., 
2015). Also, Crop type map of Ukraine derived using neural 
network OBIA based on combination of Landsat-OLI and 
sentinel-1 images and it upgraded to an operational system 
(Sen2-Agri) by which a thematic crop map produce in a 
demanded resolution based on the user defined data for five 
major crop types {Kussul, 2016 #18}{Lukas Blickensdör-
fer, 2022 #63}.. OBIA DT based on Landsat (ETM+ and 
TM) images time series and field observation data utilized 
to extract sugarcane lands of Brazil admittedly separated 
from soybean and other land covers in Missouri (Li et al. 
2015; Vieira et al. 2012). Time series of different vegetation 
indices besides the multi spectral images play a principle 
role for crop types phenology and signature detection and in 
the many of crop mapping studies, the focus is on the varia-
tion of theses indices (e.g. NDVI, EVI, and NDWI). Differ-
ent Land cover classification methods assessment utilized 
NDVI and NDWI indices of Sentinel-2 imagery with suite 
observation and European crop parcel maps with combina-
tion of Sentinel-2 and sentinel-1 with a large amount of situ 
observation derived with random forest classifier (Weigand 
et al. 2020). Landsat OLI time series and enhanced vegeta-
tion index (EVI) based on random forest and data mining 
decision tree techniques were the main satellite data to crop 
mapping of Cerrado, Brazil (Do Bendini et al. 2016) Crop 
types map in two European cities (in Italy and Romania) and 
one American city (in California) classified from Sentinel-2 
(NDVI) time series both with OBIA and pixel-based meth-
ods. They showed that the OBIA methods results are more 
accurate and feasible than pixel based methods. (Belgiu and 
Csillik, 2018). Multi temporal SPOT5 images in in Baishan 
with ruleset OBIA method conducted for crop type mapping 
and it showed higher accuracy and less time consuming for 
crop type mapping (Dongping Ming et al., 2016). OBIA 
throughout segmentation offers a feasible method reducing 
spectral differences within various classes and salt and paper 
effects on thematic maps, increase classification accuracy 
with incorporating texture, object related information(Peña-
Barragán et al., 2011).

Accurate and timely cropland maps of agricultural lands 
of Iran are essential for water resource managing, optimal 

water allocation and updating agriculture databases regard-
ing to developments and plans. Therefore, the development 
of an operational method with appropriate accuracy to 
determine the crop types is very important and necessary 
for Iranian agricultural lands. This study investigates the 
performance of using multi-temporal Landsat 8 imagery 
with different vegetation indices for crop differentiation 
based on object-based classification. The main goals of this 
study are to provide: 1) Crop type detection (includes wheat 
and barley, rice, alfalfa, multi-cops and spring crops with 
an OBIA classification in Isfahan and nearby areas of the 
Zayandeh-Rud river using multi-temporal Landsat satellite 
images, 2) evaluating the potential of different multi-tempo-
ral vegetation indexes (NDVI, NDWI, and GNDVI) in crop 
type detection. The results are interpreted in the context of 
finding an operational solution for monitoring crop types 
over extensive areas.

Study area

The study area is located in the south of Isfahan Province 
at the central part of the Gavkhoni basin, a major basin 
in the central plateau of Iran, vitally important to state its 
environmental impacts on crop yield and water resources. 
Its area is about 8800 km2 and geographically located 
between 31.7369° N to 33.2947° N latitude and 50.8755° 
E to 51.9817° E Longitude based on Datum of WGS84 as 
shown in Fig. 1. Also, this region contains the central part of 
the Zayandeh-Rud River and Nekoo-Abad dam in the south-
ern part of Isfahan which terminates to Gavkhoni lagoon. 
Also, it contains agricultural suburbs of Isfahan, Mubarak-e, 
Borkhar, and Najaf-Abad cities, historically been reputed 
for rice, wheat and barley, and orchard products. The study 
area is located in the lush plain of the Zayanderud River 
at the foothills of the Zagros mountain range. The annual 
precipitation varies from 1500 mm in the west to 50 mm in 
the east of the basin. Also, the mean annual temperature of 
this area is about 17.5 °C with the mean relative humidity 
of about 42%. The Zayandeh-Rud River, with an average 
natural flow of 1400 million cubic meters (mcm) per year, 
including 650 mcm of natural flow and 750 mcm of inter-
basin transferred flow, starts in the Zagros Mountains in the 
west of the basin and ends in the Gav-Khuni Marsh in the 
east of the basin. Currently, more than 73% of the basin’s 
available water resources are used for agriculture (Fig. 2).

Recently, the industrial expansion of capital cities like 
Isfahan made some Land use changes in the city and sub-
urbs. Therefore, the traditional crops are substituted with 
industrial crops such as MC, spring crops, and alfalfa with 
higher economic advantages to farmers as a contributing 
factor. Cropland investigation in this area by Asgarian and 
Akbari are good examples showing the significance of 
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cropland detection and change. They extracted alfalfa and 
rice in some parts of the Zayandeh-Rud basin in the recent 
decade. On the other hand, agriculture and drinking water 
needs of this area are mainly dependent on the Zayandeh-
Rud River. Recent researches have shown that extra water 
extractions for irrigation systems and domestic uses made 
the river dye out to Gavkhoni lagoon while affecting water 
quality and soli salinity, restricted agricultural activates, and 
reduced agricultural land size. Therefore, crop type detection 

due to land use and water management is more highlighted 
in this area (Molle and Wester 2009; Asgarian et al. 2016). 
Although, the new agricultural plan is not recommended in 
order to water resources shortage and vulnerable soil condi-
tion, many crop types changes have happened recently which 
urgently enhance crop type delineation. Akbari in 2006 pre-
pared a crop map in some parts of the Zayandeh-Rud basin 
using a single-date Landsat-7 image with a maximum like-
lihood classifier. Later in 2016, similar research has done 

Fig. 1   Location map of the 
study area and the spatial distri-
bution of field data
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in a small part of the studying area, NajafAbad, using five 
Landsat images by Asgarian (Asgarian et al. 2016).

