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Abstract
Net ecosystem exchange of CO2 (NEE) measurement was carried out in tropical lowland paddy at ICAR-National Rice 
Research Institute, Cuttack, Odisha, India, in 2015 using eddy covariance technique with the objective to assess the variation 
of NEE of CO2 in lowland paddy and to find out the most suitable model for better partitioning of net ecosystem exchange of 
CO2 in tropical lowland paddy. Paddy is grown twice (dry and wet season) a year in this region in the lowland, and the field 
is kept fallow during the remainder of the year. Two different flux partitioning models (FPMs)—the rectangular hyperbola 
(RH) and the Q10, were evaluated to assess NEE of CO2, and its partitioning components—gross primary production (GPP) 
and ecosystem respiration (RE), and the resulting flux estimates were compared. The RH method assessed the effects of pho-
tosynthetically active radiation on the NEE, whereas the Q10 method utilized the relationship between ecosystem respiration 
and temperature in lowland paddy. The average NEE during the dry season and wet season was − 1.62 and − 1.83 g C m−2 
d−1, respectively, whereas it varied from − 5.71 to 2.29 g C m−2 d−1 during the observation period covering both the cropping 
seasons and the fallow period. The mean difference between modeled GPP and RE from two FPMs was found significant in 
both the seasons. The maximum correlation for GPP estimation was found between two FPMs at the panicle initiation stage 
during both the dry season (R2 = 0.767) and wet season (R2 = 0.321). It was evident from the study that the Q10 method reli-
ably produced the most realistic carbon flux estimates over the RH method, for the lowland paddy. The Q10 model which 
used nighttime flux and temperature data to estimate RE produced estimates that had lower prediction error (RMSE) as 
compared to the RH model. It can be concluded that in lowland paddy, the Q10 predicted better estimates of RE and GPP 
values than the RH method, suggesting that the Q10 model can be used for partitioning of NEE in tropical lowland paddy.
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Introduction

Net ecosystem exchange (NEE) measurements of carbon 
dioxide (CO2) are now playing a crucial role in the pro-
gress of climate change science through multiple scales 
with an increasing number of eddy covariance towers 
worldwide (Baldocchi 2008). Eddy covariance (EC) meas-
urements of NEE are widely used globally to quantify the 
role of vegetation in controlling the scale and variability 
of the global carbon sink (Sarmiento and Wofsy, 1999; 
Baldocchi 2008).

Globally paddy is cultivated in about 160 M-ha, divulg-
ing a vital role in carbon cycle (Pathak et al. 2018; Chat-
terjee et al. 2019a, b). Paddy is grown in about 43.95 M-ha 
in India with an annual production of 106.54 Mt (GOI 
2014). The NEE of CO2 of lowland paddy, a semiaquatic 
crop, can be measured over a large area using the EC 
technique (Chapin et al. 2006; Swain et al. 2018a, b). For 
assessment of the processes which control NEE in lowland 
paddy, EC data mostly depend on models that partition 
NEE into two components—gross primary production 
(GPP) and ecosystem respiration (RE). For understanding 
the partitioning of NEE with more accuracy to interpret its 
controls, this is imperative as the global budget for GPP 
is highly uncertain with the values ranging from 110 to 
150 Pg-C yr−1 (Beer et al. 2010; Jung et al. 2011). Often 
estimates of GPP and RE data differ depending upon the 
choice of flux partitioning models. There are several meas-
urements and modeling methodologies which are used for 
partitioning NEE, each of which has its own advantages 
and disadvantages (Desai et al. 2008). These flux parti-
tioning models (FPMs) can be very useful for gap filling 
of missing data, thus allowing estimates of CO2 flux over 
long time periods (Falge et al. 2002). Hence, FPMs are 
important tools for inferring EC data, yet very few studies 
so far have critically examined how the choice of a given 
FPM affects the degree and variability of C-flux estimates 
in tropical lowland paddy.

