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Abstract
This study was conducted to investigate the impact of water salinity (ECw) and sodicity (SARw) on saturated (Ks) and relative 
(Kr) hydraulic conductivities in two clay (C) and sandy clay loam (SCL) soils. The results showed that the Ks decreased with 
increasing SARw, and in all of water quality treatments, the Ks of SCL soil was higher than that of the C soil. Sodicity effect 
(even at high SARw) on the Kr of clay soil was minimized by high salinity. Although Kr of both soils similarly responded to 
ECw and SARw, microstructure of clay soil was more sensitive to water quality. Effect of ECw on soil structure was greater 
than that of SARw. In order to assess the applicability of artificial neural networks (ANNs) in estimating Ks and Kr, two 
types of FFBP and CFBP ANNs and two training algorithms, namely Levenberg–Marquardt (LM) and Bayesian regulation, 
were employed with two strategies of uniform threshold and different threshold functions. Multiple linear regressions were 
also used for Ks and Kr prediction. Based on the ANN results of second strategy, best topology (4–5–4–1) was belonged to 
CFBP network with LM algorithm, LOGSIG–LOGSIG–TANSIG threshold functions, and values of MAE and R2 are equal 
to 0.1761 and 0.9945, respectively. Overall, the efficacy of ANNs is much greater than regression method for Ks prediction.
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Introduction

Hydraulic conductivity (K) is one of the important physical 
properties of soil which depends on soil pores continuity, 
tortuosity and distribution (Mossadeghi-Björklund et al. 
2016). Irrigation with low-quality waters is common in 

arid and semiarid regions and may reduce the soil hydraulic 
conductivity. Swelling, aggregate failure, pore-size reduc-
tion, partial blocking and dispersion of clays are induced 
by the irrigation with low-quality waters and ultimately 
affect the soil hydraulic conductivity (Bagarello et al. 2006; 
Bourazanis et al. 2016). It was reported that K is very sensi-
tive indicator to detect changes in soil porosity caused by 
sodicity increment (Keren and Ben-Hur 2003). An increase 
in soil sodium adsorption ratio (SAR), by effluent irriga-
tion, resulted in enhanced clay swelling and dispersion and 
decreased the saturated hydraulic conductivity (Ks) (Lado 
and Ben-Hur 2009; Bourazanis et al. 2016), aggregate stabil-
ity, and surface crusting and low-quality tilth (Suarez et al. 
2006). In the absence of electrolytes, the impact of fast wet-
ting (slaking) and swelling on the hydraulic conductivity 
was most notable, mainly at the intermediate sodicity levels 
(ESP = 5–10) (Levy et al. 2005). The use of saline water sig-
nificantly reduced the impact of fast wetting and swelling on 
the hydraulic conductivity. Results suggested that combined 
effects of salinity, wetting rate and sodicity on the hydraulic 
conductivity were complex and should thus be considered 
simultaneously when estimating soil hydraulic conductivity 
(Levy et al. 2005).
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Artificial neural networks

Artificial neural networks (ANNs) have been extensively 
employed as an artificial intelligence method for modeling 
and prediction purposes. The ANN uses simple processing 
elements named neurons which have been related to spe-
cial arrangement. An ANN tries to discover the inherent 
relationships between input and output parameters through 
learning process. Hidden layer(s) process the input data 
from input layer and produce answer in output layer. Each 
network is trained with real patterns. During this process, 
the connection weights between layers are changed until the 
errors between predicted values and the target (experimental 
values) are reduced to a permissible value (Heristev 1998).

Multilayer perceptron (MLP) networks are the most 
robust and popular types of ANNs for prediction of vari-
ables in engineering sciences (Raheli et al. 2017). Two 
well-known types of MLP networks are FFBP and CFBP 
(Kaveh et al. 2017). LM and BR are the best training algo-
rithms with the lowest training epoch (Love 2017). These 
algorithms are the newest methods for training of the MLP 
networks (Chayjan and Esna-Ashari 2010). Advantages 
and features of FFBP and CFBP networks and LM and 
BR algorithms are described in the sections of “Network 
types” and “Training algorithms.”

Network types

(a)	 Feed-forward back propagation (FFBP): This network 
consists of one input layer, one or several hidden layers 
and one output layer. Usually, back-propagation (BP) 
learning algorithm is used to train this network (which 
finally results in learning). During the training of this 
network, calculations were carried out from input of 
network toward the output, and then, the values of 
error were propagated to prior layers. Output calcula-
tions were carried out by layer to layer, and the output 
of each layer is the input of next layer (Demuth et al. 
2007).

(b)	 Cascade-forward back propagation (CFBP): This net-
work like FFBP network uses the BP algorithm for 
updating weights, but the main characteristic of this 
network is that each layer’s neuron is related to all the 
previous layer neurons.

