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Abstract
Accurate and reliable forecasting of reservoir inflows is crucial for efficient reservoir operation to decide the quantity of the 
water to be released for various purposes. In this paper, an artificial neural network (ANN) model has been developed to 
forecast the weekly reservoir inflows along with its uncertainty, which was quantified through accounting the model’s input 
and parameter uncertainties. Further, to investigate how the effect of uncertainty is translated in the process of decision mak-
ing, an integrated simulation–optimization framework that consists of (i) inflow forecasting model; (ii) reservoir operation 
model; and (iii) crop simulation model was developed to assess the impacts of uncertainty in forecasted inflow on the irriga-
tion scheduling and total crop yield from the irrigation system. A genetic algorithm was used to derive the optimal reservoir 
releases for irrigation and the area of irrigation. The proposed modeling framework has been demonstrated through a case 
example, Chittar river basin, India. The upper, lower, and mean of forecasted inflow from the ANN model were used to arrive 
at the prediction interval of the depth of irrigation, total crop yield, and area of irrigation. From the analysis, the ANN model 
forecast error of ± 69% to the mean inflow was estimated. However, the error to mean value of simulation for total irrigation, 
total yield, and area of irrigation was ± 13.3%, ± 6.5%, and ± 4.6%, respectively. The optimizer mainly contributed to the 
reduction in the errors (i.e., maximizing the total production with the optimal water releases from the reservoir irrespective 
of inflow to the reservoir). The results from this study suggested that the information on the uncertainty quantification helps 
in better understanding the reliability of the systems and for effective decision making.
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Introduction

Modeling and simulation are prevalent techniques for the 
effective management of water and agricultural production 
in the irrigation systems. The models can be from simple 
with few parameters to complex with several parameters 
depending on varying degrees of mathematical relationship. 
In irrigation modeling, the formulation of objective function 
has often been to maximize the crop yield with the optimal 
amount of water being released for irrigation, prevailing all 
other conditions such as soil nutrients, land suitability, etc., 
favorably. As there is no single model that can generically 
be applied everywhere, developing region-specific models 
are often preferred. However, the interaction among natural 
processes is complex to understand, and thus, the models 
developed generally contain a certain degree of uncertainty. 
These uncertainties mainly arise from the spatial and tempo-
ral variability of model inputs, parameters, and model struc-
ture (Cristiano et al. 2017). Hence, besides the calibration of 
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model parameters, quantification of uncertainty has become 
indispensable in any simulation studies for improving the 
reliability of model simulations.

In irrigation scheduling, model prediction uncertainty has 
been quantified through the uncertainty in the rainfall esti-
mation (Burt et al. 1997; Chaubey et al. 1999) and the meas-
urement error in evapotranspiration (Allen et al. 2011; Sny-
der et al. 2015). For quantifying the uncertainty, application 
of the Monte Carlo (MC) simulation method has gained sig-
nificant attention (Prats and Picó 2010; Soundharajan et al. 
2016), as it can combine various forms of uncertainty (e.g., 
input, model, and parameter uncertainties) to estimate the 
total prediction uncertainty. Specifically, the MC simulation 
is useful for analyzing the statistical inference from the mod-
eled parameters. However, a prodigious computation, a low 
rate of model convergence, and the amount of sampling from 
joint probability distribution are the major constraints that 
limit the application of MC. It was noted that many attempts 
so far presented in the literature have focussed on quantify-
ing the effects of uncertainty in the climate variables to the 
crop yield (Wang et al. 2017; Zhao et al. 2019). However, the 
impact of reservoir inflow forecast uncertainty on the irriga-
tion water supply, as well as the total estimate of crop yield, 
should not be ignored as the flow dynamics vary due to high 
variability in the rainfall and catchment characteristics. In 
the process, the quantified uncertainty in the reservoir inflow 
can effectively be accounted into reservoir releases toward 
meeting the irrigation demands. These releases can further 
be linked with area irrigated, crop choice, and total crop 
production for quantifying the possible variations that are 
otherwise estimated as point values.