Yearlong EC time series data from the lowland paddy 
in eastern India were used to generate NEE, GPP and RE 
estimates using two FPMs that differ significantly in the 
data source used (i.e., daytime versus nighttime data) and 
difficulty of the modeling procedure. These estimates 
from two models were then compared against each other 
to assess the magnitude and seasonal variability of NEE, 
RE and GPP. While doing the inter-comparison of data, it 
is imperative to note that model-based estimates are gen-
erally liable to various random and systematic errors and 
may not always denote the unknown “true” flux value. 
There is a substantial interest in partitioning the measured 
NEE of CO2 to find better perceptions into the process-
level controls over NEE. During the nighttime, partitioning 

is simple, as RE becomes equal to NEE, whereas, during 
the daytime, the partitioning depends on the model used. 
Hence, there are considerable uncertainties related to the 
estimates of GPP and RE (Hagen et al. 2006; Richardson 
et al. 2006). The daytime RE can be extrapolated from 
the nighttime flux measurements using some temperature 
response function, but this approach does not account for 
daytime inhibition of foliar respiration, which is estimated 
to be 11–17% of GPP (Wohlfahrt et al. 2005). There is 
another method by which daytime RE is estimated from 
the y-axis intercept from a light response curve (Lasslop 
et al. 2010). Desai et al. (2008) reported that most of the 
partitioning methods varied by less than 10% in terms of 
yearly integrals and more variability among the methods 
was observed when extra gaps were included in the data. 
It was apparent that patterns of GPP across the locations 
tended to be consistent when a single partitioning algo-
rithm was applied which indicates that choice of algorithm 
mostly results in asystematic bias of unknown magnitude 
since the “true” GPP is not known. In the case of the par-
titioning of RE, more variability within algorithms was 
observed at shorter timescales (e.g., with regard to diurnal 
cycles) (Lasslop et al. 2010). Soil also plays an important 
role in ecosystem respiration by sequestering C in labile 
and non-labile pools and subsequent release as CO2 which 
get altered with different agronomic management practices 
such as mulching, irrigation and fertilizer management 
(Chatterjee 2014; Chatterjee et al. 2016, 2017, 2018) and 
other organic input managements. Hence, estimates of the 
RE in large scale often contain errors in the data.

The current study focused on two different FPMs that 
have a strong basis in ecosystem physiology, particularly 
those that parameterize well-known relationships between 
respiration and temperature or between NEE and photosyn-
thetically active radiation (PAR). The rectangular hyperbola 
(RH) is an established method to assess the effects of PAR 
on NEE. It has been reported that the flux data from the EC 
system at nighttime and temperature are significantly related 
to each other (Lee et al. 1999). On the other hand the Q10 
method is very useful to model RE using temperature as a 
dominant factor. The Q10 method is also used for gap filling 
of missing flux data collected during nighttime conditions 
having sufficient turbulence (e.g., u* > 0.2 m s−1) by using 
air temperature as a key physical driver of RE (Stoy et al. 
2005). These methodologies engage the simple equations 
used by many ecosystem models and, therefore, can produce 
transferable information for future studies of C-dynamics 
both across time and space at the lowland paddy ecosys-
tem and other ecosystems relating with similar character-
istics. Thus, it was hypothesized that NEE of CO2 varies 
with paddy-growing season, and there is a significant dif-
ference in estimates of GPP and RE partitioned by two dif-
ferent FPMs and choices of the model may influence the 
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partitioning of NEE in tropical lowland paddy. To investigate 
this hypothesis, the current study was carried out with the 
following objectives (1) to study the variation of the net 
ecosystem exchange of CO2 in lowland paddy and (2) to 
find out the best-suited model for better partitioning of net 
ecosystem exchange of CO2 in lowland paddy.

Materials and methods

Study site and establishment of crop

The field experiment was conducted at the eddy covari-
ance site of ICAR-National Rice Research Institute (20°26′ 
60.0″N, 85°56′ 10.9″E, 24 m above average sea level) in 
Cuttack, Odisha, India, during the paddy-growing season of 
2015. The climate of Cuttack is tropical humid, with wet hot 
summers (March to June) and brief mild winters (December 
to February). The annual average maximum and minimum 
temperatures in 2015 were 39.2 and 22.5 °C, respectively, 
whereas the annual average temperature was 27.7 °C. The 
PAR in this site varied from 112.70 to 1101.32 μmol m−2 
s−1. Average annual rainfall was 1500 mm. The soil tex-
ture of the experimental site was sandy clay loam (25.9% 
clay, 21.6% silt and 52.5% sand) and categorized as Aeric 
Endoaquept in soil taxonomic classification system (Chat-
terjee et al. 2019a, b). The average bulk density of the study 
site was 1.42 Mg m−3. The measured pH (1:2.5 soil: water 
suspension) varied from 6.20 to 6.32, and a low average 
electrical conductivity (0.44 dS m−1) was recorded. Total 
carbon and total nitrogen of the study area varied from 11.2 
to 11.4 g kg−1 and 0.78 to 0.9 g kg−1, respectively.