Materials

Dataset

Multi‑temporal MODIS NDVI data for generating crops 
calendar

Multi temporal of MOD13Q1 products of MODIS images 
containing NDVI data in 2016 used at spatial resolution of 
250 m and temporal resolution with 16-day to analyze crop 
calendar according to Fig. 2. The algorithm used to generat-
ing the MOD13Q1 product chooses the best available pixel 
value from all the acquisitions from the 16-day period. The 
criteria used are low clouds, low view angle, and the high-
est NDVI value. Total number of 23 images was collected. 
First of all, the HDF format of the products was pre-pro-
cessed by MODIS Conversion Toolkit (MCTK) in ENVI, 
then a stacked layer of NDVIs was prepared and used in 

agricultural croplands to figure out the phenology and grow-
ing season of each crop type. This step helps to decrease data 
redundancy of Landsat image collection. Accordingly, 23 
MODIS NDVI time series grid data used to extract the phe-
nology of different crop types (wheat and barley, rice, alfalfa, 
MC, and spring). It is essential to state that in this study 
Wheat and Barely considered in one class due to the great 
similarity of their spectral properties with each other. In 
addition, spring crops assign to crops growing in spring and 
harvesting in summer, similarly, MC crops assign to crops 
that are harvesting more than two times yearly. As shown in 
Fig. 2, the growing season of all crop types is divided into 
two main parts: first from DOY1 49 (18 of February) to late 
June, second from August to late November, while NDVIs 
in December and January had small fluctuation.

Fig. 2   The graph of average NDVI time series of 5 crop type by MODIS Images. The colored boxes in the bottom table of Fig. 2 show the date 
of growing seasons of each crop type. The uncolored boxes belong to sewing or harvesting dates

1  Day of Year.
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Landsat images

The use of Landsat series imagery in the study of land use 
and land covers has a very long history and has provided 
invaluable services for recognizing croplands and their types. 
The Operational Land Imager (OLI) on board Landsat-8 sat-
ellite, acquires data following a sun-synchronous orbit with 
a revisit interval of 16 days since 2013. OLI measures radi-
ances in 11 spectral bands (in the range of 0.433–2.300 μm) 
covering the solar and the thermal domains. Instantaneous 
fields of view of the sensor correspond to a spatial resolu-
tion at the ground of 30 m for bands 1–9 (visible to middle 
infrared) and 100 m for bands 10 and 11 (thermal infrared 
band). Landsat images were obtained from the USGS web-
site (http://​glovis.​usgs.​gov).

According to Fig. 2, different crop types growing sea-
son happens between the ends of February to September. It 
indicates that Landsat images should be collected at least in 
6 months (April, May, June, July, August, and September), 
the critical period in crop types growing seasons. In order to 
take the advantage of a similar spatial resolution of satellite 
images, a yearly temporal Landsat OLI cloud-free images 
assembled in 2016 including 14 images in the growing sea-
sons. Landsat images radiometric correction (converting DN 
value to reflectance) were done via ENVI software, then a 
spectral subset of images produced by selecting 6 visible, 
infrared, and shortwave infrared bands. After all, a collec-
tion of spatial subsets of the study area was prepared for all 
images.

Field data

Ground truth data are an indispensable part of supervised 
classification as training and validation data. Each class gets 
its spectral and temporal properties based on training sam-
ples while validation samples are being used for accuracy 
assessment. Although, ground truth samples gathering is a 
sensitive deliberating task, these samples seriously affect 
classification results and accuracy. In this study, for each 
crop type, some samples were gathered during a pre-field 
observation in spring and fall of 2016. The number of poly-
gons and percentage of training and validating samples of 
each class is presented in Table 3, and spatial distribution 
of the samples are shown in Fig. 1. Generally, about 42, 79, 
25, 19, and 34 samples of wheat, rice, alpha, multiple-crop, 
and spring crop were collected, respectively, of which about 
60% were used as training samples, and the remaining 40% 
were used as control samples.

Methodology

Pixel-based classification methods discriminate classes 
base on spectral attributes of each pixel and heterogeneity 
of adjacent pixels in cropland cause serious problems in 
croplands classification (Li et al. 2015). On the other hand, 
object-based image analysis (OBIA) classification using 
spatial context in addition to spectral attribute. Usage of 
OBIA has been increased recently to overcome the problem 
of pixel heterogeneity in an object (cropland) by merging 
homogenous spectral and textural objects (Blaschke 2010). 
In the present study, different crop types are classified with 
an OBIA classification with the combination of Rule based 
Decision Tree (RBDT) and OBNN (Object-based Nearest 
Neighborhood) in 3 main steps. First of all, homogenous 
croplands are extracted via a multiresolution segmentation 
using Landsat-OLI images. Secondary, ground observed 
samples introduced as a thematic layer to the model and the 
Nearest neighborhood classification has run to crop types 
definition using multi-temporal various vegetation Indexes 
(NDVI,2 NDWI,3 GNDVI4). Finally, other land covers, 
orchard, water lands, rangelands, and other fall croplands 
separated with a rule-based decision tree classification. The 
main steps of classification illustration are as follow:

Segmentation

The principle procedure in object-oriented classification 
and image interpretation is object delineation producing 
throughout the segmentation procedure (Li et al. 2008). In 
Land use and crop type studies by satellite images each agri-
cultural field is assumed as an object and should be precisely 
extracted from satellite images. One of the reputed methods 
in homogenous area detection is multi-resolution segmenta-
tion that used frequently in different researches. This proce-
dure is an optimum way in which a homogeneous segment 
comes from a given number of image objects minimizing 
the average heterogeneity and maximizing their homoge-
neity. It is mainly used in both extracting features that are 
characterized not purely by color but also by the shape of 
land use features from remote sensing imagery (Documenta-
tion 2011). Therefore, in this study, this method is used to 
extract land fields. The key factors in segmentation are seg-
ment size defining by scale parameter and homogeneity fac-
tor. Scale parameter (SP) controls the average image object 
size (Baatz 2000) by which bigger objects, merging more 
homogeneous areas, are being produced with a higher SP 
and vice versa. The homogeneity factor is the combination 

2  Normalized Difference Vegetation Index.
3  Normalized Difference Water Index.
4  Green Normalized Difference Vegetation Index.

http://glovis.usgs.gov
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of the proportion of shape and color in each segment. The 
color shows the role of input satellite image spectral values 
on a segment’s homogeneity and shape represent how much 
smoothness and compactness a region is. A hierarchical net-
work of image objects creates by different SPs, color, and 
shape proportion in segmentation (Darwish, Leukert, and 
Reinhardt 2003). In this research, several scale parameters 
(5, 2, 1, 0.8, 0.6) were tested to get so-called cropland using 
eCognition software. Since there are many small croplands 
low scales were examined with different input bands to get 
the appropriate size for croplands in the study area. Also, it 
should be considered that the quality of objects (geometrical 
parameters i.e. shape, extent) must be preserved in different 
scales. Quality assessment done to get suitable croplands 
objects throughout segmentation. though, visual interpreta-
tion (VI) is widely used for quality assessment of segmenta-
tion, Coasta declare that using a subjective VI result more 
suitable and acceptable outputs(Costa et al. 2018). There-
fore, in this study, some parts of Landsat images containing 
many croplands selected to check out the quality of objects., 
then, the fitness of objects created with different SPs were 
visually interpreted. After setting the SP, different values 
of shape and color were tested. Since, the color factor is 
the main determinative factor using multi-spectral, medium 
resolution images (Landsat, Sentinel-2) it assumed that 
color gets higher amount while the shape factor gets mini-
mum amounts. So the values of 0, 0.3 and 0.5 were test for 
shape and values of 0.9, 0.8… 0.3 were tested to color. The 
result objects of different color and shape factor fitness with 
the croplands on Landsat image were visually interpreted 
again. The results of the quality assessment showed the bests 
appropriate objects given on a scale of 0.8. After setting the 
scale parameter, shape, and color criterion were assessed. 
As in other researches denoted proper objects (cropland) are 
produced with a higher rate of color and low rates of shape 
(Pu and Landry 2012). Also, in this study color smoothness 
factor achieved the highest ratio of 0.9 while the shape ratio 
was zero. Although, the rates of SP (0.8), color (0.9), and 
shape (0) showed proper results for croplands delineation 
with using various combination of input bands of a single 
Landsat image, using the combination of Green, Red and 
NIR5 bands have extracted the best boundaries for croplands.

Moreover, proper spectral band selection is a principle 
and delicate factor to object (each cropland) delineation 
especially using multi-temporal satellite images to crop-
land classification. Therefore, some consideration should be 
taken to get a segment fitting with the so-called cropland. In 
arid and semi-arid countries like Iran, in which rural inhabit-
ant life is based on agriculture, farmers plant different crops 
in a land parcel. They regularly divide a land parcel into 

many sections were various kinds of crops sowing in differ-
ent times of growing seasons. Fall crops, for example, have 
been sowing in fall and harvesting in spring. These kinds of 
sub-croplands are not detectable by using a single multispec-
tral image. It is proven in different studies that Using two 
dates of images in growing seasons produces more accurate 
segments for classification than using a single date (Brooks 
et al. 2006).