Training algorithms

Two training algorithms are used for updating the network 
weights. These algorithms are Levenberg–Marquardt (LM) 
and Bayesian regulation (BR) algorithms:

(a)	 LM algorithm: The LM algorithm is a Hessian-based 
algorithm for nonlinear least squares optimization. 
Hessian-based algorithms allow the network to learn 
features of a complicated mapping more suitably. The 
training process converges quickly as the solution is 
approached, because the Hessian does not vanish at the 
solution.

(b)	 Bayesian regularization (BR) algorithm: In this algo-
rithm, instead of the sum of squared error (SSE) on 
the training set, a cost function, which is the SSE plus 
a penalty term, is automatically adjusted (Girosi et al. 
1995).

The ANNs have been extensively employed in soil sci-
ence as pedotransfer functions (PTFs) for prediction of 
hardly available properties using easily available proper-
ties. With adequate and sensitive data, ANN can be used to 
estimate, for example, Ks, using easily available soil prop-
erties such as sand, silt, and clay content, bulk density, and 
organic carbon content (Agyare et al. 2006). Parasuraman 
et al. (2006) compared the performance of the field-scale 
PTFs with an available ANN program and Rosetta meth-
ods, namely bagging and boosting in estimating Ks. They 
showed that the field-scale models performed better than 
Rosetta. The ANN model employing the boosting algo-
rithm results in better generalization by reducing both the 
bias and variance of the ANN models. Lim and Kolay 
(2009) compared Shepard’s equation and ANN method 
for estimation of K. The results showed that the trained 
network consistently produced most accurate predictions 
(R2 = 0.8493). The study of Erzin et al. (2009) deals with 
development of ANNs and multiple regression analysis 
(MRA) models for predicting hydraulic conductivity of 
fine-grained soils. The ANN models better predicted the K 
than the MRA models based on selected performance indi-
ces. It was demonstrated that the developed ANN models 
could be employed for predicting hydraulic conductivity 
of compacted fine-grained soils quite efficiently.

Quality of irrigation waters is usually low (i.e., high EC 
and/or SAR) in most arid and semiarid regions (Emdad 
et al. 2004). There are few documentations about the influ-
ences of water quality on soil hydraulic properties, but the 
information on the impacts of water quality on calcareous 
soils which are widespread in Iran is scanty. Moreover, 
water quality effects on soil hydraulic properties were 
rarely predicted using ANNs so far. The objectives of this 
study were: (1) to assess the effect of water quality on satu-
rated hydraulic conductivity (Ks) of two clay and sandy 
clay loam soils from western Iran, and (2) to predict the 
effect of soil type and water quality on Ks using regression 
and ANNs methods.
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Materials and methods

Soils and water quality treatments

Two non-saline and non-sodic agricultural soils were 
selected in Hamadan province, western Iran. The soil sam-
ples were carefully collected at a suitable water content from 
0 to 30 cm layer to avoid the destruction of soil aggregates. 
Some of the samples were air-dried, ground and passed 
through a 2-mm mesh sieve. Particle size distribution was 
determined using the hydrometer. Particle density was meas-
ured by the pycnometer method (Klute 1986). Soil electri-
cal conductivity (EC) and pH were determined with an EC 
meter (Metrohm 712) and a pH meter (Metrohm 744) using 
1:5 soil/water suspension, respectively. Carbonate content 
was measured using the back-titration method. Organic mat-
ter content was determined using the wet-digestion method 
(Page et al. 1992). Some physical and chemical properties 
of the soils are given in Table 1.

Water quality treatments comprised all combinations of 
water EC (ECw) values of 0.5, 2, 4 and 8 dS m−1 and SARw 
values of 1, 5, 13 and 18 (meq l−1)0.5 (in total 16 solutions). 
Pure NaCl and CaCl2 salts (Merk) were used to prepare the 
solutions. Distilled water was used as control. The following 
two equations are used to prepare the solutions with desired 
ECw and SARw:

where TAw and TCw refer to total anion and total cation 
concentrations both in meq l−1 and [Na+] and [Ca2+] stand 
for concentrations (meq l−1) of sodium and calcium ions in 
the solutions. Equations (1) and (2) are solved with the men-
tioned ECw and SARw values to calculate [Na+] and [Ca2+] 
and the amounts of NaCl and CaCl2 salts and to prepare the 
16 solutions. The ECw of the prepared solutions was tested 
for correctness of calculations and checking purity of the 
salts.