Paddy crop was grown in two seasons, i.e., dry season 
(DS) and wet seasons (WS) of 123 and 131 days, respec-
tively, including two fallow periods, i.e., dry fallow (DF) 
and wet fallow (WF) of 64 and 47 days, respectively. Four 
crop growth stages were mostly identified which are veg-
etative (Veg), panicle initiation (PI), flowering (FL) and 
harvesting or maturity (H). Twenty-one-day-old seedlings 
of paddy (cultivar Naveen in DS cultivar Swarna Sub-1 in 
WS) were transplanted to a puddled soil with a spacing of 
20 cm × 15 cm. Transplanting was done on the 2nd week 
of July in WS and 1st week of January in DS and harvested 
in November and last week of May, respectively. Nitrogen 
fertilizer was applied in three equal splits at basal, vegetative 
and panicle initiation stages. The rate of N application was 
80 kg ha−1 in WS and 100 kg ha−1 in DS. Phosphorus (P) 
and potassium (K) were added at the rate 40 kg ha−1 each 
at basal during land preparation in both the seasons. During 
the fallow period, there was no crop left and the water was 
drained out before 15 days of the harvest. There was 8 cm 
standing water during the paddy-growing period, and before 
harvesting, it was drained out.

Eddy covariance instrumentation setup

The eddy covariance instrument was fitted in the lowland 
paddy field at its middle position covering a fetch area of 
2.25 hectares. To assure a uniform height of paddy crop year-
long uniform breeder paddy variety was grown within the 
fetch area of the EC system. The components that comprised 
the eddy system were (1) a three-dimensional sonic ane-
mometer (CSAT3, M/s Campbell Scientific Corp., Logan, 
Utah, USA) which measures wind speed along with three 
non-orthogonal sonic axes in the real time, (2) open path 
infrared gas analyzer (LI-7500A, M/s LICOR Inc., Canada) 
measuring fluctuations in CO2 and water vapor densities, (3) 
a temperature-humidity sensor (HMP45C, Campbell Scien-
tific Corp., Logan, Utah, USA) measuring air temperature 
(Ta), relative humidity (RH), (4) a 4-component radiation 
sensor (CNR4, KIPP and ZONEN, Netherlands) measuring 
net radiation, (5) a soil temperature probe (107 B, Camp-
bell Scientific Corp., Logan, Utah, USA) which measures 
soil temperature and (vi) a PAR sensor (LI190SB) which 
measures PAR. Both the sonic anemometer and infrared gas 
analyzer were mounted on a tripod aluminum mast at 1.5 m 
height. All the signals from different sensors were logged 
and stored in a data logger (CR3000, Campbell Scientific 
Corp., Logan, Utah, USA) at a sampling frequency of 10 Hz.

The NEE was calculated to sum up the half hourly daily 
CO2 flux and CO2 storage change. As paddy canopy height 
was relatively low, hence the storage term was neglected 
for the NEE calculation. The average vertical CO2 flux den-
sity (g C m−2 d−1) was calculated by the following formula 
(Webb et al. 1980; Baldocchi 2003):

where ρa is dry air density (kg m−3), C′ is CO2 mixing ratio, 
ω′ is the 30-min covariance between vertical fluctuations of 
wind speed (m s−1), time averaging was denoted by over bar, 
whereas the primes denote fluctuations of the average value. 
The flux symbol is negative when CO2 is assimilation by 
the vegetation from the atmosphere, and positive, otherwise. 
Average of NEE was used to compute daily and seasonal net 
exchange by the 30-min data representation (Massman and 
Lee 2002).

Processing, quality control and gap filling eddy 
covariance data

Raw eddy covariance flux data set has been processed for 
quality control and flux corrections (Mauder et al. 2006; 
Mauder and Foken 2011). The other corrections included 
are: the planar fit coordinate rotation correction (Wilczak 
et  al. 2001), coordinate rotation (Kaimal and Finnigan 

(1)Fc = �a�
�C�
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1994), translation of buoyancy into sensible heat flux (Liu 
et al. 2001); density fluctuations correction (“WPL” correc-
tion) (Tanner and Thurtell 1969; Webb et al. 1980). The u* 
filtering (Reichstein et al. 2005; Papale et al. 2006) and spike 
removal with linear interpolation for the detected spikes 
were performed (Vickers and Mahrt 1997). The threshold 
of frictional velocity (u*) for data during the nighttime was 
filtered as 0.1 m s−1 in this lowland paddy (Bhattacharyya 
et al. 2014). Gap filling of lost and discarded data was com-
pleted by the “look-up” table method (Falge et al. 2002).