In this study, it is proved that the best way of delineating a 
specific field with a special crop type is using spectral bands 
of two images in the growing period according to the crop 
calendar (one image in spring and the other in summer). 
Since spring cropland watered only based on wells, spring, 
and rivers and farmers cannot use rainwater to these lands. 
Farmers often divide some parts of rain-fed and fall crop-
lands to spring and MC croplands. So, most of the spring 
croplands are a small part of other agricultural land except in 
developing agricultural lands. Also, spring crops are mostly 
highlighted in August and September and their vegetation 
indexes have their highest rate in these months. In contrast, 
fall crops like wheat and Barely are eminent in images of 
April and May. So, using the combination of two Landsat 
images (May and August) enhances all croplands. To come 
up to this end, spectral bands of these two images are used 
in the segmentation process to extract all kinds of croplands. 
However, different segments were extracted by using vari-
ous combinations of images’ bands, the best results were 
obtained with the combination of three bands of each image 
(green, red and infrared bands). So, these three bands of each 
image (total six bands of input images) weighted and other 
spectral bands get zero weight. Thereby, the combination of 
images in different months with various spectral band com-
binations was tested many times by changing input bands to 
get a suitable segmentation with the selected scale (i.e. 0.8, 
0.6, and 1). The difference between segmentation via one 
image or using two images illustrated in Fig. 3. According to 
this figure, if segmentation is done using one image (image 
of May, with the highest crop density in the area) most of the 
small croplands with high crop density in August are not be 
extracted properly (Fig. 4 b and c). Meanwhile, incorporat-
ing the second image (image of August) the result changes 
totally and small fields will be discriminated. It is important 
that these croplands show how many times land is utilized 
for sowing different crops. Moreover, these small lands are 
allocating to a MC crop type or a single crop which are 
harvesting in spring or summer. Also, the results indicated 
that not only is the number of spectral bands significant in 
the shape of segmentation, but the month of the image also 
is effective. For example, most of the image objects using 
bands Green, Red, and NIR totally differ from the objects 

5  Near Infra-Red.
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created using bands Red, NIR, and SWIR.6 In this research, 
the best results were archived using the combination of 
bands of two images (images of May and August).

Classification

Besides investigating the main crops of the study area (wheat 
and barley, rice, alfalfa, MC, and spring), there are some 
orchards and fall crops ignored due to the lack of field data. 
If these classes are not removed from classification, they 
cause erroneous classes in cropland classification. Similarly, 
DT based on OBIA classification used to delineate main 
crop types (wheat and barley, rice, alfalfa, MC, and spring) 
and discriminate other land uses like orchards, dense fall 
croplands, and bare lands. Moreover, a common method to 
address these classes is using RBDT classification by using 

class hierarchy. So, RBDT classification is implemented 
by assigning thresholds to water lands, rangeland, bare 
lands, fall crops, and orchards to put aside from the main 
classification. Then, OBNN classification was assessed to 
classify crop types using samples thematic layer. The qual-
ity of results was statistically controlled to get the proper 
accuracy by computing overall accuracy, Kappa coefficient 
factor, product accuracy, and user accuracy. In OBNN clas-
sification, each object has a hierarchical relationship with its 
adjacent objects. Therefore, not only spectral information 
but also statistical and contextual information of objects are 
used to assign each object to an appropriate class. However, 
traditional pixel-based methods form based on spectral con-
text. (Benz et al. 2004).

Vegetation indexes

Since different vegetation indexes are sensitive to crop type, 
sowing time, harvesting time, and growing seasons, a wide 

Fig. 3   Multi-resolution segmentation using temporal images (May 
and August) a the false-color image in May, b Applying Multi-reso-
lution segmentation using spectral bands (green, red, and infrared) of 

one image (in May) c the same segmentation on August image, and d 
Applying Multi-resolution segmentation using spectral bands of two 
images (in May and August)

6  Short-Wave Infrared.
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range of vegetation indexes are being used in LULC change 
analysis and crop type monitoring by obviating the statistical 
analysis between spectral bands mainly in visible and near-
infrared regions of the electromagnetic spectrum (Hoffmann 
and Blomberg 2004; Van Neil 2004). Vegetation indexes 
are analytically represented vegetation activity, vegetation 
biomass, and seasonal greenness changes. From different 
available indexes NDVI, EVI, GNDVI, and NDWI were 
tested to selected crop types and Landsat image bands. As 
the reaction of EVI was completely the same as NDVI it 
was put aside at the first steps. Other indexes were tested 
both individually and in combination for each crop type. The 
usage and definitions of different indexes that were used in 
the present study are as follow:

NDVI  The most popular and privileged vegetation Index 
in LULC mapping and Crop type detection studies is the 
Normalized Difference Vegetation Index (NDVI) and has 
been used for analyzing the temporal and spatial variation 
of crops (Peña-Barragán et al. 2011; Wang 2014). Survey-
ing of a single NDVI layer of an area in the growing season 
shows areas with a large amount of vegetation and areas 
with the lack of vegetation however, multi-temporal NDVI 
images shows biomass and greenery change of a crop type 

in the growing season (Jensen 2000; Yang 2003). NDVI is 
calculated by Eq. 1:

GNDVI  To reduce the effects of saturation, a number of 
additional indexes have been employed including the Green 
Normalized Difference Vegetation Index (GNDVI). This 
index is often used in UAV7 images without the red band 
(Gitelson et al., 1996; Benvenuti and Weill, 2010). GNDVI 
is a simple index used for crop yield prediction in Burdikin 
(Robson et  al. 2012). Equation  2, shows the relation of 
GNDVI and optical bands.

NDWI  Normalized Difference Water Index is used widely 
to predict vegetation liquid water from space. As NDWI is 
calculated from NIR and SWIR (1.24 µm) bands, it is very 
sensitive to vegetation water and less sensitive to atmos-
pheric effects than the NDVI index. Also, it is affected by 

(1)NDVI = (NIR − Red)∕(NIR + Red)

(2)GNDVI = (NIR − Green)∕(NIR + Green)

Fig. 4   Multi-temporal changes of different vegetation indexes for different crop types

7  Unmanned Aerial Vehicle.
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vegetation canopy and growth especially for high vegetation 
coverage (e.g. alfalfa and rice) more than NDVI because of 
using reflectance SWIR band. Vegetation canopies in band 
1.24 µm is a lot various than the red band’s data (Gao 1996). 
Also, this index declines the early saturation factor causes in 
NDVI and it should be considered for vegetation coverage 
and crop yield (Huang et al. 2009). On the other hand, by 
accessing high spatial and temporal resolution, the multi-
temporal of computed NDWI more likely to be taken into 
action. The NDWI is defined by Eq. 3.