(1)TAw = TCw = 10 × ECw

(2)SARw =

[
Na+

]

√
Ca2+

2

Soil preparation

Some of the collected soils were air-dried and sieved through 
2-mm mesh without grinding and/or breaking the soil aggre-
gates in order to preserve the micro-aggregates in the soil 
mass. The soils were packed into cylinders (with 7 cm height 
and 5 cm diameter) to 6 cm thickness and to have an initial 
similar void ratio of 1.2 (i.e., porosity of 0.55). The initial pore 
volume (PV) of all the soil samples was 76.6 cm3. In total, 
16 solutions × 2 soil types in three replicates (in total 96 soil 
cores) were prepared.

Leaching setup and saturated hydraulic 
conductivity measurement

All of the soil columns were initially saturated by distilled 
water. The Ks of the soil columns was measured using the con-
stant-head method (Levy et al. 1999). The constant head on the 
columns was maintained using the Marriott burette technique. 
The solution reservoir was filled with a solution having spe-
cific ECw and SARw, and the leaching was started to monitor 
the effect of water quality on the Ks during the leaching time.

The Ks (cm h−1) is calculated using the Darcy’s equation 
as follows:

where Vw is the cumulative volume (cm3) of effluent in the 
time interval (Δt, h), A is the cross-sectional area (cm2) of 
soil column, Δψh is the difference in hydraulic potential (cm) 
between top and bottom of the soil column and L is the 
length (cm) of soil column.

The leaching was continued for four times of soil column 
PV (4PV) or cumulative effluent volume of 306.4 cm3. The Ks 
variation was measured with 0.25PV intervals.

In order to compare the effect of different treatments (soil 
type and water quality) on the hydraulic conductivity, rela-
tive hydraulic conductivity (Kr), as calculated using Eq. (4), 
is used:

where Ks0 is the saturated hydraulic conductivity at the 
beginning of leaching (i.e., at effluent volume of 0.25PV) as 

(3)Ks =
Vw

AΔt
×

L

Δ�h

(4)Kr =
Ks

Ks0

Table 1   Physical properties of the studied soils

OM organic matter, EC electrical conductivity, CaCO3 calcium carbonate content, PD particle density

Soil series (location) Clay (%) Sand (%) Texture pH OM (%) EC (dS m−1) CaCO3 (%w/w) PD (Mg m−3)

Hesam Abad 27.1 53.1 Sandy clay loam 7.59 1.87 0.198 15.0 2.57
Amir Abad 41.1 38.6 Clay 7.75 1.70 0.200 15.0 2.55
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used by Green et al. (2003). The Kr values were also drawn 
versus PV.

Artificial neural networks

Structures and designing

Considering four inputs in all experiments (ECw, SARw, soil 
texture or TEX and PV), the Ks and Kr values were derived 
for different conditions. Networks for Ks prediction with four 
neurons in the input layer (i.e., ECw, SARw, TEX and PV) 
and one neuron in the output layer (Ks) were designed. Neural 
network toolbox of MATLAB software was used in this study 
(Sivanandam et al. 2006).

In order to obtain the desired answer, two networks of 
FFBP and CFBP for Ks prediction were utilized. Training 
process for these Ks networks was iterative. When the error 
between desired and predicted values became minimum, train-
ing process meets the stability. The increasing method was 
used for selecting layers and neurons for evaluation of vari-
ous topologies. The increasing method has some advantages 
which are: (a) the network complexity gradually increases 
with increasing neurons; (b) the optimum size of the network 
always obtains by adjustments; and (c) monitoring and evalu-
ation of local minimum carry out during the training process. 
Various threshold functions were used to reach the optimized 
status (Demuth et al. 2007):

where Xj is the sum of weighed inputs for each neuron in jth 
layer and computed as below:

where m is the number of output layer neurons, Wij the 
weight between ith and jth layers, Yi the ith neuron output 
and bj bias of jth neuron for FFBP and CFBP networks. 
Experimental data of Ks and Kr were selected for training 
network with suitable topology and training algorithm and 
for testing of trained network.

The following criterion of root-mean-square error has 
defined to minimize the training error (Demuth et al. 2007):

(5)Yj =
1

1 + exp(−Xj)
(LOGSIG)

(6)Yj =
1

(
1 + exp(−2Xj)

)
− 1

(TANSIG)

(7)Yj = Xj (PURELIN)

(8)Xj =

m∑

i=1

Wij × Yj + bj

(9)MSE =
1

MN

M∑

p=1

N∑

i=1

(
Si − Tip

)
2

where MSE is the mean square error, Sip the network output 
in ith neuron and pth pattern, Tip the target output at ith 
neuron and pth pattern, N the number of output neurons and 
M the number of training patterns. To optimize the selected 
network from prior stage, the secondary criteria were used 
as follows:

where R2 is the coefficient of determination, Emr the mean 
relative error, SE the standard error, Sk the network out-
put for kth pattern, Tk the target output for kth pattern, d.f., 
degree of freedom and n the number of training patterns.

About 70% of all data were randomly selected for training 
of network with suitable topology and training algorithms. 
The remained data were used for validation and test.

