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Abstract
One basic demand toward advancement of economic growth is the need for reliable data on quantity and quality of water. Optimum 
design of rain gauge network in space leads to reliable data on water input. A conventional paradigm in rain gauge network design 
is to cast the optimization problem in a stochastic framework using geostatistical tools, which calls for an extensive matrix inver-
sion to compute measure of accuracy. Deterministic schemes rely solely on network topology for interpolation and do not require 
matrix inversion and they are quite easy to use and understand. This feature might be a good reason to invest on network design 
based on deterministic methods. Changing the support size and assigning a measure of accuracy to the block-wise estimate are two 
basic challenges associated with working on a deterministic scheme. A new areal variance-based estimator using stochastic inverse 
distance weighting (Stc-IDW) is developed to design a rain gauge network. A new criterion is defined to move from point to block 
and cast the measure of accuracy for the entire study area. To evaluate the effectiveness of the proposed methodology, the coupled 
algorithm is applied to a case study with 25,000 km2 and 34 rain gauge stations in Iran. Development of measure of accuracy versus 
number of stations is achieved via both Stc-IDW and block kriging estimators, and the results are compared and contrasted to one 
another. Surprisingly, the optimum network configuration for various combinations of rain gauges shares almost identical goodness 
of fit criteria. Based on the results, the minimum of eleven stations are found to reach the maximum accuracy for both methods.

Keywords  Rain gauge network design · Inverse distance weighting · Block kriging · Accuracy of estimation

List of symbols
a	� Range (distance whereby the correlation value 

tend to a small ignorable value)
AAreal	� Percentage of area with acceptable accuracy
Apoint(s0)	� “Acceptable probability” at an un-sampled 

point s0
C(h)	� Covariance function
d(si, sj)	� The Euclidian distance between two points si 

and sj

hij	� Separation vector between two spatial locations
k	� Frequency factor defined for a specific 

distribution
M	� The number of points inside a typical block
N	� Total number of rain gauge stations
N(hij)	� Number of data pairs whose separation vector 

is hij
n	� Number of holding rain gauge stations
P(s0)	� True value of annual rainfall at s0
Po(s0)	� Observed rainfall at spatial locations s0
P̂
(
s0

)
	� Estimated value of annual rainfall at s0

P̂V

(
s0

)
	� Estimated value of mean annual rainfall over 

block V index at s0
R(s0)	� Residuals of point-wise estimation at point s0
RV(s0)	� Residuals of mean annual rainfall over block V 

index at s0
R∗

(
s0

)
	� Standardized estimation error

si, sj	� Corresponds to spatial location i, j
α	� The percent of acceptable probability
�i
(
s0

)
	� Weighting coefficient corresponding to 

observed value of rainfall depth at s0
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𝛾̂
(
si, sj

)
	� Experimental variogram at two points whose 

separation vector is hij
�
(
hij

)
	� Theoretical variogram at two points whose 

separation vector is hij
�
(
s0

)
	� Lagrange multiplier

β	� Distance decay parameter (power)

Introduction

In many hydrological analysis and watershed management 
problems such as water budget studies, flood frequency 
analysis and sewer drainage design, availability of accurate 
rainfall data with an appropriate coverage in both time and 
space is considered a classic issue in surface water hydrol-
ogy. Rainfall data can be obtained from both ground-based 
(rain gauge stations) and air-based (radar or satellite) instru-
ments. Even if one uses an air-based measurement, discrete 
ground-based data are still required for validation and cali-
bration purposes.

For the last one hundred years or so, optimum delineation 
of rain gauges in both time and space was considered as a 
classic problem in operational hydrology. Network density 
will affect the accuracy of long-term average rainfall value 
over the study area. While the flat region of central part 
of Iran calls for low network density due to less variability 
in rainfall, the mountainous region of west calls for denser 
network due to high variability of rainfall in those regions. 
As a result, intelligent delineation of rain gauge network in 
various parts of the country is considered necessary.

Numerous factors affect a representative rain gauge net-
work design. These factors include but not limited to overall 
objective of designing a network (e.g., water balance studies, 
reservoir operation, flood forecasting), the process consid-
ered (e.g., evaporation, rainfall), the attribute of the process 
under consideration (e.g., rainfall depth, rainfall duration), 
the temporal scale (e.g., hourly, daily, monthly, annual 
rainfall data), the spatial scale (e.g., catchment, regional, 
countrywide), the topographic setting (flat, rolling, moun-
tainous, etc.), the types of precipitation (e.g., orographic, 
convective, cyclonic) and the type of objective functions 
(e.g., variance-based, entropy-based, fractal-based and dis-
tance-based techniques). Some factors are selected based 
on the characteristics of the study area (i.e., spatial scale, 
topographic setting and the types of precipitation), while 
the objective behind the operation of rain gauge network 
might dictate the time scale required. It should be noted 
that there is a close interaction between the process time 
scale and the type of objective function used. In particular, 
entropy-based approaches are more customized to short time 
scale suitable for flood forecasting, while long time scale is 
more suitable for refining component of water budget studies 