Flux partitioning methods

Two different methods of varying complexity were explored 
for NEE partitioning into its components, i.e., GPP and RE. 
The study is mainly based on the methods that parameter-
ize known relationships between driving meteorological 
parameters and NEE. One method, namely Q10 method, 
uses measured nighttime fluxes to predict RE as a function 
of air temperature. The second one is based on the rectan-
gular hyperbolic fit (RH) which uses the intercept of the 
relationship between PAR and NEE of daytime to model RE. 
GPP was then calculated from the definition:

The units of NEE, GPP and RE is in µmol m−2 s−1

Rectangular hyperbola (RH)

The rectangular hyperbola is an established method to assess 
the effects of PAR on NEE. It has been reported that the 
flux data from the EC system at nighttime and temperature 
are significantly related to each other although it is largely 
scattered (Lee et al. 1999). They used an intercept parameter 
(γ) of the RH model (i.e., the Michaelis–Menten model) to 
examine the seasonal dynamics of RE in a way that was less 

(2)GPP = NEE − RE

bound by the limitations of nighttime EC data quality, and 
finally the NEE is written as (Ruimy et al. 1995):

where α denotes apparent ecosystem considerable yield, β is 
light saturation determined CO2 uptake rate (µmol m−2 s−1), 
γ signifies estimate of RE (µmol m−2 s−1), and Q denotes 
PAR (µmol m−2 s−1). In this study, the parameters of Eq. (3) 
were determined crop growth stage-wise and daily γ value 
was used as an estimate of RE (Table 1). Instantaneous data 
sets, β, γ and Q, are in µmol m−2 s−1.

Q10 approach

One of the most popular approaches to model RE using tem-
perature as a dominant factor is the so-called Q10 equation:

where R10 denotes ecosystem base respiration at 10 °C, Ta 
is air temperature (°C), and Q10 describes the temperature 
sensitivity parameter, here delineating the amount of change 
in RE for a 10 °C change in temperature. This method is 
very useful for gap filling of missing flux data collected dur-
ing nighttime conditions having sufficient turbulence (e.g., 
u* > 0.2 m s−1) by using air temperature as a key physical 
driver of RE (Stoy et al. 2005). The parameter values of R10 
and Q10 were determined for each growth stage of paddy 
crop and season-wise for the whole year of study. It was 
noted that while parameterizing Eq. (4) seasonal variations 
in u* impact the eddy data set which is biased toward colder 
seasons (Gu et al. 2005; Reichstein et al. 2005).

For Q10 we built regression relationship of day-time 
NEE versus day-time air temperature. We considered that 

(3)NEERH = −

[

� ⋅ � ⋅ Q

� ⋅ Q + �

]

+ �

(4)REQ10 = R10Q

(Ta−10)
10

10

Table 1   Parameters for 
rectangular hyperbola model for 
lowland paddy

α denotes apparent ecosystem considerable yield, β is light saturation determined CO2 uptake rate, γ sig-
nifies estimate of ecosystem respiration (RE), and Q denotes photosynthetically active radiation (PAR). 
Instantaneous data sets, β, γ and Q are in µmol m−2 s−1. Stage-wise and seasonal data sets, β, γ and Q, are 
in g C m−2 d−1

Description Growth stages α β Q γ

Dry season (cv. Naveen) Vegetative 1.04 9 594.46 7.12
Panicle initiation 0.38 10 704.32 7.94
Flowering 0.17 20 810.02 12.37
Harvesting 0.20 24 849.60 15.19

Dry fallow – 0.53 20 803.56 15.49
Wet season (cv. Swarna Sub-1) Vegetative 0.70 10 580.33 7.60

Panicle initiation 0.29 20 681.49 13.86
Flowering 0.84 22 657.28 16.17
Harvesting 1.38 22 643.50 15.38

Wet fallow – 1.24 20 495.06 11.89
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nighttime NEE is mostly contributed by RE in the absence 
of photosynthesis (GPP) during that period. Thus, we used 
this relationship to model day-time RE and day-time GPP 
as NEE = GPP − RE. The regression equations which were 
used for building the Q10 model are shown in Table 2.

For model validation and comparison we did an exten-
sive literature survey for GPP and RE estimates in paddy in 
similar climatic conditions in different part of the world and 
assumed that our estimates of GPP and RE would follow 
similar trend. We did not have direct measurements of GPP 
and RE; hence, we compared with estimates of previous 
researchers (Ruimy et al. 1995; Bhattacharyya et al. 2013, 
2014; Stoy et al. 2006; Desai et al. 2008; Wohlfahrt and 
Galvagno 2017; Oikawa et al. 2014, 2017; Wehr et al. 2016; 
Wohlfahrt and Gu 2015; Swain et al. 2016, 2018a; Vargas 
et al. 2011) for similar edaphoclimatic conditions.