This paper proposed ANN models for forecasting the res-
ervoir inflows along with the quantification of uncertainty 
in the forecasted values. Several methods, such as the delta 
technique (Chryssolouris et al. 1996), Bayesian methods 

(Zhang et al. 2009, 2011), the Hessian matrix of the cost 
function for construction of prediction intervals (Papado-
poulos et al. 2001), mean–variance estimation-based method 
(Nix and Weigend 1994), Bootstrap sampling-based meth-
ods (Tiwari and Chatterjee 2010), ensemble-based methods 
(Boucher et al. 2010; Araghinejad et al. 2011), heuristic-
based methods (Han et  al. 2007), fuzzy-based method 
(Alvisi and Franchini 2011) have been proposed/applied 
in ANN model for the quantification of uncertainty. How-
ever, all these methods are often limited to quantify only 
the parameter uncertainty of ANN models without further 
investigating how the effect of uncertainty is translated in the 
process of decision making (i.e., integrating them with the 
management models as presented in this paper). Hence, this 
paper presents a two-stage ensemble of simulation methods 
to account for the input and model parameter uncertainty for 
quantifying the uncertainty in the inflow forecast. Further, 
a simulation–optimization framework that combines the 
uncertainty interval of inflow forecast of the ANN models 
with management models (reservoir simulation and crop 
simulation) has been proposed to demonstrate the effect of 
uncertainty in the inflow forecast on the reservoir releases 
toward irrigation and the crop yield.

Methodology

A block diagram of the proposed simulation–optimiza-
tion framework is presented in Fig. 1. An objective func-
tion was formulated to maximize the total crop yield 
with an optimal supply of water from the reservoir stor-
age. The decision variables were crop area and weekly 
reservoir releases (highlighted in blue color in Fig. 1). 
The modeling framework has four main components (see 
Fig. 1): (i) ANN weekly inflow forecast model along 

Fig. 1  Block diagram of simula-
tion–optimization framework
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with quantification of forecast uncertainty (in the form 
of upper, lower, and average values) from the ensembles 
of simulation; (ii) genetic algorithm (GA) optimizer, to 
optimize the weekly reservoir releases and irrigated area; 
(iii) simulation of reservoir operation; and (iv) crop sim-
ulation model, which determines the crop yield for the 
given irrigation schedule (i.e., time of application and 
net depth of irrigation). The detailed explanation of each 
component is presented in the following subsections.

Quantification of inflow forecast uncertainty in ANN 
models

A two-stage modeling framework, for accounting input and 
parameter uncertainty in stage 1 and 2, respectively, has 
been proposed to quantify the uncertainty in the forecasted 
inflow by the ANN models (see Fig. 2). It has been dem-
onstrated that input uncertainty may change the statistical 
characteristics of hydrologic model parameters and there-
fore has significant implications on testing the reliability 
of the model (Vrugt et al. 2008). In this paper, rainfall has 
been chosen for the analysis as the accurate measurement/

Fig. 2  Flowchart describing the 
quantification of total forecast 
uncertainty of ANN model
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estimation of rainfall is often challenging. In stage 1, quan-
tification of model input uncertainty was performed through 
randomly sampling the possible error values from the prob-
ability distribution. Note that the error in the rainfall could 
be attributed to various sources such as interpretation error, 
measurement error, and sampling error. Since the direct esti-
mation of the true values of these errors is always challeng-
ing, indirectly forcing the error/noise is a standard practice 
in modeling (Kasiviswanathan et al. 2017). In principle, 
each rainfall estimate is associated with an independent 
error. Therefore, error in each rainfall value must be esti-
mated independently during the model calibration. However, 
in such an approach, the dimensionality of the calibration 
procedure grows multi-fold. Consequently, the predictive 
capability of the model might deteriorate gradually due to 
over parameterization. Hence, it is necessary to develop an 
efficient modeling framework that quantifies input uncer-
tainty, also ensuring the model of parsimony. In this paper, 
this was performed by forcing an error in the form of rainfall 
multiplier ( �t ) mainly sampled from probability distribution 
function (pdf), which perturbs the measured inputs. Statisti-
cally, it is assumed that the error follows the normal distri-
bution with zero mean and with certain values of standard 
deviation depending on the magnitude of error distribution 
(Kasiviswanathan et al. 2017). In the analysis, the forcing 
error was assumed to follow lognormal distribution as the 
multiplier has to be a positive fraction. However, the normal 
distribution can also be used, converting the negative values 
into positive ones. The statistical characteristics of the log-
normal distribution [mean (µ) and standard deviation (σ) of 
the pdf] were estimated within the calibration of the model 
itself. The ‘ �t ’ has to be sampled from the pdf for each rain-
fall values independently. As mentioned above, the mean 
value of the multiplier was fixed as ’zero,’ and the standard 
deviation of the multiplier was identified through calibration. 
More details on the input uncertainty quantification that uses 
a similar approach in ANN rainfall-runoff models have been 
reported in Kasiviswanathan et al. (2017).