very consistent with variance-based approaches. In our case, 
as we specified the study area (i.e., southwest of Iran) and 
the objective of the whole network design (i.e., long-term 
water balance studies), a few factors including, process (i.e., 
precipitation), attribute (i.e., rainfall depth), time scale (i.e., 
annual), the extend of the study area are fixed, and we have 
to specify the objective function consistent with the overall 
aim behind network design. In this study, a deterministic 
interpolant so-called IDW scheme is defined in a stochas-
tic framework (i.e., Stc-IDW) and coupled with variance-
based method to delineate the optimum number and spatial 
location of rain gauges over the study area. It is expected 
that selection of such a deterministic-based estimator might 
make the whole process more efficient and robust as it does 
not require any matrix inversion.

Objective functions typically used for network design 
problems based on ground-based point measurement, 
include methods such as variance-based techniques (Rod-
riguez-Iturbe and Mejia 1974; Bras and Rodriguez-Iturbe 
1976; Bastin et al. 1984; Bogardi and Bardossy 1985; Rou-
hani 1985; Kassim and Kottegoda 1991; Cheng et al. 2008; 
Shafiei et al. 2014; Adhikary et al. 2015), distance-based 
methods (Van Groenigen et al. 2000; Barca et al. 2008), 
entropy-based techniques (Krstanovic and Singh 1992; Al-
Zahrani and Husain 1998; Yoo et al. 2008; Chen et al. 2008), 
fractal-based approaches (Korvin et al. 1990; Mazzarella 
and Tranfaglia 2000) and also some multi-objective models 
(Werstuck and Coulibaly 2016). Depending on the nature 
of the network under consideration (e.g., data gathering vs. 
service network), one will decide on the objective func-
tion to be used. Distance-based objective function is more 
often used in service network. One of the most frequently 
used techniques considered for rain gauge network design 
is variance-based method, which will be used in this study.

In variance-based methods, the goodness of fit criterion 
for network evaluation is some measure of accuracy such as 
variance of residuals. The objective (measure of accuracy) 
in such methods is to minimize point and/or areal variance 
of residuals. In rain gauge network design, minimization of 
variance of residuals corresponds to maximization of network 
information content. In turn, enhancement of information con-
tent could be interpreted as collection of data with higher accu-
racy and precision. It is hoped that this higher accuracy would 
eventually lead to lower construction cost with more useful 
information. Among a variety of variance-based techniques, 
geostatistical interpolation methods such as various flavors of 
kriging have often been extensively implemented to design a 
representative rain gauge network. Due to numerous back and 
forth interaction between the optimizer and the objective func-
tion, one basic shortcoming of kriging for rain gauge network 
design is that it takes a considerable time to find the numerical 
value of the objective function due to numerous matrix inver-
sions during the design process. Such inappropriate feature of 
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kriging gives rise to numerous simplifications in rain gauge 
network design (Bastin et al. 1984; Kassim and Kottegoda 
1991; Nour et al. 2006). Could it be possible to delineate an 
estimator, which does not require matrix inversion? In this 
paper, a deterministic-based method so-called inverse distance 
weighting (IDW) approach is proposed to go for rain gauge 
network design.

To the best of authors’ knowledge, this is the first time 
that a process based on IDW is used for rain gauge network 
design. At this stage, it might help to justify its lack of usage 
in network design and try to address and resolve the issues 
involved. Due to its very deterministic nature, estimation at an 
un-sampled point is not equipped with measure of accuracy. 
As a result, the very first task is to cast a stochastic framework 
for IDW (i.e., Stc-IDW). In addition, as the results have to be 
compared with a conventional paradigm in network design 
(e.g., BK) for independent verification, one has to propose a 
mechanism to convert point estimation of IDW-based proce-
dure to block-wise estimation, to make the objective function 
unique and comparable to block kriging (BK). Cheng et al. 
(2008) considered point ordinary kriging to design a rain 
gauge network in northern Taiwan. As their goodness of fit 
criterion was not unique and would change from one point to 
another, they developed the concept of “area with acceptable 
accuracy” to move from point-wise to block-wise goodness of 
fit. Shafiei et al. (2014) extended a methodology to evaluate 
and augment the rain gauge network using the same concept 
as Cheng et al. (2008), based on a tool in ArcGIS software 
applied to the network in Northern Iran. However, their pro-
posal lacks independent verification, which is required due 
to numerous ad hoc assumptions considered in Cheng et al. 
(2008). These challenges along with independent verification 
of Cheng et al. (2008) study are to be addressed in some detail 
in subsequent paragraphs and sections.