The effects of vegetation indexes in crop type classifica-
tion are undeniable, adding or omitting one index changes 
overall accuracy, class separation, input bands priority for 
classification. Therefore, in this study, a crop type map was 
produced in five scenarios using different vegetation indexes 
(NDVI, NDWI, GNDVI) and their combination. DEM and 
slope map of the study area were the common layers in all 
scenarios, while vegetation indexes were variables. Three 
scenarios were conducted based on using multi-temporal 
images of NDVI, NDWI, and GNDVI lonely, then a com-
bination of NDVI with NDWI performed as the fourth sce-
nario, and finally the combination of NDVIs, NDWIs, and 
GNDVIs are used in the fifth scenario. Since the combina-
tion of GNDVIs with NDVIs and NDWIs had poor results 
they were omitted from the proposed scenarios.

Accuracy assessment

Many accuracy assessment methods have been examined 
in remotely sensing classification (Koukoulas and Black-
burn, 2001). Confusion Matrix has been placed above all as 
a standard method for classification accuracy basis on which 
to both describe and characterize errors, leading to refur-
bish the classification results. The overall accuracy gives all 
classification accuracy, user and product accuracy say how 
much a particular class has been classified correctly (Foody 
2002). In this study, confusion Matrix was performed with 
the ground through samples to validate classification in all 
five scenarios. The results of overall accuracy and Kappa 
coefficient of confusion matrix used for quality assessment 
of crop type classification. So, whenever the range of kappa 
coefficient and overall accuracy is high it means that results 
are predicted accurately with high quality.

(3)NDWI = (NIR − SWIR)∕(NIR + SWIR)

Results and discussion

Crop calendar

Based on the obtained results (Fig. 2) in the first half of 
the growing season, most crops reach their first vegetation 
peak during the days 81–113, then in the second half reach 
their second peak between the days 225 and 273. The high-
light points for rice have happened in day 145(24 of May). 
Although different crops’ NDVI trends are separable, the 
trends of MC and Alfalfa are very similar to each other and 
the rates of time series of alfalfa are higher than MC crops. 
In contrast, the spring crop trend is the inversion of wheat 
and barley. The growing season of wheat and barley occurs 
in the first part, while the spring crop occurs in the second 
part and both crops in the other part have a plateau trend. 
Among all crop types, rice is the only crop type that can be 
easily discriminated from MODIS NDVI data, since its peak 
and turning points differs from other crops. In contrast, this 
figure helps to understand various crop phenology patterns.

Figure 2 illustrated that agricultural phenology patterns of 
investigating crops vary from February to November. Crops 
sawing and harvesting times are in February, June, Septem-
ber, and November, while their growing time is in April, 
May, and August. This figure also gives an outlook to select 
multi-temporal Landsat images (Medium resolution images) 
between day 49 (18 of February) to 321(16 of November).

Vegetation indexes description

A quick look at charts of different indexes extracted from 
multi-temporal Landsat images (Fig. 4) shows that in this 
area crops growing happens in two periods: first from Febru-
ary to June and the second from June to November (similar 
to MODIS NDVI). In contrast to MODIS NDVIs, there are 
separable trends between different crops. Each crop type 
reaches its apex in a definite time. For example, wheat and 
barley reach their highest rate at the first studying period 
whereas alpha has two apexes with some fluctuation in 
whole seasons. A detailed survey of each crop will clarify 
crop differences resulting in their precise extraction.

NDVI analysis

NDVI profiles analogy states NDVI rate in investigating 
crops alters from 0.1 in spring crops to 0.72 in rice crops. 
Also, it says NDVI rates of all crops at the beginning and 
end of the growing season are very close to each other and 
alter from0.14 to 0.28 except for alfalfa (at the end it is 0.39). 
Crops detail assessment indicates that wheat and barley 
crops growing season starts from late Feb and reaches its 
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maximum with a rate of more than 0.5 in April and then 
decrease to 0.18 in July and then after it remains stables. 
This trend is vice versa for spring crops, where the NDVI of 
these crops decreased very slowly from January to June, and 
then it goes up to 0.56 in August and after meeting MC crop 
in September decrease to 0.19 in November. Other crops, 
rice, alfalfa has two growing seasons, but the Rice trend is 
completely differing from MC and alfalfa. That means in 
the first part the maximum rate for Rice is 0.25 while it is 
more than 0.6 for MC and alfalfa. However, in the second 
growing part, Rice gets to its maximum rate of about 0.7 
in the first half of August, whereas NDVI rates for MC and 
Alfalfa were between 0.52 and 0.62. Even though Alfalfa 
and MC crops trends are very similar, having two maximum 
points with some fluctuation, also, their trend in the second 
part of the growing season is more distinguishable than the 
first part., i.e., from June to late August MC crop lag behind 
the alfalfa, then go forward to its second surge point in late 
September around 0.65. The fluctuation of alfalfa is obvious 
in the second part. However, NDVIs turning point of Rice 
and spring crops are in the first half of June and others in late 
June and the main growing season of Rice and spring crops 
is in the second part. The NDVI rates of spring crops are 
less than Rice and it often lags behind the Rice especially in 
the second half except in September. It means spring crops 
biomass is less than Rice during a year. Finally, the NDVI 
images of studying crops are well-recognized and suitable 
for crop type detection.