In stage 2, accounting for the parameter uncertainty of 
the ANN model was performed using an ensemble simula-
tion approach (Kasiviswanathan et al. 2013). The ensemble 
of model outputs was simulated from perturbing the ANN 
model parameters obtained in stage 1. As the perturbation 
of parameters cannot be performed randomly, an optimi-
zation function was formulated to obtain the ensemble of 
model outputs. Thus, the overall objective at this stage was 
to obtain the narrow prediction interval, which also con-
tains a maximum number of observations within the pre-
diction interval. This was achieved through formulating a 
multi-objective optimization problem to generate ensembles 
of simulation, such as (i) minimize the mean square error 
(MSE) between the ensemble mean of ANN and observa-
tion (Eq. 1) and (ii) minimize the average width (AW) of 

prediction interval (Eq. 1), and (ii) maximize the percentage 
of coverage (POC) that contains more number of observa-
tions in the forecasted interval (Eq. 2).

where K is a total number of the ensemble of networks 
derived, and for each individual network, the tth pattern has 
a predicted value ŷk

t
 obtained from the kth network (k = 1, 

2,…K). n is the total number of patterns used for construct-
ing the prediction interval, and ŷU

t
, ŷL

t
 are the upper and lower 

bound estimation of the tth pattern; ct =1 if the observed 
values of target fall within the prediction band 

[
ŷU
t
, ŷL

t

]
 , other-

wise ct = 0. More details on the parameter uncertainty quan-
tification of ANN using an ensemble of simulation has been 
presented in Kasiviswanathan et al. (2013).

ORYZA2000–Rice crop simulation model

Crop simulation models play a major role in irrigation water 
management practices (Kisekka et al. 2017). However, the 
effectiveness of such models depends on the accurate esti-
mation of irrigation water requirement that decides the crop 
yield. ORYZA2000 is an eco-physiological crop simulation 
model developed for simulating the growth, phenological 
development, and yield of rice crop under potential and lim-
ited water and nitrogen conditions on a daily scale (Bouman 
et al. 2001). The model simulates the phenological develop-
ment of the crop, such as biomass production and partition-
ing using average daily temperature and photoperiod on a 
daily timescale. The simulated biomass is partitioned by the 
model among the various parts of the crop (roots, leaves, 
stems, and panicles) using partitioning factors, which are 
determined through calibration. Please refer to Bouman et al. 
(2001) for the detailed description of the model along with 
the program source code.

The model requires inputs of soil, crop, weather, and 
management parameters (Bouman et al. 2001; Soundhara-
jan and Sudheer 2013). The management inputs are (i) crop 
variety, (ii) spacing or plant population, (iii) transplanting 
depth, (iv) nursery duration, and (v) fertilizer and irriga-
tion application. Soil properties include: (i) volumetric soil 
water content at saturation, (ii) field capacity and wilting 
point, (iii) depth of puddled soil, and (iv) saturated hydrau-
lic conductivity. Rainfall and temperature are the weather 
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inputs during the growing season. The crop parameters are 
(i) relative leaf growth rate, (ii) leaf death rate, (iii) spe-
cific leaf area, (iv) crop development rates, and (v) biomass 
partitioning factors. Please note that all these parameters 
are required to be calibrated. However, as the motivation of 
this paper was to show the impact of inflow forecast uncer-
tainty in the crop production, the calibration procedure and 
calibrated parameter values of the ORYZA2000 model are 
not presented in this paper (please refer Soundharajan and 
Sudheer 2013 for more information).