This paper is organized as follows; the next section is 
devoted to an in-depth theoretical background on concepts 
used in this study touching on geostatistical framework (espe-
cially BK) and IDW estimator (especially Stc-IDW and the 
proposed methodology). Then, the following section describes 
materials and methods summarizing the description of the 
study area, materials and step-by-step procedure of variance-
based estimation accuracy using BK and Stc-IDW estimators. 
In “Results and discussion” section, the results of conventional 
variance-based criterion in the network design are compared 
and contrasted to the proposed scheme. The last section 
includes the conclusions, which can be drawn from this study.

Theoretical background

To design a rain gauge network, it is assumed that annual 
rainfall depth P(si) observed at rain gauges in spatial loca-
tions si, i = 1, …, N are regionalized variables and can 

be considered as a single partial realization of a random 
function:

It should be noted that P at every spatial location consists of 
large-scale variation invariably called mean function or the 
trend function, m(s), and a small-scale variation, W(s). The 
mean function is modeled deterministically, while W(s) is 
modeled stochastically with zero expectation. The associated 
parent random function is given by:

At every point in space, one has to differentiate between 
three types of random variables. These three types of ran-
dom variables can be stated as:

Po(s0): The observed value of P at spatial location s0,
P(s0): The true value of P at spatial location s0 which is 
not accessible,
P̂
(
s0

)
 : The estimated value of P at spatial location s0.

All interpolation methods (either deterministic or stochas-
tic) share the following equation in estimating the attribute 
under consideration at a point which is not sampled. The 
difference among methods (e.g., IDW and BK estimators) is 
somehow related to computation of weighting coefficients.

where N is the total number of rain gauge stations, s0 is the 
estimation location and si is the sample location. P̂

(
s0

)
 is the 

estimated precipitation at location s0, and λi(s0) is the weight-
ing coefficient associated with the observed rainfall depth at 
si, i.e., Po(si). For the sake of paper integrity and complete-
ness, a brief overview on two interpolation methods, BK and 
IDW, will be provided in subsequent subsections.

An overview on block ordinary kriging

Keeping in mind P =
[
P
(
s1

)
,P

(
s2

)
,… ,P

(
sN

)]T as a reali-
zation of a random function, the mean areal precipitation 
over block V centered at s0, i.e., P̂BK

V

(
s0

)
 can be obtained 

through the following relationship:

�BK
i

 ’s are weighting coefficients associated with observed 
precipitation data.

(1)P =
[
P
(
s1

)
,P

(
s2

)
,… ,P

(
sN

)]T
.

(2)P(s) = m(s) +W(s).

(3)P̂
(
s0

)
=

N∑
i=1

𝜆i
(
s0

)
Po

(
si

)
,

(4)P̂BK
V

(
s0

)
=

N∑
i=1

𝜆BK
i

(
s0

)
Po

(
si

)
,
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Computation of weighting coefficients requires impos-
ing further assumptions on the parent random function. 
One such limitation concerns with stationarity of the par-
ent RF. According to the theory of regionalized variable, 
a random function is said to be first-order stationary if 
the covariance function is a function of separation vec-
tor throughout the entire domain and the variance at any 
location is independent of spatial location (Deutsch 2002). 
Therefore, it can be written as:

Two conditions have to be imposed on residuals 
[ RV

(
s0

)
= P̂V

(
s0

)
− PV

(
s0

)
 ] to cast the kriging system 

either in terms of covariance or variogram functions. After 
imposing the minimum variance of residuals condition and 
implementing the unbiasedness condition, one can cast the 
BK system as:

where “′” referred to the discretized points inside a typical 
block. M is the number of grid points inside a discretized 
block, µ is the Lagrange multiplier and 

(
si, s

′

k

)
 are spatial 

location corresponding to observed point i and mesh grid 
point k (k = 1, …, M), respectively. By substituting �BK

i

(
s0

)
 

calculated from Eq. (6) into Eq. (4), mean areal precipita-
tion can be calculated. Subsequently, the variance of residu-
als over block V centered at s0 as a measure of accuracy is 
given by:

where RBK
V

(
s0

)
 is the residual over block V. As one can get 

from Eq. (7), block variance of the residuals [i.e., �2BK
RV

(
s0

)
 ] 

depends only on the number and spatial location of rain 
gauge stations in place.

(5)
E
[
P
(
si

)]
= m,

COV
[
P
(
si

)
,P

(
sj

)]
= C

(
si − sj

)
= C(h).