Analysis of the data

The effect of soil type (texture) and water quality on the 
Ks and Kr at different PVs was assessed using statistical 
analysis in SAS software. The soil texture, ECw and SARw 
were considered as treatments in a factorial arrangement 
of completely randomized design. Means of the Kr values 
were compared using Duncan’s multiple range test. The Ks 
and Kr were predicted from the inputs of soil type, ECw and 
SARw using multiple regression and artificial neural net-
work (ANN) models. The statistical analysis was done using 
SAS software. Feed-forward and cascade forward networks 
and Levenberg–Marquardt and Bayesian regulation learning 
algorithms were utilized.

Results and discussion

Effect of soil texture and water quality on Ks and Kr

The Ks is mainly dependent on soil macropores and pore 
continuity and decreases with destruction of macropores. 
The Ks values were greater in sandy clay loam soil (with 
larger pores) compared to clay soil. With an increase in 
SARw, the Ks decreased due to soil dispersion, macropore 
clogging by dispersed clay particles and clay swelling. These 

(10)R2 = −

∑n

k=1

�
Sk − Tk

�

∑n

k=1

�
Sk −

∑n

k=1
Sk

n

�

(11)Emr =
100

n

n∑

k=1

|
|
|
|

Sk − Tk

Tk

|
|
|
|

(12)SE =

n∑

k=1

√
(Sk − Tk)

2

d.f.
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effects depend on clay content and types; the finer the soil 
texture and the greater the amount of 2:1 clays, the greater 
will be clay dispersion and swelling. When soil is suscep-
tible to dispersion and swelling, the soil structure will be 
damaged by sodicity (Levy et al. 2005). Buelow et al. (2015) 
observed that the importance of aggregate slaking in terms 
of soil hydraulic conductivity depended on both soil sodicity 
and clay content.

Figures 1 and 2 show the variation of Kr (averaged over 
replicates) versus PV for different water qualities and 
soil type treatments. The effect of SARw at low ECw (i.e., 
0.5 dS m−1) on Kr variation of the clay soil is shown in 
Fig. 1a. It was observed that as leaching was continued (at 
high PV), the Kr decreased because the low-saline waters 

could disperse the soil aggregates. This effect was greater 
when SARw increased. When the SARw reached to criti-
cal limit (i.e., about 13), the Kr decreased substantially, 
especially at initial PVs (Fig. 1a). There is an unexpected 
increase in Kr for SAR = 18, especially at high PVs presum-
ably because of particles separation and creation of new 
pores upon extensive swelling. 

The effect of SARw at moderate ECw (i.e., 2 dS m−1) on 
Kr variation of the clay soil is shown in Fig. 1b. When com-
pared with Fig. 1a, it is concluded that the negative effect of 
SARw on Kr diminished when water salinity increases. The 
leaching effect with the moderately saline waters on Kr was 
even positive, especially at low SARw values (Fig. 1b). With 
salinity increase, the DDL thickness decreases and the soil 
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Fig. 1   Effect of SARw on relative hydraulic conductivity (Kr) versus pore volume (PV) for clay soil at different ECw values: a 0.5, b 2, c 4 and d 
8 dS m−1
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particles are flocculated ultimately affecting the pore sizes 
and continuity and hydraulic conductivity.

The effect of SARw at ECw = 4 dS m−1 on Kr variation 
of the clay soil is shown in Fig. 1c. The Kr was minimally 
affected by the SARw, and the curves’ slopes were near to 
zero due to counteracting impacts of salinity on sodicity. 
For low SARw (= 1), the Kr increased upon further leach-
ing due to greater Ca2+ concentration compared to Na+ 
concentration.

The effect of SARw at ECw = 8 dS m−1 on Kr variation 
of the clay soil is shown in Fig. 1d. The high salinity and 
decreasing DDL thickness upon leaching increased the Kr. 
When compared with Fig. 1a–c, it is concluded that high 

salinity minimized the impacts of sodicity on Kr so that even 
at high SARw, the Kr changes are negligible.

The effect of SARw at ECw = 0.5 dS m−1 on Kr variation 
of the sandy clay loam soil is shown in Fig. 2a. It is seen 
that Kr decreased upon leaching with low-saline and high-
sodic waters. The decreasing trend of Kr upon leaching was 
smaller when compared with Fig. 1a indicating the higher 
susceptibility of the clay soil to water quality. The clay soil 
has more clay particles and surface area, which make it sus-
ceptible to soil solution composition. Comparing Fig. 2a, b 
shows that for SARw = 1, the positive effect of ECw on Kr 
was noticeable but not for the other SARw values having 
negative slope of Kr versus PV relation.
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Fig. 2   Effect of SARw on relative hydraulic conductivity (Kr) versus pore volume (PV) for the sandy clay loam soil at different ECw values: a 
0.5, b 2, c 4 and d 8 dS m−1
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For ECw of 4 dS m−1, the Kr was almost constant upon 
leaching (Fig. 2c), indicating that when sodicity is high (i.e., 
SARw = 18) the ECw should be at least 4 dS m−1 to preserve 
soil physical quality, and pore structure and continuity as 
quantified by hydraulic conductivity. When ECw of 8 dS m−1 
was used, the effect of leaching on Kr was positive irrespec-
tive of water sodicity.