Optimization ‑Simulation model formulation

The calibrated ORYZA2000 model was coupled with an 
optimization framework and a reservoir water balance simu-
lation model (see Fig. 1) to optimize the reservoir releases 
for irrigation under water deficit situations. The objective 
of the optimization scheme was to maximize the total crop 
yield from the reservoir based on the irrigated command 
area. The optimal release from the reservoir throughout the 
cropping season was forced for the maximum possible crop-
ping area. The fitness function formulated is as follows:

where Z refers to the total crop yield from the irrigated com-
mand area in tons; As is the irrigated area in hectare; Ys is 
the crop yield in tons per hectare. The cropping seasons 
are Kharif [June–October] and Rabi [October–February]. 
Decision variables were (i) weekly irrigation depths and (ii) 
area that can be irrigated. Crop yield (Ys) for a specific irri-
gation schedule was simulated by the ORYZA2000 model 
to evaluate the objective function. The candidate solutions 
of reservoir releases generated by the GA were subjected to 
reservoir water balance (Eq. 4), proposed by Loucks et al. 
(1981).

where St and St+1 are reservoir storage at the beginning and 
end of periods t and t + 1, respectively,  m3; Rt is the gross 
reservoir release during t,  m3; Qt is the reservoir inflow dur-
ing t,  m3; Ot is the reservoir spill during t,  m3; Aαis the water 
spread area per unit volume of live storage,  m2/m3; Aois the 

(3)Maximize, Z =

(
n∑

s=1

AsYs

)

(4)

(1 + at)St+1 = (1 − at)St + Qt − Rt − Ot − Aoet

at =
A�et

2

}
for t = 1, 2,…T

(5)

Ot =

{
St+1 − Smax; if St+1 > Smax

0; otherwise
for t = 1, 2,… ,T

(6)
St ≤ Smax

St ≥ So

}
for t = 1, 2,… , T

water spread area at the dead storage level,  m2; et  is the 
evaporation loss from the reservoir, m; T is the total num-
ber of periods in the simulation; Smaxis the reservoir gross 
storage capacity,  m3; S0 is the dead storage capacity,  m3. 
The reservoir behavior simulation was performed on a daily 
time scale.

The net depth of irrigation has been computed as:

where η is the overall irrigation efficiency (60%), fraction; 
 NRt is the net reservoir release during ‘t,’  m3; As is the irri-
gated area during the season ‘s,’ ha; It is the net irrigation 
during ‘t,’ mm. For the complete formulation of an optimiza-
tion scheme, readers can refer to Soundharajan and Sudheer 
(2009).

Outline of the algorithm

The initial decision variables (weekly net irrigation, It) were 
generated by the GA optimizer for the entire crop season 
along with irrigated area (As). It was converted into reser-
voir releases (Rt) using Eq. 7. The reservoir releases were 
evaluated using reservoir water balance for the feasibility of 
generated solutions. If any of the releases within the solu-
tion set violates the reservoir water balance (i.e., reservoir 
releases > reservoir storage), a constrain was forced to main-
tain the reservoir water balance (i.e., reservoir releases ≤ res-
ervoir storage). Again, the adjusted Rt was converted back 
to It using Eq. 7. The final It schedules were given to the 
ORYZA2000 to simulate the crop growth and yield (Ys). The 
fitness function of the GA for each solution set was evaluated 
using Eq. 3. GA generated the population of next-generation 
solution sets based on the previous generation’s fitness func-
tion values through its operations (i.e., selection, crossover, 
and mutation). This iterative computation was continued 
until the specified number of generations reached. The final 
results were the solution set having the highest fitness func-
tion value (i.e., the combination of optimal reservoir releases 
and irrigated area that maximizes objective function).

Study area and data

The proposed method has been demonstrated through data 
collected from tributaries of the Chittar river, Tamil Nadu, 
India. The Chittar river basin (Fig. 3) has a total area of 
about 1677 km2 and is situated between 77° to 78° E latitude 
and 8.75° N to 9.25° N longitude.

The Chittar river is the largest tributary of the Tam-
baraparani river, which originates in the Western Ghats 
and flows eastwards about 80  km and joins into the 

(7)
NRt = �Rt

It =
NRt

10As

}
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Tambaraparani river. The Chittar river has five tributaries, 
namely Ayndaruviar, Hariharanadhi, Aludhakanniar, Hanu-
manadhi, and Uppodai. The reservoir inflow data used in the 
modeling was collected from Hanumanadhi catchment. The 
catchment area of Hanumanadhi is 168.69 km2.