(6)

N∑
j=1

�BK
j

(
s0

)
�
(
si, sj

)
− �

(
s0

)

=
1

M

M∑
k=1

�
(
si, s

�

k

)
, ∀i = 1, 2,… ,N

N∑
i=1

�BK
i

(
s0
)
= 1,

(7)

VAR
[
RBK
V

(
s0

)]
= −�

(
s0

)
+

1

M

N∑
i=1

M∑
k=1

�BK
i

(
s0

)
�
(
si, s

�

k

)

−
1

M2

M∑
k=1

M∑
j=1

�

(
s
�

j
, s

�

k

)

= �2BK
RV

(
s0

)
,

An overview on inverse distance weighting 
interpolation (IDW)

Keeping in mind P =
[
P
(
s1

)
,P

(
s2

)
,… ,P

(
sN

)]T as a reali-
zation of a random function, estimation of mean areal pre-
cipitation using IDW interpolation method is:

where P̂IDW
(
s0

)
 is the estimated value of precipitation at 

spatial location s0 and �IDW
i

 is the weighting coefficient asso-
ciated with sample point si. The weights are determined via:

where d(si, s0) is the Euclidian distance between estima-
tion location s0 and sample point si, β is the distance decay 
parameter (i.e., power) which controls the degree of smooth-
ness of the approximation function P̂IDW

(
s0

)
 . The approxi-

mation function would be sharp in the case of 0 ≤ � ≤ 1 , 
and it will be smooth in the case of � ≥ 1 . It is common to 
choose β = 2, but any other value for power can be chosen. 
As power decreases to zero, IDW collapses to arithmetic 
mean method, and as the power increases to infinity, the 
interpolated value gives a unit weight to the most nearest sta-
tion and zero to others, invariably called Thiessen polygons 
method. After discretizing the study area into a mesh and 
finding the amount of precipitation at every grid point inside 
the region, areal estimation of precipitation can be found as:

where P̂IDW
V

(
�0

)
 is the areal estimation of precipitation over 

block V centered at a generic point s0 inside the block as 
large as the study area. To find a measure of accuracy for the 
rain gauge network using IDW estimator, either a measure 
of similarity or variability should be assigned to the par-
ent random function. Babak and Deutsch (2009) used such 
measures to select optimal support domain size (i.e., number 
of neighbor stations) and power in IDW estimator. Their 
approach was based on the assumption of stationarity and 

(8)P̂IDW
(
s0

)
=

N∑
i=1

𝜆IDW
i

(
s0

)
Po

(
si

)
,

(9)

�IDW
i

�
s0

�
=

�
1

d�(si,s0)

�

∑N

i=1

�
1

d�(si,s0)

� and

N�
i=1

�IDW
i

�
s0

�
= 1, i = 1,… ,N,

(10)

P̂IDW
V

(
�0

)
=

1

M

M∑
j=1

P̂IDW
(
�j

)

=
1

M

M∑
j=1

N∑
i=1

𝜆IDW
i

(
�j

)
Po

(
�i

)
,
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the known variogram model of the parent random function. 
To reach our goal, the stochastic framework for IDW scheme 
is used in this study which we named “Stc-IDW.”

Development of stochastic framework for IDW scheme 
(Stc‑IDW)

As mentioned earlier, one has to assign a measure of good-
ness to the block-wise average using IDW approach. In this 
section, a stochastic framework is developed to define such 
measure, named Stc-IDW. This stochastic framework could 
help to design a typical rain gauge network effectively utiliz-
ing the lack of need for matrix inversion in IDW scheme. Such 
need for development of a stochastic framework would arise 
as we have only access to a single partial realization of the 
random function. In light of this, one has to impose stationar-
ity on data to be able to assign a measure of goodness to each 
estimated value. Fortunately, IDW scheme is equipped with 
such interesting features whereby those characteristics can 
help to honor stationary in IDW. As an example, the sum of 
weighting coefficients in IDW is one. This feature can easily 
help to show that the expected values of both the sampled as 
well as the un-sampled points are independent of spatial loca-
tion (Babak and Deutsch 2009). Furthermore, in reference to 
stationary assumption, the variance of the estimated value can 
be represented by covariance to be a function of at most sepa-
ration vector. This variance can be used to compute variance 
of residuals at all un-sampled points using Stc-IDW as follows:

where σ2 is the global variance. At this stage, the variance 
of residuals is expressed in terms of covariance function. 
As variogram function is more conventional in stochastic 
framework, one can also represent the variance of residuals 
in terms of variogram function [ COV(�) = �2 − �(h) ]. The 
resulting equation in terms of variogram function can be 
written as follows:

(11)

VAR
[
R
(
s0

)]
= VAR

[
P̂
(
s0

)
− P

(
s0

)]

= 𝜎2 − 2

N∑
i=1

𝜆IDW
i

(
s0

)
COV

(
si, s0

)

+

N∑
i=1

N∑
j=1

𝜆IDW
i

(s0)𝜆
IDW
j

(
s0

)
COV

(
si, sj

)
,

(12)