Overall, with an increase in ECw the Kr increased so that 
at high salinities (i.e., ECw of 4 and 8 dS m−1), ECw could 
diminish the negative impact of SARw on soil structure and 
even increased the Kr to values greater than 1 upon leaching. 
Many investigators also reported that hydraulic conductiv-
ity increased with increasing electrolyte concentration and 
decreased with increasing SAR (Bagarello et al. 2006). In 
fact, swelling, aggregate failure, pore-size reduction and 
dispersion of clays are induced by the irrigation with low-
quality water.

As leaching continued, the ion exchange between soil 
exchangeable sites and leaching solution increased and the 
differences between the treatments became greater. At high 
salinity (i.e., 8 dS m−1), the effect of sodicity was not sig-
nificant. Also at low salinity (i.e., 0.5 dS m−1), there was no 
difference between SARw treatments because low concentra-
tions of leaching solution itself lowered the Kr.

Other studies have also confirmed these results (e.g., 
Gamie and De Smedt 2018; Lado and Ben-Hur 2009). For 
instance, Bourazanis et al. (2016) investigated the effect of 
irrigation with treated municipal wastewater and freshwa-
ter on Ks and showed that by increasing EC and decreasing 
SAR of irrigation water, the soil particles were flocculated 
and consequently Ks increased. However, these studies have 
not been evaluated the capability of ANNs to predict soil 
hydraulic conductivity as affected by water quality.

Statistical analysis of the effect of soil texture 
and water quality on Kr

Analysis of variance of the effects of soil texture and water 
quality on Kr at different pore volumes (PV) during leaching 
trials is presented in Table 2. It was observed that the soil 

texture only affected the Kr at PV = 1 significantly. However, 
the ECw significantly affected the Kr when the leaching con-
tinued (at PVs of 2, 3 and 4). The SARw only affected the Kr 
at PV = 4 (p < 0.05). It seems that when the leaching contin-
ues, the incoming solution approached the equilibrium with 
the exchange sites of clay particles and consequently affected 
the soil structure and Kr. The interaction between soil texture 
and ECw on Kr was significant (p < 0.1) at PV = 3. The inter-
action between soil texture and SARw on Kr was significant 
(p < 0.1 and 0.05) at PV of 0.5 and 1. The third-order inter-
action was only significant (p < 0.1) at PV = 1.

Table 3 shows the mean comparisons of the treatment 
effects on Kr at different PVs during leaching trials. The 
texture significantly affected the Kr only at 1PV. The mean 
Kr of sandy clay loam soil was greater than clay soil due to 
the effect of higher macropores and lower effect of water 
quality on microstructure of sandy clay loam soil. The effect 
of ECw on Kr was not significant at 0.5PV and 1PV, but 
as the leaching proceeded, the ECw increased the Kr. The 
Kr was greatest at ECw of 8 dS m−1 which had significant 

Table 2   Analysis of variance 
of the effects of soil texture 
and water quality on relative 
hydraulic conductivity (Kr) at 
different pore volumes (PV) 
during leaching trials

† ,* and ** stand for significant effects at 10, 5 and 1% probability levels, respectively

Source of variance df F ratio

0.5PV 1PV 2PV 3PV 4PV

Texture 1 1.79 7.84** 2.25 0.53 0.14
EC 3 1.13 0.32 4.60** 8.18** 11.18**
SAR 3 0.28 0.95 1.09 2.03* 3.13*
Texture × ECw 3 0.19 0.35 2.08 2.22† 3.09
Texture × SARw 3 2.32† 3.75* 2.04 0.52 0.20
ECw× SARw 9 0.88 0.85 1.17 1.39 1.68
Texture × ECw × SARw 9 1.65 1.93† 1.35 1.16 0.42

Table 3   Mean comparisons of the effects of soil texture and water 
quality on relative hydraulic conductivity (Kr) at different pore vol-
umes (PV) during leaching trials

In each group and column, means with at least one similar letter are 
not significantly different at p < 0.05 (Duncan multiple range test)