The Adavinainar kovil reservoir was constructed across 
the river Hanumanadhi with a capacity of 4.95 Mm3. The 
total dependable annual water yield at the dam site is 
17 Mm3. The reservoir is meant to impound and utilize 
9.85 Mm3 in two fillings to augment irrigation facilities to 
the extent of 2250 ha under 16 anicuts across the Hanumana-
dhi river and supply water to 62 irrigation tanks. The flash 
floods are stored in all the tanks through respective anicuts 
(Soundharajan 2011). Only during the flash floods, water 
reaches the lower anicuts and then to the tanks under them. 
Since the canals are aligned along the contour, the irrigation 
return flow from the command areas of the upper anicuts 

drains into the lower anicuts or main river. The seepage from 
the upper command areas also reaches the lower channels, 
making the water flow available in the channel even when 
the upstream head sluices are closed. This facilitates some 
of the farmers in the downstream locations to get water even 
during non-supply periods (Soundharajan 2011).

The opening of the reservoir is usually carried out either 
on June 1st of every year or when the storage in the reservoir 
reaches 1.835 Mm3. Any quantity of inflow to the reservoir 
after 1st of every month, which raises the storage of the res-
ervoir over and above the specified level for that particular 
month, will be let out in the river through river sluice and 
shared by the water user associations of the anicuts system. 
The details of the reservoir, along with catchment informa-
tion, are presented in Table 1.

The rainfall and weather (i.e., temperature, humidity, 
wind speed, sunshine hours, and evaporation) data were 

Fig. 3  Study area map ( Source: CWR 2001)
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collected from Palayamkottai meteorological observatory 
(maintained by India Meteorological Department).

The data (rainfall, runoff) collected from November 
05, 2003, to October 26, 2006, were used to develop ANN 
inflow forecast models. Please note that the values were 
measured on a weekly basis. The rainfall and flow data are 
plotted in Fig. 4 to show their temporal variation. The statis-
tics for the weekly values of rainfall and runoff are reported 
in Table 2.

Results and discussion

Statistical methods such as cross- and autocorrelation were 
used to determine the inputs of the ANN model (Sudheer 
et al. 2002). The identified inputs were: [R(t-1), R(t), Q(t-1)], 
where R (t) represents the rainfall, Q(t) represents the runoff 
at any time ‘t,’ and the antecedent values were represented as 
t-1. The output was one week ahead forecast of runoff (i.e., 
inflow to the reservoir). Together, the combination of input 
and output forms the pattern to develop an ANN model. Out 
of the total number of input–output patterns comprised of 
weekly inflow and rainfall values, 110 patterns were used 
for model calibration, and 46 patterns were used for model 
validation. The next step was to identify the number of hid-
den neurons; for that, a trial and error method was used. It 
was found that two hidden neurons were sufficient to achieve 
desirable model performance compared to their counter-
parts, which had more than two hidden neurons. Sigmoidal 
and linear activation functions were used in hidden and out-
put layers, respectively.

Model input uncertainty

The forced error for correcting the rainfall was sampled from 
lognormal distribution for which the parameters, mean was 
kept as zero, and the standard deviation value was optimized 
along with the model calibration. Through this analysis, a 
standard deviation value of 0.15 was found to be optimal 
(Fig. 5).

The presented scatter plot (Fig. 6) shows the variation of 
bias along with the measured values of rainfall. The results 
suggested that the bias is consistent and varies linearly when 
the magnitude of rainfall increases. However, in the case of 
extreme values of rainfall, low bias was observed. The obvi-
ous reason could be the measurement of the extreme value 
with relatively less error. Overall, the average bias of ± 10% 
was estimated to the measured weekly rainfall values.

The model performance, including input uncertainty, 
is presented in Table 3. The performance of the model 
was assessed with different statistical measures such as 
coefficient of correlation (CC), Nash Sutcliffe efficiency 
(NSE), root mean square error (RMSE), and mean biased 
error (MBE). It is evident from Table 3 that the model 
performance was good in both calibration and validation 
with CC values of 0.89 and 0.85, respectively. The NSE 

Table 1  Details of the Adavinainar kovil reservoir irrigation system 
in the Chittar river basin

River Hanumanadhi

Reservoir capacity  (Mm3) 4.95
Direct and indirect command area, ha 2250
No. of anicuts downstream of reservoir 16
No. of tanks 62

Fig. 4  Data (for the period November 5, 2003, to October 26, 2006) 
used for model development: a weekly rainfall; b weekly runoff

Table 2  Summary statistics of data used for model development

Statistical value Rainfall [mm] Runoff  [m3/s]

Mean 38.44 0.44
Standard deviation 58.05 0.69
Skewness 2.50 3.13
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statistics during calibration (78.15%) was slightly better 
than validation (64.19%). The positive values of MBE 
during calibration and validation indicated the model of 
under prediction. The RMSE obtained during calibration 
and validation were comparable. Thus, the model was con-
sistent across these datasets.