VAR
[
R
(
s0

)]
= 2

N∑
i=1

�IDW
i

(
s0

)
�
(
si, s0

)

−

N∑
i=1

N∑
j=1

�IDW
i

(
s0

)
�IDW
j

(
s0

)
�
(
si, sj

)

= �2IDW
R

(
s0

)
,

where �2IDW
R

(
s0

)
 is the point-wise variance of residuals at an 

un-sampled point s0 inside the region. �IDW
i

(
s0

)
 is the weigh-

ing coefficient of Stc-IDW estimator at sampled point si. It 
should be noted that the support size for variance of residu-
als is still of point-wise and we have to devise a procedure to 
convert it to block as large as the study area. This block-wise 
measure will be addressed below.

Proposed methodology using Stc‑IDW approach

As mentioned before, in deterministic-based estimation (i.e., 
IDW), the support size for estimation is the same as the sup-
port size for observation. This characteristic still remains 
for Stc-IDW. In such an approach, one cannot easily move 
from point-wise to block-wise, making the subsequent objec-
tive function unique. In light of this, one should devise an 
innovative approach to move from point-wise to block-wise 
estimation and subsequent goodness of fitness criterion. This 
is the subject which had not been addressed in previous stud-
ies. To achieve this goal, the definition of acceptable accu-
racy in the study area should be represented. Cheng et al. 
(2008) applied this procedure using “ordinary kriging” for 
rain gauge network evaluation and augmentation based on 
the percentage of the total area with acceptable accuracy. 
Acceptable accuracy method is presented in the following 
subsection. In the current study, Stc-IDW is used in place 
of point ordinary kriging for point estimation, and the cited 
measure is used to move from point to block to design the 
rain gauge network.

Mathematical description of the acceptable accuracy

Estimation of precipitation at an un-gauged point s0, [P̂(s0)] 
can be calculated using annual rainfall measurements P(si) 
using IDW interpolation method [i.e., Eq. (8)]. On the other 
hand, estimation is considered to be acceptable, only if it 
falls within a given range of the true value:

where r > 0 and R(s0) refers to estimation error (residual). 
Standard deviation can be used to express the acceptable 
range for the estimation error which means:

where “Prob” means the probability and α is a threshold 
for acceptable probability level. It means that the prob-
ability of the estimated value to be “falling in the range [
P
(
s0

)
− k�,P

(
s0

)
+ k�

]
 ” should be more than α percent. 

Parameters k and α are chosen based on available budget 
for rain gauge installation or maintenance. The coefficient 
k dictates the area under the probability density function 

(13)
|||R
(
s0

)||| =
|||P̂
(
s0

)
− P

(
s0

)||| < r,

(14)Prob
[|||P̂

(
s0

)
− P

(
s0

)||| < k𝜎
]
≥ 𝛼,
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where the random variable might belong to the correspond-
ing interval. In a sense, assuming k = 1 implies that the prob-
ability of X being in interval (− σ, σ) is 0.64. After some 
trial and error, an appropriate value of α was found to be 0.8 
for this study. The rationale behind such a selection will be 
explained later.

Moreover, residual or estimation error [R(s0)] 
has normal distr ibution with zero mean {i.e., 
E
[
P̂
(
s0

)
− P

(
s0

)]
= E

[
P̂
(
s0

)]
− E

[
P
(
s0

)]
= 0 } and vari-

ance equal to �2
R

(
s0

)
 {i.e., R

(
s0

)
= N

[
0, �2

R

(
s0

)]
 }. Therefore, 

the probability of estimation error can be calculated to fall 
within the desired range (− σ, σ) using cumulative probabil-
ity of standard normal distribution. By dividing [R(s0)] to 
residual’s standard deviation at point s0 [i.e., �R

(
s0

)
 ], stand-

ardized estimation error can be found as:

where R∗
(
s0

)
 is the standardized estimation error and has 

standard normal distribution [i.e., N(0, 1)]. Apoint(s0) is the 
“acceptable probability” at an un-sampled point s0. In other 
words, Apoint(s0) is the probability of the estimation error at 
point s0 to be less than σ. According to Eq. (14), accuracy of 
estimation at an un-gauged location s0 can be considered to 
be acceptable only if the associated “acceptable probability” 
is not less than α [ Apoint

(
s0

)
> 𝛼 ]. As a result, one can argue 

that the estimation at the point under consideration has the 
acceptable accuracy in light of honoring the aforementioned 
inequality. In order to better understand the process, the esti-
mation error with different variances is compared and con-
trasted in Fig. 1. �2

s1
, �2

s2
 are point variances of two generic 

points within the study area. It is assumed that 𝜎2
s1
< 𝜎2

s2
 . 