Statistical analysis

Paired sample t test statistics for both the models of NEE 
partitioning was done by using statistical analyses soft-
ware SPSS (version 20.0). Model root-mean-squared error 
(RMSE), standard deviation (SD) and coefficient of deter-
mination (R2) values were obtained from MS-Excel 2010 
software.

Results

Daily, seasonal and annual variations in NEE

The average NEE of the lowland paddy field varied from 
− 5.71 to 2.29 g C m−2 d−1 during the observation period 
covering both the cropping seasons and the fallow period 
(Fig. 1). The average NEE during the DS and WS was − 1.62 
and − 1.83 g C m−2 d−1, respectively. The average NEE dur-
ing the fallow period after harvest of the dry season and wet 
season crop was − 1.49 and − 0.29 g C m−2 d−1, respec-
tively. The average and cumulative NEE for the year 2015 
was − 5.23 and − 542.47 g C m−2 d−1, respectively. Cumula-
tive NEE for DF and WF was − 95.37 and − 14.81 g C m−2, 
whereas cumulative NEE values during DS and WS were 
− 199.73, − 232.55 g C m−2, respectively.

Daily, seasonal and yearlong variations in GPP 
in two FPM

Throughout the entire cropping seasons (DS and WS) and fal-
low periods (DF and WF), the daily variation of average GPP 
varied from − 7.25 to − 20.80 µmol m−2 s−1 and from − 0.025 
to − 22.68 µmol m−2 s−1, obtained from RH and Q10 method, 
respectively. The annual average values of GPP obtained from 
RH and Q10 method are − 16.02 and − 10.46 µmol m−2 s−1, 
respectively, and the statistical mean difference between 
GPP values estimated by these two different FPMs is sig-
nificant (Table 3). During the DS the average GPP values 
(modeled by RH method) were − 8.20, − 10.28, − 15.81 and 
− 18.55 µmol m−2 s−1 in Veg, PI, FL and H stages, respectively, 
with a seasonal average value of − 13.37 µmol m−2 s−1. The 
average GPP values during DS (modeled by Q10 method) were 
− 1.76, − 5.12, − 10.77 and − 17.16 µmol m−2 s−1 estimated in 
Veg, PI, FL and H stages, respectively, with a seasonal average 

Table 2   Regression equations for Q10 models

y denotes nighttime instantaneous NEE (µmol m−2 s−1), x is nighttime 
air temperature (°C), R2 is coefficient of determination

Growth stages Equations R2

Dry season y = 0.0007x2 − 0.018x + 0.0883 0.44
Dry fallow y = − 0.0023x2 + 0.1917x − 3.5202 0.41
Wet season y = − 0.0005x2 + 0.0742x − 1.6777 0.32
Wet fallow y = 0.007x2 − 0.2944x + 3.0663 0.36

-6

-5

-4

-3

-2

-1

0

1

2

3

0 50 100 150 200 250 300 350

N
E

E
 (C

O
2

g 
C

 m
-2

d-1
)

Julian days 

Dry Season Wet FallowDry Fallow Wet Season

Veg PI FL H Veg
PI FL H

Fig. 1   Variation of daily average net ecosystem exchange of CO2 during the dry and wet season (Veg vegetative, PI panicle initiation, FL flower-
ing and H harvesting stages) and the fallow period of lowland paddy



628	 Paddy and Water Environment (2020) 18:623–636

1 3

value of − 9.03 µmol m−2 s−1. During the DS it was observed 
that GPP values gradually increased as the cropping season 
progressed from Veg to H stage irrespective of any FPM. Dur-
ing the WS the average GPP values (modeled by RH method) 
were − 10.20, − 18.24, − 19.55 and − 18.41 µmol m−2 s−1 
estimated in Veg, PI, FL and H stages, respectively, with a 
seasonal average value of − 17.30 µmol m−2 s−1, whereas the 
average GPP values in WS (modeled by Q10 method) were 
− 6.91, − 12.57, − 15.19 and − 10.08 µmol m−2 s−1 during 
Veg, PI, FL and H stages, respectively, with a seasonal average 
value of − 11.44 µmol m−2 s−1. The highest GPP was estimated 
during FL stage by both the FPM. It was observed that in 
both the seasons (DS and WS) the statistical mean difference 
between the GPP values estimated from RH and Q10 was sig-
nificant although it was not found significant during Veg stages 
of both the cropping season in both the FPM. During the DF 
period the average GPP values, estimated from RH and Q10 
method, were − 18.07 and − 12.36 µmol m−2 s−1, respectively, 
whereas during wet fallow (WF) the estimated average GPP 
values were − 16.58 and − 8.90 µmol m−2 s−1, respectively. 
The statistical mean difference between the GPP values esti-
mated from both the FPM was also found to be significant in 
both the fallow period (Table 3). The seasonal and stage-wise 
variations of GPP in both the FPM are shown in Figs. 2 and 
3, respectively.