Model parameter Uncertainty

For creating an ensemble of simulation from the ANN model, 
the initial perturbation level of ± 20% to the parameters 
(weights and biases of ANN) was initiated in the GA. Figure 7 
shows the convergence of ensembles within the multi-objec-
tive framework. It may be noted that each point represents the 
ensemble of simulation through which the forecast interval 
of the model output can be constructed. However, the fore-
cast interval should be a trade-off solution having maximum 
POC with less AW. Further, it is expected that the ensemble 
mean should closely match the observed flow values. In such 
circumstances, it is a modeler choice to select the point for 
further analysis. In this study, a red point (see Fig. 7) indicated 
in Pareto-front was selected for constructing the prediction 
interval of model output.

The performance of the model and the forecast uncertainty 
is presented in Table 4. The model performance was consist-
ent during the calibration and validation period with CC val-
ues of 0.88 and 0.87, respectively. The NSE value of 77.86% 
during calibration against the value of 68.82% during valida-
tion shows a slightly better estimate of the model during the 
calibration period. The positive MBE values of 0.04 m3/s and 
0.08 m3/s during calibration and validation, respectively, show 
the underestimation of the model. The ensemble model has 
an acceptable level of AW of 0.61 m3/s during calibration and 
0.53 m3/s during validation. The POC of 44.55% was observed 
during calibration, and 31.11% was observed during valida-
tion. It is preferred that the uncertainty interval of forecasted 
values has more POC with less AW (Kasiviswanathan et al. 
2013; Ye et al. 2014). However, as illustrated in Fig. 7, the 
Pareto front could not converge more than the POC of 50%. 
The possible reason could be the minimum number of training 
data used in the modeling. Further, unlike hourly/daily flow 
values, the weekly flow has large variation, and that could be 
the potential reason for not being able to learn the process 
modeled with high POC.

The forecast interval of the hydrograph corresponding to 
selected points along with the observed values is presented 
in Fig. 8 for the calibration and validation periods. It may be 
noted from Fig. 8 that most of the low flow values are not cap-
tured in the forecast interval. However, the ensemble of model 
simulations was slightly above zero values.

It is also to be noted that the width of the forecast interval 
was wider during the rising and falling limb of the hydro-
graph, which could be attributed to higher variability among 
the ensembles. However, the forecast interval derived from the 

Fig. 5  Histogram of rainfall multiplier sampled from lognormal dis-
tribution

Fig. 6  Two-dimensional scatter plots of observed rainfall against cor-
rected rainfall

Table 3  Performance indices 
evaluated during Stage 1

Calibration Validation

CC NSE (%) RMSE  (m3/s) MBE  (m3/s) CC NSE (%) RMSE  (m3/s) MBE  (m3/s)

0.89 78.15 0.34 0.08 0.85 64.19 0.36 0.11
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ensemble indicates an acceptable level of plausible error due to 
uncertainty in the model parameters. Please note that it is not 
based only on POC value. From the Pareto front (Fig. 7), it is 
clear that different point (solution) has different POC and AW 
values. As POC and AW indices conflict with each other, an 
acceptable level of plausible error must be an unbiased selec-
tion of point from the Pareto front (Fig. 7) having maximum 
POC and minimum AW.

Uncertainty in optimal irrigation schedules 
and simulated total crop yield

The total forecast uncertainty in the inflow from the ANN 
model was propagated into the simulation–optimization 
framework for making the decision on the irrigation sched-
ules. From the real-time simulation–optimization frame-
work, reservoir releases were estimated on a weekly basis 
(Fig. 9).