Point s2 with higher variance has less area inside the accept-
able range and therefore has lower acceptable probability. 
This elaboration could ensure that high variance points have 
lower Apoint(s0). On the other hand, points associated with 
higher acceptable probability (compared to the threshold α) 
are more accurate.

Apoint(s0) is a point-wise measure of accuracy. To find a 
block-wise criterion, a new parameter called “Percentage 
of area with acceptable accuracy” (hereafter denoted by 
AAreal) is introduced. It is the percentage of area that their 
acceptance probability [i.e., Apoint(s0)] is greater than α. In 
other words, AAreal is the percentage of area within which 
the probability of the error variance at s0 falling within the 

(15)
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range (− σ, σ) is more than α percent. In order to effectively 
utilize Stc-IDW for rain gauge network design using this 
procedure, �R

(
s0

)
 in Eq. (15) will be replaced by �IDW

R

(
s0

)
 

computed via Eq. (12). For this purpose, the study area will 
be discretized into a mesh and Apoint(s0) will be calculated for 
each grid point. In this study, after testing a few grid spacing, 
we use the optimum grid spacing, which has minimal effect 
on subsequent results.

Materials and methods

Numerous studies focus on kriging and IDW methods as 
appropriate kernels to evaluate the performance of a repre-
sentative rain gauge network design. These estimators can 
be effectively utilized to estimate precipitation at a point 
which is not sampled. A majority of studies try to compare 
and contrast these estimators and argue that a particular esti-
mator has a better performance compared to another. When 
it comes to goodness of fit criteria, error measures associ-
ated with IDW are quite arbitrary due to the deterministic 
nature of this method and cannot be easily compared to other 
estimators. In this section, an appropriate measure will be 
developed to evaluate the performance of a method based 
on IDW estimator and then compare the results with those 
of kriging. In addition, the study area, parameter estimation 
of Stc-IDW and also variogram modeling will be presented. 
Subsequently, a methodology for measuring the areal accu-
racy of Stc-IDW and BK estimators will also be provided.

Description of the study area

A plain region of Kohkiloyeh-Bouyerahmad and Khouzestan 
provinces in southwest of Iran is selected as the study area. 

Fig. 1   Probability distribution of the estimation error considering dif-
ferent IDW variances
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The total area of this region is about 25,000 km2, as illus-
trated in Fig. 2. It is located between longitude 49°17′ and 
51°22′ east, and between latitude 30°2′ and 31°56′ north. 
The physiography within the study area is the near-hori-
zontal depositional surfaces of the Gachsaran and Dehdasht 
regions. 

The overall rainfall pattern in the region is affected by 
Mediterranean low-pressure systems which enter from the 
west throughout the year. The precipitation of this region 
occurs mostly in the form of rain, which usually results from 
frontal storm systems traveling eastward. However, summer 
precipitation results from localized convective-type storms, 
which usually has no major contribution to the total annual 
precipitation.

A total number of 34 non-recording rain gauge stations 
with annual precipitation, for at least a 10-year period, is 
used for this study. The spatial distribution of rain gauges 
is illustrated in Fig. 2. The UTM coordinates, elevation and 
average annual rainfall depth (mm) of each rain gauge sta-
tion are summarized in Table 1. The mean annual rainfall 
ranges from 249.9 to 901.4 mm. This difference in rainfall 
numerical values shows a great spatial variability over the 
study area.

Variogram modeling

Within a stochastic framework, every estimator requires 
model of spatial similarity or variability. In spatial data 
analysis, variogram is considered to be an appropriate 
model of spatial variability. Within the last 3–4 decades, its 
modeling was the focus of extensive research because of its 
generality compared to measure of similarity. At early stage 

of variogram modeling, one has to identify the experimen-
tal omnidirectional variogram and then try to delineate an 
appropriate theoretical variogram which will best represent 
the experimental variogram. Generally speaking, variogram, 
i.e., �

(
si, sj

)
 is defined as half of the variance of the first 

increment in attribute values. When it comes to computation 
of experimental variogram, the variance can be replaced by 
a summation in light of intrinsic hypothesis.

where N(hij) is the number of data pairs whose separation 
distance belongs to hij = si − sj . There are various functions 
cited in the literature to represent theoretical variogram (i.e., 
exponential, power, Gaussian). Selection of theoretical vari-
ogram is considered to be a simple exercise in nonlinear 
curve fitting. In the current study, exponential structure is 
found to represent the experimental variogram in an efficient 
way. The exponential variogram can be stated as:

where σ2 is the sill value and “a” is the range which is 
defined as the distance whereby the correlation value tend 
to a small ignorable value. For an anisotropic phenomenon, 
the semi-variance will be a function of separation vector. 
However, for isotropic process, the model of spatial vari-
ability will solely be a function of separation distance. In 
this study, the process under consideration is considered to 
be isotropic. After conducting a nonlinear curve fitting on 
omnidirectional experimental variogram, the parameters of 
exponential variogram are found to be σ2 = 37511 mm2 and 
a = 68,997 m. Figure 3 demonstrates the result of variogram 
modeling related to the data used in this study.