GNDVI analysis

GNDVI profiles state both minimum and maximum rate of 
this index belong to Rice in February and July respectively 
and it was changed from 0.2 to 0.64. Also, GNDVIs rates of 
all crops except Rice at the beginning and end of the grow-
ing season are so similar. At the first growing season, the 
rates alter from 0.28 to 0.33 except in Rice and at the end 
of growing season, GNDVI rates change from 0.25 to 0.3 
except for Alfalfa. Generally, GNDVI profiles state in the 
second half of growing seasons, the trends of all crops are 
extremely look like to NDVI. But, in the first part, they have 
some differences, NDVI profile of spring crops rate is lower 
than Rice, but according to GNDVI profile, Rice is behind 
the spring crop intersecting its chart in March and May.

Spring crops growing season starts from 4 of June inter-
secting both MC and Rice crops from 0.26 and rocketed up 
to 0.55 in August, then smoothly decreased to 0.48 in 8 of 
September and got to the lowest rate 0.31 in 24 of Septem-
ber in its harvesting time. Also, spring crops in the growing 
season showed some intersection with MC crops just before 
the peak point. Although, Rice crops have two peaks in April 
and July, the difference of them is about 0.36 which is than 
nine times greater than that of other peak crops naming MC 

and alfalfa (the difference of peak is around 0.04). In the first 
part of the growing season, Rice crops have two highlight 
points in 13 of February and 19 of May with a rate of around 
0.2. This crop type escalated up from 19 of May to the 22 
of July then fell steadily to reach 0.25 in September. Wheat 
and barley crops have one peek like NDVI in the first part 
and minimum and maximum GNDVI rates vary from 0.3 
at the starting and ending point in January and September 
to 0.52 in April are in the middle place among other crops. 
Though the challenging products, MC and alfalfa, are not 
distinguishable in the first part and they have two intersec-
tions in the summit in March and 3 of May, their chart split 
off from May to the end of the studying period with a 0.1 
lag. In the first part from May to the 7 of August, alfalfa 
crops had higher rates, and then after up to late September 
MC crop come to the top. While the up and down of alfalfa 
crops had little variation around 0.2, MC crop, difference 
between apogee and perigee is about 0.35.

Generally, the minimum and maximum rates of GNDVI 
belong to Rice, minimums happen in February, May and the 
maximum rate in July. MC crops have maximum lags with 
spring crops in the first part and with wheat and barley in 
the second part of growing seasons. The slope of MC crops 
trend in all indexes is the steepest before and after turning 
points.

NDWI trends

Evaluating of NDWI profile states that these profiles have 
significant difference with NDVI and GNDVI. Indeed, 
NDWI minimum rates for all crops were negative at the 
starting of the second part of the growing season. Also, 
NDWI rates alter between − 0.068 in spring crops and 0.48 
in Rice crops. Comparing NDWIs profiles with other indexes 
indicates that trends of NDWI of various crops in the second 
part of growing seasons are more similar to NDVI trends, 
but in the first part similarity of NDWI, and NDVI and 
GNDVI series exist just in Wheat and barley and alfalfa. In 
addition, the NDWI trend of Rice entirely differs from other 
series. Although all crops have a turning point in June, Rice 
continues its climbing rate to get 0.48 in the second half of 
July. The main reason for this reaction of Rice crop is that 
its’ growing inextricably depends on water which is distin-
guishable by NDWI. In comparison with NDVIs series, the 
maximum points for NDVI have happened in March (alfalfa, 
MC, spring), April (Rice, wheat and barley), August (MC, 
Rice), and September (spring and alfalfa), but the maximum 
points for NDWIs are in April in the first half of growing 
seasons and varies from July to September for Rice, spring 
and alfalfa and then for MC successively.

Rice NDWI trend goes upward from January to July 
reaches its highlight 0.5 on 22 of July and goes down stead-
ily to 0.1 in September. Though NDVI trends of MC and 
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alfalfa are similar in the first part of growing seasons, their 
summit points get separated in the NDWI series. MC crops 
NDWI in the starting point of studying period is more than 
other crops and it gets to its first peak point in April, the fell 
to its turning point in 4 of June and surge up roughly to its 
second apex 0.4 in September, then fells down suddenly. 
However, trends of MC and wheat and barley are similar 
for NDWI indexes in the same period in which wheat and 
barley trend are coming behind MC, wheat, and barley crops 
after turning point leveled off to end of studying period. The 
trend of Alfalfa starts from zero in January goes up to 0.33 
in April, then decrease to 0.15 in the turning point and then 
with some fluctuation goes up and down. Moreover, this 
trend in august reaches its second peak incident with spring 
crop and at the end of the studying period, its rate is 0.17 
more than other crops final rate. The trend of the alfalfa crop 
states that it has a continuous growing season and its growth 
would happen several times in the year.

Also, MC crops reach their second apogee in September. 
Comparing the maximum rates priority of different crops 
indicates Rice and MC are prior then alfalfa. On the other 
hand, spring crops are in lower ranks and wheat and barley 
is the lowest according to NDVI and NDWI.