Texture 0.5PV 1PV 2PV 3PV 4PV

Clay 0.962a 0.981a 0.977a 0.984a 0.998a

Sandy clay loam 0.936a 0.926b 0.942a 0.963a 0.986a

ECw (dS m−1)
0.5 0.938a 0.942a 0.892b 0.864b 0.834c

2 0.979a 0.956a 0.967a 0.964a 0.980b

4 0.944a 0.995a 0.966a 1.020a 1.039ab

8 0.934a 0.968a 1.013a 1.040a 1.107a

SARw (meq l−1)0.5

1 0.965a 0.960a 0.987a 1.006a 1.048a

5 0.964a 0.969a 0.965a 1.001ab 1.038ab

13 0.944a 0.959a 0.959a 0.966ab 0.944bc

18 0.949a 0.925a 0.928a 0.919b 0.938c
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difference with other ECw values. Comparing the effects of 
SARw values showed that at PV of 3 and 4, there were sig-
nificant differences between Kr means with the highest Kr 
for SARW = 1. Upon leaching, the sodium had enough time 
to be adsorbed on the colloid surfaces and caused swelling 
and dispersion. These in addition to pore clogging (due to 
dispersed materials) decreased the Kr.

Table 4 shows the mean comparisons of the interactive 
effects of soil texture and ECw on Kr at different PVs dur-
ing leaching trials. The effect was not significant at 0.5PV 
and 1PV, but at other PVs, the Kr was significantly differ-
ent among the texture–salinity combinations with the high-
est value observed for sandy clay loam soil leached with 
ECw of 8 dS m−1. The lowest Kr value belonged to clay 
soil leached with ECw of 0.5 dS m−1. The highest effect of 
ECw was observed at 4PV due to greater leaching and the 
fact that the cations had enough time to be adsorbed on the 
colloid surfaces. As ECw increases, the thickness of diffuse 
double layer (DDL) around the particles decreases leading 
to flocculation.

The interactive effects of soil texture and SARw on Kr at 
different PVs indicate that the Kr was lowest for both soils 
at SARw = 18 (Table 4). The effect was not significant at 
4PV partly due to variability among the replicates and partly 
due to increase in hydraulic conductivity upon clay parti-
cles leave from the soil columns during leaching (which was 
visually observed).

Table 5 shows the mean comparisons of the interactive 
effects of ECw and SARw on Kr at different PVs during 

leaching trials. Again the effect was not significant at 0.5PV 
and 1PV, but at other PVs, the Kr was significantly different 
among the salinity–sodicity combinations with the high-
est value observed for the high-salinity and low-sodicity 
treatments.

The Ks and Kr prediction using multiple 
regression and ANNs

Multiple regression analysis

The Ks and Kr were predicted from soil type, ECw and SARw 
using multiple regression method, and the following two 
equations are derived:

where Ks has the unit cm h−1, the units of ECw and SARw 
are dS m−1 and (meq l−1)0.5, respectively, TEX stands for 
soil texture (0 for clay and 1 for sandy clay loam), and PV 
is number of pore volumes. It is obvious from Eqs. (13) and 
(14) that Ks prediction is more accurate than Kr prediction 

(13)

Ks = 5.876047 − 0.00277ECw − 0.04764 SARw

+ 3.614373 TEX − 0.00302 PV

n = 512, R2 = 0.629, MSE = 2.00, p < 0.000

(14)

Kr = 0.9366 + 0.014691 ECw − 0.00186 SARw

− 0.0326 TEX − 0.00038 PV

n = 512, R2 = 0.240,MSE = 0.0068, p < 0.000

Table 4   Mean comparisons of 
the interactive effects of soil 
texture and water quality on 
relative hydraulic conductivity 
(Kr) at different pore volumes 
(PV) during leaching trials

In each group and column, means with at least one similar letter are not significantly different at p < 0.05 
(Duncan multiple range test)

Texture 0.5PV 1PV 2PV 3PV 4PV

ECw (dS m−1)
Clay 0.5 0.952a 0.982a 0.896b 0.828c 0.782c

Clay 2 0.982a 0.989a 1.030a 1.025a 1.056a

Clay 4 0.968a 0.962a 0.956ab 1.046a 1.068a

Clay 8 0.946a 0.990a 1.033a 1.036a 1.089a

Sandy clay loam 0.5 0.924a 0.902a 0.888b 0.899c 0.904bc

Sandy clay loam 2 0.976a 0.923a 0.901b 0.903bc 0.905bc

Sandy clay loam 4 0.921a 0.934a 0.976ab 0.995ab 1.010ab

Sandy clay loam 8 0.923a 0.945a 1.004a 1.056a 1.125a

SAR (meql−1)0.5

Clay 1 1.001a 1.042a 1.048a 1.045a 1.074a

Clay 5 0.965ab 0.977ab 0.946ab 0.998ab 1.044a

Clay 13 0.948ab 0.938bc 0.975ab 0.965ab 0.934a

Clay 18 0.932ab 0.964abc 0.942b 0.930ab 0.943a

Sandy clay loam 1 0.889b 0.878c 0.925b 0.967ab 1.023a

Sandy clay loam 5 0.963ab 0.973ab 0.984ab 1.005ab 1.033a

Sandy clay loam 13 0.941ab 0.944bc 0.946ab 0.967ab 0.952a

Sandy clay loam 18 0.953ab 0.913bc 0.914b 0.909b 0.933a
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using multiple regression technique. The effect of ECw on 
Ks was negative and on Kr was positive. The impact of SARw 
on both Ks and Kr was negative. The coarser the texture, the 
higher the Ks was and the lower the Kr was. The effect of PV 
on both Ks and Kr was negative.