Calibration of Stc‑IDW’s parameters

To use Stc-IDW estimator for network design, it is an inevi-
table task to find its optimal parameters such as “power” and 
number of neighbor stations surrounding the point under 
consideration invariably called “support domain size.” Opti-
mal parameters can be found by cross-validation procedure 
whereby one is obliged to leave one data out and then use 
the kernel to estimate the attribute at the point pretended 
not to be sampled. Toward the end of this exercise, at each 
station, we have two numbers, i.e., the observed and the 
simulated one for each pair of power and support domain 
size. Optimum values of power and support domain size 
correspond to minimum root mean square error. Figure 4a, 
b demonstrates variation of RMSE as a function of power 
and support domain size in 2D dimensions, respectively. 
According to this figure, optimal value of power is found 

(16)𝛾̂
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Fig. 2   Location and rain gauge stations in the study area
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to be 3 and support domain size is 10. Needless to say, in 
rain gauge network design, scenarios with number of gauges 
less than 10 would not be affected by limitation imposed by 
support domain size.

Implementation of the estimators

It is quite important to obtain the exponentially decaying 
measure of network accuracy versus the number of sta-
tions for both BK and Stc-IDW. In relevant literature, there 
are numerous approaches conducted to go for rain gauge 

network design. Two of the most widespread usage of 
these methods are those of Bastin et al. (1984) and Kassim 
and Kottegoda (1991). In subsequent paragraphs, Bastin’s 
approach is considered to design the rain gauge network 
using both Stc-IDW-based and BK-based estimations using 
the proposed methodology.

Procedure to implement Stc‑IDW approach

To implement the proposed methodology using Stc-IDW 
in this research, a few key parameters are defined for our 

Table 1   Precipitation data used 
for characterizing rainfall spatial 
variability

a Station numbers are the same as Fig. 2
b Average annual precipitation

Station 
numbera

Station name UTM coordinates Station eleva-
tion (m)

Average annual 
precipitationb 
(mm)Easting (m) Northing (m)

1 Dehdasht 458,392 3,409,273 829 540.9
2 Dail 476,871 3,378,002 870 785.9
3 Dogonbadan 477,738 3,358,946 776 385.5
4 Benpir 471,312 3,331,042 670 682.4
5 Bibihakimeh 461,972 3,323,468 380 402.2
6 Golbabakan 536,009 3,367,171 920 901.4
7 Likak 414,428 3,417,231 650 458.4
8 Seyedabad 472,592 3,392,696 650 508.3
9 Nazmkan 477,643 3,390,376 650 497.5
10 Tangebirim 522,992 3,354,484 800 732.9
11 Hajghlandar 519,081 3,346,351 640 594.1
12 Samghan 462,473 3,406,087 800 514.2
13 Bibijanabad 477,021 3,348,051 717 385.1
14 Abchirak 469,288 3,372,480 793 539.1
15 Bouyeri 453,508 3,391,838 820 574.5
16 Eidanak 442,680 3,422,368 600 666.3
17 Khaibad 442,247 3,341,099 38 342.2
18 Behbahan 436,135 3,392,851 650 362.2
19 Dehmola 373,646 3,374,928 32 232.1
20 Batoun 530,475 3,342,837 735 645.1
21 Barez 444,614 3,478,011 815 682.4
22 Baghmalek 392,428 3,491,115 675 605.2
23 Mashin 377,973 3,472,798 380 403.7
24 Ramhormoz 366,738 3,461,849 155 289.6
25 Delibakhtiyari 383,029 3,498,608 850 617.4
26 Jokonak 377,909 3,467,256 330 368.3
27 Dehsadat 381,925 3,484,151 429 441.9
28 Chemnezam 396,307 3,402,398 190 344.7
29 Meydavoud 387,483 3,472,691 480 395.5
30 Omidiyeh 370,802 3,404,522 34.9 265.9
31 Izeh 392,773 3,524,369 767 694.1
32 M. Soleyman 337,724 3,534,332 321 467.9
33 Hendijan 378,177 3,350,861 3 249.9
34 B. Deylam 434,126 3,324,522 4 326.4
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study area. In our study, σ [used in Eq. (15)] is the sill value 
of the theoretical variogram. It is also vital to obtain an 
appropriate value for α. Based on our findings in Fig. 5, at 
α = 0.8, about 98% of the total area has acceptable accu-
racy (i.e., AAreal = 98%). On the other hand, AAreal is about 
60% at α = 0.9 which is very low. Moreover, α = 0.7, leads 

to AAreal = 90% and α = 0.6 do not cover the acceptable accu-
racy range at all (i.e., it covers 60–100% which is not logi-
cal). As a result, α = 0.8 is selected as the best amount of α 
for the current study area. Similar result for α has also been 
used by Cheng et al. 2008. The size of the grid nodes for 
discretization has to be also obtained. Among different grids 
pacing (13, 10, 8, 7, 6, 5 km), the results of the proposed 
approach remain invariant at grid spacing with 7 km or less. 
Therefore, the grid spacing of 7 km * 7 km is adopted in 
this study.