The number of decision variables was 16, which included 
15 weekly water releases from the reservoir and area to be 
irrigated (as a fraction of total command area). The fore-
cast lead time was fixed as 1- week; accordingly, the inflow 

was estimated from the calibrated ANN model along with 
associated forecast uncertainty. However, the crop simula-
tion model requires the irrigation schedules of the complete 
season for estimating the total yield. Thus, statistical his-
torical mean inflow information was used for the rest of 
the future period of the season since the higher lead time 
forecast of ANN was found to be poor. Each week, the 
optimizer updates its future decision variable (reservoir 
releases) based on ANN inflow forecast, and previous res-
ervoir releases (if any) were considered as implemented (i.e., 
the decisions were made already). As the time progresses, 
actual inflows were considered for the previous weeks (i.e., 
weeks for which the release decision was already imple-
mented), and inflow forecasts were made only for the rest 
of the future weeks to use in the simulation as shown in 
Fig. 9. At the end of each week, the inflow was forecasted 
from the ANN model for the next one-week lead time, and 
accordingly, the reservoir releases were optimized. Thus, the 

Fig. 7  Pareto-optimal front of optimization during ensemble creation

Table 4  Performance indices for the mean of the ensemble of the 
selected points during stage 2

Calibration Validation

CC 0.88 0.87
NSE (%) 77.86 68.82
RMSE  (m3/s) 0.34 0.34
MBE  (m3/s) 0.04 0.08
POC (%) 44.55 31.11
AW  (m3/s) 0.61 0.53

Fig. 8  Prediction interval corresponding to the selected ensemble 
along with observed flows: a calibration (November 12, 2003, to 
December 15, 2005); b validation (December 22, 2005, to October 
26, 2006)
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whole framework was updated on a weekly basis. The whole 
analysis was carried out for three different scenarios using 
(i) the mean inflow forecast of ANN, (ii) the upper inflow 
forecast of ANN, and (iii) the lower inflow forecast of ANN. 
Based on this, the GA finds the optimized values of reservoir 
releases for ensuring maximum crop yield.

The annual mean and standard deviation of inflow values 
were calculated and found that there is no appreciable differ-
ence among the years from November 2003 to October 2006 
in the flow dynamics (Fig. 4). Thus, the model performance 
was limited to test the data of Kharif 2005 for estimating 
the optimal irrigation scheduling and cropping area under 
rice crop. It was evident from the operational framework 
that the estimated mean prediction of total yield (6154 
tons), the total amount of irrigation (24.33 cm), and area of 

cultivation (2137 ha) is comparable to the planning frame-
work modeled with actual inflow values (total yield: 6298 
tons; total irrigation: 35.05 cm; area cultivated: 1984 ha) 
as shown in Table 5. This indicates a reasonably accurate 
forecast of ANN models, which in turn closely matches the 
total yield based on the irrigation. It may be noted that the 
upper and lower values of inflow produced higher/lower 
yield, respectively, as one can expect (see Table 5). Based 
on the upper and lower value inflow forecast by ANN mod-
els, the error to the mean inflow simulation was estimated 
as ± 69%. This larger bias could be due to the smaller num-
ber of training data available for the ANN model. It may 
be noted that this error was an average value of complete 
flow series across calibration and validation data. How-
ever, the same level of error was not reflected in the total 

Fig. 9  Illustration of real-time 
reservoir operation [The num-
bers in the arrow refer to the 
number of weeks from trans-
planting to maturity (15 weeks), 
and for this duration weekly 
optimal irrigation schedules 
have to be developed. ANN 
model yields the forecasted 
inflow for one week ahead. The 
remaining values are the actual 
observed inflow and statisti-
cal mean of historical inflow 
for the past and future periods, 
respectively]
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crop yield simulation. Consequently, the error to the mean 
value of simulated total yield, total irrigation, and area of 
irrigation were ± 6.5%, ± 13.3%, and ± 4.6%, respectively. 
The reduction in error may be attributed to the optimizer 
that can still try to maximize production with the reservoir 
releases irrespective of inflow to the reservoir. In addition, 
the reason for such reduction in error might be, the uncer-
tainty was considered only in inflow forecast, and all other 
variables were assumed to be a deterministic value. In the 
case of lower simulated values, the lesser the magnitude 
in simulated crop yield, the amount of irrigation may be 
attributed to lower inflow to the reservoir. Consequently, the 
reduction in reservoir releases resulted in less production. 
In the case of the planning framework, simulations were 
performed using observed inflow values of Kharif, 2005, 
and historical mean inflow values (average values computed 
using the complete dataset of the year 2003–2006). The total 
yield with less amount of irrigation, i.e., 35.05 cm, resulted 
by the simulations performed with observed value (i.e., 
6298 tons) is higher than the historical mean value simu-
lation (5590 tons). These results suggested that the excess 
supply of water (11 cm) in historical mean value simulation 
might not have been used during the water-sensitive growth 
stages of the crop, thus reducing overall total yield even with 
a higher cultivated area.