Daily, seasonal and yearlong variations in RE in two 
FPM

During the two cropping seasons (DS and WS) and fallow 
periods (DF and WF), the daily variation of average RE 
varied from 6.80 to 20.15 µmol m−2 s−1 and from 0.77 to 

10.61 µmol m−2 s−1 obtained from RH and Q10 method, 
respectively. The annual average values of RE obtained 
from RH and Q10 method are 13.44 and 4.62 µmol m−2 s−1, 
respectively and the statistical mean difference between RE 
values estimated by the two FPM is significant (Table 4). 
During the DS the average RE values (modeled by RH 
method) were 7.78, 8.67, 12.65 and 15.17 µmol m−2 s−1 
during Veg, PI, FL and H stages, respectively, with a sea-
sonal average value of 11.24 µmol m−2 s−1. The average RE 
values (modeled by Q10 method) were 2.10, 2.63, 3.75 and 
5.01 µmol m−2 s−1 during Veg, PI, FL and H stages, respec-
tively, with a seasonal average value of 3.42 µmol m−2 s−1. 
During the DS it was observed that magnitude of RE gradu-
ally increased as the growing season progressed from Veg 
to H stage of paddy and estimated the highest at H stage. 
During the WS the average RE values (modeled by RH 
method) were 8.72, 15.39, 16.65 and 16.11 µmol m−2 s−1 
during Veg, PI, FL and H stages, respectively, with a sea-
sonal average value of 14.59 µmol m−2 s−1, whereas the 
average RE values (modeled by Q10 method) were 3.72, 
4.53, 4.98 and 4.33 µmol m−2 s−1 during Veg, PI, FL and H 
stages of paddy, respectively, with a seasonal average value 
of 4.43 µmol m−2 s−1. The highest RE in the WS was esti-
mated during FL stage in both the FPM (Table 4). It was 
observed that in both the season (DS and WS) the statistical 
mean difference between the RE values estimated from both 
the FPM was significant though it was not found signifi-
cant during Veg stage of WS paddy (Table 3). During the 
DF period the average RE values, estimated from RH and 
Q10 method, were 15.85 and 6.55 µmol m−2 s−1, respec-
tively, whereas during the WF the estimated average RE 
values were 12.67 and 5.70 µmol m−2 s−1, respectively. The 

Table 3   Paired samples t test for gross primary production (CO2 g C m−2 d−1) estimated from two flux partitioning models

SEM standard error of the mean, RH rectangular hyperbola, R2 coefficient of determination
*Mean difference is significant at the 0.05 level (p < 0.05)

Crop stages Mean ± SEM R2 Mean difference Degrees of 
freedom

RH Q10

Dry season Vegetative (Veg) 8.20 ± 0.035 1.76 ± 0.137 0.007 6.44 34
Panicle initiation (PI) 10.28 ± 0.347 5.12 ± 0.38 0.767 5.15* 24
Flowering (FL) 15.81 ± 0.150 10.77 ± 0.54 0.415 5.04* 24
Harvesting (H) 18.55 ± 0.205 17.16 ± 0.50 0.125 1.38* 37

Dry season total 13.37 ± 0.40 9.03 ± 0.60 0.889 4.33* 122
Dry season fallow 18.07 ± 0.009 12.36 ± 0.34 0.081 5.71* 63
Wet season Vegetative (Veg) 10.20 ± 0.42 6.91 ± 0.53 0.077 3.28 26

Panicle Initiation (PI) 18.24 ± 0.31 12.57 ± 0.59 0.321 5.66* 27
Flowering (FL) 19.55 ± 0.13 15.19 ± 0.53 0.132 4.35* 37
Harvesting (H) 18.41 ± 0.11 10.08 ± 0.84 0.001 9.32 37

Wet season total 17.30 ± 0.34 11.44 ± 0.42 0.262 5.85* 130
Wet season Fallow 16.58 ± 0.170 8.89 ± 0.65 0.417 7.68* 46
Total (365) 16.02 ± 0.211 10.46 ± 0.28 0.526 5.55* 364
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statistical mean difference between the RE values estimated 
from both the FPM was also found to be significant in both 
the fallow period (Table 4). The seasonal and stage-wise 
variation of RE partitioned by both the FPM is shown in 
Figs. 4 and 5, respectively.