Crop type classification

The crop type maps of studying area in five proposed sce-
narios were produced interfering with different vegetation 
indexes using an OBIA classification method. In all scenar-
ios used, rangelands, bare lands, small croplands, and water 
bodies are defined by decision tree classification. Then, five 
crop types were detected based on all scenarios using the 
nearest neighbor classification with input features optimi-
zation method. According to feature optimization and class 
distance matrix, the fifth scenario including all indexes was 
accepted as the best classification for these crop type extrac-
tions. Figure 5 shows the crop type map of studying area 
using multi-temporal NDVI, NDWI, and GNDVIs indexes 
and presents an output map of all scenarios in a small part 
of the study area where all crops variety and distribution is 
more than other parts.

The results of feature optimization and class separation 
distance matrix are given in Tables 1 and  3, respectively. 
According to Table 1, the best class separation distance has 
happened in scenarios 4 and 5 with the dimension of 19 
and 21 successively. Remarkably, the Class separation dis-
tance matrix and each temporal index proportion in clas-
sification assessed during the classification process many 
times to get an acceptable result. Separation distance in the 
third scenario rating 0.14 was not acceptable at all, so the 
result of crop classification based on only GNDVI indexes 
produced poor results. In Contrast, the separation distance 

and dimension with using only NDVI or NDWI were very 
similar and In comparison with the separation distance of 
the fourth and fifth scenarios were not acceptable.

According to the class separation Matrix distance of 
the fifth scenario, class separation distances in most cases 
especially for Rice are more than 10, meaning that classes 
were separated correctly. This factor for MC and alfalfa has 
the minimum range comparing with other crops, i.e., 6.75.
It means, MC and alfalfa crops may have been mixed with 
each other in some parts (Table 2).

In order to compare different scenario results, classifi-
cation maps of a dense crop area with high crop variety 
are shown in Fig. 6. Referring to classification analysis by 
best separation distance and dimension of classification, it is 
clearly seen that maps of fourth and fifth scenarios are iden-
tical, whereas the maps of using only one Index completely 
differ from the others.

To have a better comparison of different scenarios each 
crop type’s area in all scenarios is given in Table 3. Accord-
ing to Table 3, in all scenarios except scenario 2, the area 
of wheat and barley crop with the area around 550 km2 is at 
the maximum, then alfalfa, MC, Rice, and spring crops are 
in the following rank respectively. As scenarios 1, 3, 4 and 
5, the spring crops area is the least with the area of around 
90 to 100 km2. The area of wheat and barley crops are about 
five times as much as that of spring and Rice crops. Also, 
the area of alfalfa and MC is 4 times and 3 times as much as 
that of Rice crops, respectively. Same as the maps descrip-
tion, different crops area in scenarios 4 and 5 are inspir-
ingly similar showing a difference about 100 km2 lower in 
alfalfa and 100 km2 more rate in wheat and barley crops 
in the third scenario (using NDWIs lonely). The difference 
between alfalfa and wheat and barley in the first scenario 
with the fifth scenario is more challengeable (the difference 
rate is about ± 200 km2). The Orchard area in the three last 
scenarios is around 100 km2 coming from decision tree clas-
sification. But, in scenario 2 Rice crops have the most area, 
then spring, wheat, and barley, alfalfa comes after and MC 
is the least which is totally different other scenarios.

Accuracy assessment has been done with computing 
confusion Matrix for all scenarios. Since the individual, 
product, and user accuracy of different scenarios were 
lower or similar to the fifth scenario, the confusion matrix 
of the fifth scenario is presented in this document to show 
the individual accuracy of each crop type. For other sce-
narios, it suffices to bring out the overall accuracy and 
kappa coefficient. Total accuracy assessment of the fifth 
scenario, using all vegetation indexes, is as Table 4 say-
ing the overall accuracy and Kappa coefficient of crop 
type classification are 88% and 0.83, respectively, simi-
lar to other crop classification studies. Cropping patterns 
are classified in the Laurentian Great Lakes Basin using 
MODIS NDVI time with series with 84% (Lunetta, 2010). 
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Fig. 5   Crop types map of the 
study area using a combination 
of NDVI, NDWI, and GNDVI

Crop type monitored using RapidEye time series with an 
overall accuracy of 87.46% (Kemal Sönmez et al. 2009). 
Object-based agricultural land classification with an 
enhanced time series of Landsat-MODIS images achieved 
90.87% overall accuracy (Li et al. 2015). Table 4 also rep-
resents a detailed evaluating of individual crop types. It 
shows alfalfa crops mixed with MC resulted in a low rate 

of user accuracy. MC crops individual and product accu-
racy are lower than others simply because of their mixture 
with wheat and barley crops. Apart from MC crops, other 
crop types discriminated properly with an accuracy of 
more than 74%. On the other hand, the small size of MC 
fields embraces 2 or 3 Landsat pixels in comparison with 
other crop types in Isfahan nearby is another contributing 
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factor of its low accuracy. Alfalfa crops investigation 
shows that it has some combination with MC crops due to 
their similar NDVI and NDWI trends in the first part of the 
growing season. Also, it stats that spring crops have some 
mixture with Rice crops. The reasons for this combination 
are NDVIs similarity in rates of first part and trend in the 
first half of second growing season and their peek points 
in all indexes are very close to each other. In reality, spring 
crops life like Rice crops depends on irrigation during in 
second part of the growing season.