Artificial neural networks analysis

Two types of FFBP and CFBP neural networks have been 
implemented in this study. Two strategies were applied to 
find the best combination of different threshold functions 
in network optimization which included uniform thresh-
old function for all layers (Table 6) and different thresh-
old functions for layers (Table 7). Both two strategies 

Table 5   Mean comparisons of 
the interactive effects of ECw 
and SARw on relative hydraulic 
conductivity (Kr) at different 
pore volumes (PV) during 
leaching trials

In each group, means with at least one similar letter are not significantly different at p < 0.05 (Duncan mul-
tiple range test)

ECw (dS m−1) SAR (meql−1)0.5 0.5PV 1PV 2PV 3PV 4PV

0.5 1 0.955a 0.967a 0.916b 0.911b 0.912bc

0.5 5 0.952a 0.940a 0.861b 0.834a 0.814c

0.5 13 0.920a 0.941a 0.896b 0.854b 0.791c

0.5 18 0.924a 0.919a 0.895b 0.855b 0.853c

2 1 0.966a 0.945a 0.973ab 0.996ab 1.015ab

2 5 1.013a 1.022a 1.042a 1.039a 1.109ab

2 13 0.981a 0.956a 0.951ab 0.949ab 0.905bc

2 18 0.957a 0.895a 0.901b 0.872b 0.891c

4 1 0.985a 0.965a 1.048a 1.078a 1.124ab

4 5 0.964a 0.974a 0.981ab 1.132a 1.187a

4 13 0.890a 0.920a 0.911b 0.939b 0.897c

4 18 0.938a 0.934a 0.924ab 0.932b 0.948bc

8 1 0.894a 0.964a 1.079a 1.040a 1.143a

8 5 0.907a 0.934a 0.974ab 1.001ab 1.043ab

8 13 0.951a 1.020a 1.009ab 1.130a 1.182a

8 18 0.986a 0.957a 0.990ab 1.012ab 1.060ab

Table 6   Learning algorithm for 
different neurons and hidden 
layers for the networks at the 
uniform threshold function

Network Training 
algorithm

Threshold function No. of layers 
and neurons

MSE R2 MAE SD
EMA

Epoch

FFBP LM TANSIG 4–5–5–1 0.0011 0.9833 0.2860 0.2596 30
LOGSIG 4–3–3–1 0.0692 0.9374 0.5662 0.6114 29

BR TANSIG 4–4–4–1 0.0005 0.9913 0.1641 0.2057 128
LOGSIG 4–6–4–1 0.0006 0.9805 0.1854 0.1879 53

CFBP LM TANSIG 4–6–3–1 0.0004 0.9926 0.1512 0.1501 36
LOGSIG 4–7–5–1 0.0511 0.9245 0.5743 0.5815 49

BR TANSIG 4–6–4–1 0.0005 0.9913 0.1641 0.2057 128
LOGSIG 4–5–4–1 0.0461 0.9405 0.4140 0.4215 49

Table 7   Learning algorithm for different neurons and hidden layers for several networks at the different threshold functions

Network Training 
algorithm

Threshold functions No. of layers and 
neurons

MSE R2 MAE SD
EMA

Epoch

FFBP LM TANSIG–LOGSIG–TANSIG 4–6–4–1 0.0010 0.9771 0.2476 0.2549 42
BR LOGSIG–LOGSIG–TANSIG 4–6–5–1 0.0007 0.9807 0.2257 0.2210 49

CFBP LM LOGSIG–LOGSIG–TANSIG 4–5–4–1 0.0003 0.9945 0.1761 0.1715 29
BR LOGSIG–TANSIG–TANSIG 4–4–4–1 0.0008 0.9792 0.2253 0.2459 32
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were used in training of FFBP and CFBP networks with 
learning algorithms of LM and BR. The best results of 
employed networks and algorithms for first and second 
strategies are presented in Tables 6 and 7, respectively. It 
is observed that the performance of ANNs is much greater 
than regression method for Ks prediction.