Discussion

Variation of NEE in lowland paddy

Positive and negative sign of NEE denoted net CO2 emission 
into the atmosphere and net CO2 assimilation by lowland 
rice, respectively. The lowland paddy field acted as net CO2 
sink throughout the entire growing season except for few 
days at the maturity and fallow period. The NEE in lowland 
paddy is mainly controlled by several factors and environ-
mental variables such as latent heat, heat stress, vapor pres-
sure deficit, canopy irradiance, stomatal response, circadian 
rhythm, growth stages of rice crop, leaf area index, biomass, 
high evaporative demand (Nair et al. 2011). Net ecosystem 
exchange also depends water management and the particular 
stages of the crop (Saito et al. 2005). It was observed that the 
amplitude of the daily variation in NEE increased with the 
progress of growing season and reached its maxima around 
the PI to FL stage and, then, decreased progressively till the 
maturity. It might be due to the reduction in leaf chlorophyll 
content or leaf senescence. These findings are in agreements 
with the findings of (Pakoktom et al. 2009) and (Bhattacha-
ryya et al. 2013). Net ecosystem exchange becomes more 
negative during the day due to increasing CO2 assimilation 
by photosynthesis (increase in GPP) as air temperature and 
PAR increased (Figs. 6a, b, and 7). Similar results were 
reported by (Alberto et al. 2009) and (Nair et al. 2011). The 

presence of aquatic plants and algae in the floodwater may 
also affect the NEE (Miyata et al. 2000; Bhattacharyya et al. 
2013).

Variations in GPP in two FPM

It is evident from the results that the GPP estimated by the 
two different FPM (RH and Q10) significantly differed 
with each other and it is supported by their mean differ-
ence, RMSE and SD values (Tables 3 and 5). For DS, DF, 
WS and WF, the model RMSE values for RH method were 
41.77, 21.40, 43.71 and 19.24% higher respectively, than 
Q10 method for the same following time frame, whereas 
the SD values were more in case of Q10 than RH method. 
Based on this observation it is obvious that RH method may 
be overestimating the GPP values as compared to the Q10 
model in the lowland paddy field. The RH model used PAR 
data to partition NEE, and in wet season, PAR data (Fig. 7) 
are impacted due to cloud cover which may be attributed 
to error in the RH model while analyzing the data for WS 
period. The Q10 lacks this deficiency as it depends on tem-
perature for partitioning NEE. While fitting the regression 
equation (for Q10) between nighttime air temperature and 
nighttime NEE we achieved a significant positive correla-
tion (r2 ≈ 0.4–0.5) in both the season. Similar findings in this 
regard were reported by Stoy et al. (2006), Wohlfahrt and 
Galvagno (2017) and Oikawa et al. (2017).

Variations in RE in two FPM

The RE estimated by the two models significantly differed 
with each other which is supported by their mean difference, 
RMSE and SD values (Tables 4 and 5). For DS, DF, WS and 
WF, the model RMSE values for RH method were 86.81, 

Fig. 2   Partitioning of net 
ecosystem exchange rectangular 
hyperbola into gross primary 
production and ecosystem 
respiration and diurnal variation 
(IST, Indian Standard Time) by 
method during the dry and wet 
seasons and fallow period of 
lowland paddy
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87.02, 84.22 and 77.30% higher, respectively, than Q10 
method for the same time period. Similarly, the SD values 
were also more in case of RH as compared to Q10 method. 
From these observations it can be anticipated that the RH 
model was overestimating RE values much more than Q10 
model; hence, Q10 was found best fit for this lowland paddy 
fields. However, Q10 approach may lead to systematic biases 
while partitioning as nighttime data were used to model day-
time ecosystem respiration (RE), assuming that respiration 
processes did not cease in daytime and that the temperature 
responses of RE behaved similarly throughout the day and 

night. However, Reichstein et al. (2005) reported that these 
two assumptions are often violated. Nighttime plant respira-
tion is often higher than daytime respiration which leads to 
an overestimation of daytime RE and GPP (Amthor 1995; 
Heskel et al. 2013; Kok 1949; Wehr et al. 2016; Wohlfahrt 
and Gu 2015). In the agricultural field, it is often difficult to 
predict daytime soil respiration from nighttime soil respira-
tion rates due to the changing availability of substrate in soil 
(Oikawa et al. 2014; Tang et al. 2003; Vargas et al. 2011).