Other scenarios’ overall and kappa coefficient factors 
have shown in Table 5. Comparing accuracy assessment of 
three first scenarios indicates that by using GNDVI merely 
the accuracy dramatically decreases to 34% which is not 
acceptable at all. On the contrary, the overall accuracy 
of using NDVI and NDWI separately are very similar to 
each other. Furthermore, using NDVI and NDWI simul-
taneously enhances the overall accuracy and kappa in the 
fourth and fifth scenarios.

Conclusion

In present study, crop type map of Isfahan and the nearby 
area produced with OBIA classification with the combina-
tion of RBDT and OBNN classifiers using Landsat-OLI 
temporal images and situ ground truth dataset in 2016. A 
series of common crop types including Wheat and Bar-
ley, Alfalfa, Rice, MC, and spring crops were selected 
for assessment. Time series of Landsat satellite images 
were collected according to crops phenology coming from 
MODIS NDVIs series. The processed satellite imagery 
datasets and ground truth data were input to OBIA classi-
fication which conducted includes OBNN and RBDT clas-
sifiers sequentially. The segmentation of proposed OBIA 
method conducted based on multi-resolution segmentation 

using multi-temporal Landsat images to extract croplands 
objects (segments). Using more than sole Landsat-OLI 
image implemented due to the crops complicated phonolo-
gies, implemented. At first, RBDT classification used to 
separate orchards, fall crops, Rain-fed farming lands, and 
non-agricultural lands in the study area. Then, OBNN clas-
sification is used for objective crop type classification. The 
OBNN classifier applied for different purposed scenarios 
using one or multi vegetation indexes to evaluate their 
performance to crop type discrimination. Nonetheless, the 
vegetation indexes play significant role in crop detection, 
their yearly trend asses in previous. Analogy of the time 
series of all vegetation index profiles implies some points: 
at first, there are two growing seasons in the studying area, 
at the second, MC and Alfalfa crops look to each other in 
the surging time. Thirdly, Rice, having the highest rate in 
all indexes, is the only crop that can be delineated using 
all indexes (NDVI, NDWI, or GNDVI). Fourthly, Wheat 
and Barley having one growing season with lower rates 
than other crops (i.e. MC, Alfalfa) remain stable in the sec-
ond part of growing seasons. Fifthly, in the middle of the 
growing season from May to September Alfalfa shows a 
fluctuation trend. In order to achieve the right crops deline-
ation, multi-temporal changes of three vegetation Indexes 
saying NDVI, GNDVI, and NDWI in 5 scenarios individu-
ally and with a combination of others (NDVI, GNDVI, 
NDWI, NDVI + NDWI, NDVI + NDWI + GNDVI) used 
with DEM and slope maps of studying area as input bands 
of OBNN classification. Object-based classification, dis-
tance matrix, and accuracy assessment of different sce-
narios state that using a combination of NDVI and NDWI 
gives a better result for selected crop types extraction. As 
the best separation distance and dimension of the fifth sce-
nario with a combination of all indexes were the highest, 
it selected as an appropriate scenario. Furthermore, the 
accuracy assessments of all scenarios confirm using NDVI 
and NDWI combination simultaneously in fourth and fifth 
scenarios to extract objective crop types. Final crop map 
of studying area produced using all indexes with an over-
all accuracy of 88% and kappa 0.83. All crops extracted 
with high acceptable accuracy except MC in order to its 
mixture with Alfalfa crops. It should be consider that, the 
produced cropland map is belong to 2016 based on used 
images and a sample datasets. Accordingly, for future 
landscape, croplands classification, pattern detection and 

Table 1   Feature optimization 
results for different scenarios in 
object-based nearest neighbor 
classification

Scenario 1 
NDVI

Scenario 2 
NDWI

Scenario 3 
GNDVI

Scenario 4 
NDVI + NDWI

Scenario 5 
NDVI + NDWI + GNDVI

Best separation 
distance

4.62 4.26 0.14 6.63 6.75

Dimension 11 11 2 19 21

Table 2   Class separation distance matrix in scenario 5

Alpha Dual Rice Wheat Spring

Alpha 0 6.75 14.72 7.38 10.33
Multiple-crop 6.75 0 19.34 8.62 13.38
Rice 14.72 19.34 0 29.38 12.91
Wheat-barley 7.39 8.26 29.38 0 16.23
Spring 10.33 13.38 12.91 16.23 0
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development studies the spatial change of crop type in 
different years is essential. This study suggest to use three 
years or more multi-temporal multi-spectral images to 

separate fallow-lands, all major crop types and their spa-
tial variation in different years.

Fig. 6   Crop type classification maps in five scenarios with a different 
combination of vegetation indexes. a in scenario1 using only NDVI 
index, b scenario 2 using NDWI, c scenario 3 Using GNDVI, d Sce-

nario 4 using both NDVI and NDWI, e scenario 5 using a combina-
tion of all Indexes (NDVI, NDWI, and GNDVI)

Table 3   Different crops areas in 
five named scenarios (Km2)

Scenario 5 
NDVI + NDWI + GNDVI

Scenario 4 
NDVI + NDWI

Scenario 
3 NDWI

Scenario 2 
GNDVI

Scenario 1 NDVI

Alpha 382.8 381.5 288.1 195.4 523.7
Multiple-Crop 272.8 277.5 268.5 113.4 224.7
Rice 105.3 103.5 130.9 1271 101.9
Spring 96.8 89.8 91.7 419 106.3
Wheat-barley 538.1 559.9 637.8 394.7 758.8
Orchard 97.88 120.5 93.8 57.7 370.1
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