The best results of FFBP network with LM algorithm 
in the first strategy with TANSIG threshold function was 
related to 4–5–5–1 topology (Table 6). This composition 
produced MSE = 0.0011, R2 = 0.9833 and MAE = 0.2860 
and converged in 30 epochs. In addition, the best result 
of this network with BR algorithm in first strategy 
was obtained with TANSIG threshold function and 
4–4–4–1 topology. This composition has MSE = 0.0005, 
R2 = 0.9913 and MAE = 0.1641. This composition con-
verged in 128 epochs. Furthermore, in this stage, BR 
learning algorithm had better result, because it produced 
lower MAE and higher R2 values. It was found that, in 
both strategies for FFBP network, TANSIG threshold 
function presented the better performance (in terms of 
error and R2 values) for similar initial conditions.

The results for CFBP network in first strategy showed 
that the LM algorithm had better performance compared 
to BR algorithm. The best result for LM algorithm was 
derived for 4–6–3–1 topology with MAE = 0.0004 and 
R2 = 0.9926 at 36 training epochs, whereas the best 
results belonged to 4–6–4–1 topology for BR algorithm. 
It produced MAE = 0.1641, R2 = 0.9913 at 128 epochs. 
With regard to first strategy results, the best topology 
(4–6–3–1) is belonged to CFBP network with LM algo-
rithm and TANSIG threshold.

The best result for second strategy and FFBP net-
work and LM algorithm is related to 4–6–4–1 topol-
ogy and TANSIG–LOGSIG–TANSIG threshold func-
tions (Table 7). This composition has MAE = 0.2476, 
R2 = 0.9771. For BR algorithm, the best topology is 
4–6–5–1 with LOGSIG–LOGSIG–TANSIG threshold 
functions. It produces MAE = 0.2257, R2 = 0.9807 at 49 
epochs. Furthermore, for FFBP network, BR algorithm 
has better result compared to LM algorithm. The CFBP 
network for second strategy, LM algorithm, 4–5–4–1 
topology and threshold functions of LOGSIG–LOG-
SIG–TANSIG has MAE = 0.1761 and R2 = 0.9945. In 
addition, the BR algorithm with FFBP network and 
4–4–4–1 topology with LOGSIG–TANSIG–TAN-
SIG threshold functions produced MAE = 0.2253 and 
R2 = 0.9297. According to the results of second strategy, 
CFBP network with LM algorithm, as an optimized topol-
ogy, had the best performance, which was superior to the 
first strategy, because the MAE and R2 are higher. The R2 
of optimized ANN is plotted in Fig. 3.

Conclusions

1.	 The Ks values were greater in sandy clay loam soil due 
to more macropores compared to clay soil. With an 
increase in SARw, the Ks decreased due to soil disper-
sion, macropore clogging by dispersed clay particles and 
swelling.

2.	 As leaching was continued (at high PVs), the Kr 
decreased because the low-saline waters could disperse 
soil aggregates. The effect was greater when the waters 
with high SARw values were used. When the SARw 
reached to 13, the Kr decrease was substantial, espe-
cially at initial PVs. There was an increase in the Kr for 
SAR = 18, especially at high PVs presumably because 
of particles separation and creation of new pores upon 
extensive swelling.

3.	 For the clay soil, it was observed, by comparing Kr 
reductions at ECw = 2 dS m−1 and ECw = 0.5 dS m−1, that 
increase in salinity compensated the reduction of Kr due 
to SARw. The effect of leaching with moderately saline 
water on Kr was positive, especially at low SARw val-
ues. However, Kr was minimally affected by the SARw at 
ECw = 4 dS m−1. Results showed that if leaching contin-
ues by water with low SARw (= 1), Kr will be increased. 
In generally, even in the conditions of clay soil and high 
SARw, impact of sodicity on Kr was minimized by high 
salinity. The clay soil was more sensitive to water qual-
ity when compared with the sandy clay loam soil. It was 
founded that in the case of high sodicity (SARw = 18), 
the ECw must be at least 4 dS m−1 to preserve the soil 
physical quality, pore structure and continuity as quanti-
fied by the saturated hydraulic conductivity.

4.	 For the highest ECw, Kr values of both soil textures were 
increased during leaching even at the highest SARw 
value. Therefore, it can be concluded that ECw has more 
effect on soil structure than SARw does.

R2 = 0.9945
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Fig. 3   Predicted values of Ks using ANNs versus measured values for 
testing data
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5.	 The effects of soil type and water quality on the Ks were 
effectively predicted by regression and ANN methods. It 
was observed that the efficacy of ANNs is much greater 
than regression method for Ks prediction. Results of 
ANNs with regard to second strategy showed that the 
best topology (4–5–4–1) is belonged to CFBP network 
with LM algorithm and LOGSIG–LOGSIG–TANSIG 
threshold functions. In this method, the MAE and R2 
were 0.1761 and 0.9945, respectively.
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