The model comparison and validation could have been 
more robust if we have had true ground measurements of 

Fig. 3   Partitioning of net ecosystem exchange by rectangular hyperbola method into gross primary production and ecosystem respiration and 
diurnal variation (IST Indian Standard Time) in different crop growth stages of lowland paddy during dry and wet season
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the partitioning products (GPP and RE) in this region. 
Further research is needed for validating the FPM models 
more accurately and cohesively for a particular edapho-
climatic region. This study could be useful in data scarce 
region of the world.

Conclusions

In this study, the variation of the net ecosystem exchange 
of CO2 in lowland seasonal paddy cultivation is assessed 

Table 4   Paired samples t test for ecosystem respiration (CO2 g C m−2 d−1) estimated from two flux partitioning models

SEM standard error of the mean, RH rectangular hyperbola, R2 coefficient of determination
*Mean difference is significant at the 0.05 level (p < 0.05)

Crop stages Mean ± SEM R2 Mean difference Degrees of 
freedom

RH Q10

Dry season Vegetative (Veg) 7.78 ± 0.10 2.01 ± 0.09 0.157 5.77* 34
Panicle initiation (PI) 8.67 ± 0.30 2.63 ± 0.15 0.170 6.03* 24
Flowering (FL) 12.65 ± 0.27 3.75 ± 0.15 0.254 8.90* 24
Harvesting (H) 15.17 ± 0.34 5.01 ± 0.12 0.278 10.15* 37

Dry season total 11.24 ± 0.31 3.42 ± 0.12 0.766 7.81* 122
Dry season fallow 15.85 ± 0.22 6.55 ± 0.18 0.552 9.30* 63
Wet season Vegetative (Veg) 8.72 ± 0.24 3.72 ± 0.18 0.007 5.00 26

Panicle initiation (PI) 15.39 ± 0.32 4.53 ± 0.10 0.271 10.86* 27
Flowering (FL) 16.65 ± 0.24 4.98 ± 0.16 0.196 11.67* 37
Harvesting (H) 16.11 ± 0.26 4.33 ± 0.34 0.049 11.78 37

Wet season total 14.59 ± 0.29 4.43 ± 0.124 0.118 10.15* 130
Wet season Fallow 12.67 ± 0.25 5.70 ± 0.33 0.471 6.97* 46
Total (365) 13.43 ± 0.18 4.62 ± 0.10 0.392 8.81 364

Fig. 4   Partitioning of net ecosystem exchange by Q10 method into gross primary production and ecosystem respiration and diurnal variation 
(IST Indian Standard Time) in different crop growing seasons and fallow periods



632	 Paddy and Water Environment (2020) 18:623–636

1 3

and the best-suited model for partitioning of net ecosys-
tem exchange of CO2 in lowland paddy is identified. The 
net ecosystem exchange of CO2 displayed a distinct daily 
and seasonal pattern during the paddy-growing season, 
and it was observed that lowland paddy has the capacity 
to sequester carbon from the atmosphere in the long run. 
It is evident from this study that the Q10 model unfail-
ingly produced the most sensible C-flux estimates over 

rectangular hyperbolic (RH) method in lowland paddy 
field. The Q10 model that uses nighttime data to esti-
mate RE, produced estimates which have lower RMSE 
values as compared to the other model. The RH model 
also requires many parameters, and accurate estimation of 
these parameters is important for better estimation of the 
partitioning products. The Q10 model predicted better esti-
mates of RE and GPP values than the RH method that is 

Fig. 5   Partitioning of net ecosystem exchange into gross primary production and ecosystem respiration by Q10 method in different crop growth 
stages and diurnal variation (IST Indian Standard Time) in lowland paddy during dry and wet season
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seemingly realistic in nature, though further investigations 
are required to confirm these findings. The major drivers 
for these models are PAR and air temperature which var-
ied temporally and controlled by many atmospheric and 

climatic factors. Again NEE is also controlled by many 
soil–plant-atmospheric factors. So understanding their 
interrelation is much needed. Partitioning of respiration 
from soil and biota is also not understood fully by sci-
entific community. Considering these constraints, models 
are prone to bias and errors are normal. Long-term studies 
are needed to establish the real truth about efficiency and 
suitability of a model in a particular ecosystem. The pre-
sent analysis might be useful for carbon sequestration and 
emission studies in wetland ecosystem and for partitioning 
of NEE in data scarce region where true estimates of GPP 
and RE are lacking

Fig. 6   a Mean daily air temper-
ature (in Julian days). b Diurnal 
variation (IST Indian Standard 
Time) of average air tempera-
ture throughout the year
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