The simulated mean values from the operational frame-
work are comparable with the planning framework with 
observed values. However, in the operational framework, 
less amount of irrigation (24.33 cm) was applied compared 
to the planning framework (35.05 cm). The possible reason 
might be that the optimizer updates the amount of release 
on a weekly basis rather including the complete observed 
flow series. Thus, the operational framework, along with 
uncertainty information, can better be relied on in the case 
of decision making.

The mean, upper, and lower simulated irrigation releases 
are presented in Fig. 10 along with the planning framework 
observed values and historical mean value simulation dur-
ing the Kharif season, 2005. It is evident from Fig. 10 that 
immediate weeks after transplantation, and before har-
vesting stages, the amount of irrigation required was less 
compared to mid-growth periods as expected. Due to suf-
ficient rainfall during the first four weeks (see Fig. 10f), the 

operational framework suggested no or very little irriga-
tion (see Fig. 10a–c). The ‘historical mean’ based irriga-
tion schedule applied a significant amount of irrigation (see 
Fig. 10d), leading to higher total irrigation (46.23 cm) with 
lower total yield (5590 tons) since the crop does not need 
that much water during the early stages. In the case of upper 
simulation (Fig. 10b), higher total yield and area of irriga-
tion could be attributed due to the higher irrigation at 7th 
and 12th weeks, coinciding with panicle initiation and grain 
filling stages, respectively.

In the case of the lower simulated values, the less yield 
might be due to the non-availability of sufficient irrigation 
during the panicle initiation (7th week) as well as grain fill-
ing (12th week) stages. The amount of irrigation follows 
similar patterns in the case of operational framework, mean 
simulation and planning framework-observed value simula-
tion. This indicates the comparably better forecast of inflow 
values by ANN that closely matches with observed values. 
The quantity of irrigation water triggered by the proposed 
model is based on the sensitivity of the crop growth stage to 
the final yield as well as the water available in the reservoir 
(Soundharajan 2011).

Summary and conclusions

An ANN model was developed to forecast a one-week ahead 
reservoir inflow. A two-stage ensemble simulation approach 
was used in ANN to account for input and parameter uncer-
tainty for quantifying the uncertainty in the forecasted inflow 
values. A simulation–optimization framework was proposed 
to demonstrate the implications of the forecast uncertainty 
resulted from ANN models in the decision making (i.e., irri-
gation water management in this case). Thus, this framework 
integrated an ANN inflow forecast with reservoir simula-
tion and crop simulation models for deriving the optimal 
irrigation schedule and area to be irrigated (i.e., opera-
tional framework) under water deficit condition. Similarly, 
observed reservoir inflow data were used (i.e., planning 
framework) to derive the above decisions for comparison. 
The data from the Chittar river basin, India, were used to 
demonstrate the proposed modeling framework. It was found 
that the performance of the operational framework is better 

Table 5  The summary statistics 
of estimated uncertainties in 
irrigation and simulated crop 
yield

Statistical measures Operational framework Planning framework

Mean 
simulated 
value

Upper 
simulated 
value

Lower 
simulated 
value

Historical 
mean value

Observed value

Total yield (tons) 6154 6333 5529 5590 6298
Suggested irrigation (cm) 24.33 32.66 26.19 46.23 35.05
Suggested cultivable area (hectare) 2137 2175 1980 2219 1984
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than planning frameworks that support the effectiveness of 
the proposed framework. ANN model resulted in a forecast 
error of ± 69% to the mean inflow. However, comparatively 
a less error of ± 6.5%, ± 13.3%, and ± 4.6% was found in the 
total yield, total irrigation, and area of irrigation, respec-
tively. The reduction in error was mainly contributed by the 
optimizer that tries to maximize the production with the res-
ervoir releases irrespective of inflow to the reservoir. The 
reliability of the proposed approach can be evaluated with 
upper and lower bounds of simulated values and based on 
which the decisions can be made.
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