The step-by-step procedure to delineate optimal combina-
tion for a particular set of rain gauges out of the total number 
of rain gauges using Stc-IDW is documented as follows:

Step 1 Identify the theoretical variogram function for the 
attribute under consideration.
Step 2 Find appropriate values of Stc-IDW parameters 
using cross-validation statistics.
Step 3 Discretize the whole study area into a set of grid 
nodes with 7-km grid spacing.
Step 4 Develop the MATLAB code for Stc-IDW estimator 
to generate n-rain gauge station(s) scenario considering 
that n − 1 stations have already been selected at previous 
steps. In other words, one rain gauge scenario consists 

Fig. 3   Experimental variogram along with the best fit to theoretical 
exponential model

Fig. 4   RMSE of IDW, chang-
ing the number of data (a) and 
distance decay parameter (b)
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of finding the best station that maximize AAreal over the 
entire study area. It means that one has to first compute 
the variance of residuals at each grid node using Eq. (12) 
and then compute Apoint(s0) for each grid point and sub-
sequently calculate AAreal for the scenario under consid-
eration and repeat this procedure N times out of which 
the scenario corresponding to maximum AAreal will be 
chosen. When it comes to two rain gauge scenario, it is 
assumed that one of them has already been selected at 
previous step and then the second one will be chosen 
out of N − 1 possibilities using the same procedure. This 
procedure will be repeated for other combinations up to 
the end.

Procedure to implement BK approach

In block kriging, the support size for observation is point-
wise while that of estimation is block-wise. Indeed, the vari-
ance of residuals over the entire study area can be considered 
as an objective function to be minimized for an optimum 
configuration and spatial distribution of rain gauges over 
the region [i.e., Eq. (7)]. As BK approach is not sensitive 
to the grid spacing, the same grid spacing as Stc-IDW 
(7 km * 7 km) is adopted for BK in this study. Step-by-step 
procedure to delineate optimal combination for a particular 
set of rain gauges out of the total number of rain gauges is 
documented as follows:

Step 1 Identify the theoretical variogram function for the 
attribute under consideration.
Step 2 Discretize the whole study area into a set of grid 
nodes with 7-km grid spacing.
Step 3 Develop the MATLAB code for BK estimator to 
generate n-rain gauge station(s) scenario considering that 
n − 1 stations have already been selected at previous steps. 
In other words, one rain gauge scenario consists of find-
ing the best station that minimize variance of residuals 

over the entire study area. For this purpose, the variance 
of residuals will be computed N times out of which the 
scenario corresponding to minimum variance will be cho-
sen. Needless to say, computation of kriging coefficients 
(i.e., �BK

i
 in Eq. 4) will be considered as a prerequisite 

for minimum variance computation. When it comes to 
two rain gauge scenario, it is assumed that one of them 
has already been selected at previous step and then the 
second one will be chosen out of N − 1 possibilities using 
the same procedure. This procedure will be repeated for 
other combinations up to the end.

Results and discussion

As mentioned earlier, in a given rain gauge network design, 
the sole independent decision variables are considered to be 
the number and spatial location of rain gauges. Minimiza-
tion of residuals and/or maximization of information content 
(i.e., network accuracy) is more frequently used objective 
functions for such problems. According to information the-
ory, as the number of rain gauges increases, the information 
content and/or measure of accuracy becomes independent 
of the number of rain gauges and approaches an asymptote, 
hence, a truly optimization problem in its own right.

The main objective of rain gauge network design in this 
study is to present a new accuracy criterion based on one of 
the popular deterministic-based interpolation methods (i.e., 
IDW with some changes) which is based on the number and 
location of stations and evaluate the quality of the network 
performance through comparing and contrasting the end 
results with those of stochastic-based methods (i.e., BK). 
Indeed, to the best of authors’ knowledge, such comparison 
is missing from the existing literature on rain gauge network 
design. In subsequent subsections, the results along with 
its critical discussion will be provided for both approaches.

Fig. 5   Comparison between 
different amounts of α 
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Result of Stc‑IDW approach

Figure 6 illustrates the result of prioritization of the rain 
gauge network in the southwest of Iran using the new pro-
posed criterion and Stc-IDW estimator. Percentage of area 
with acceptable accuracy varies from 8%, when selecting 1 
station, to 100% when selecting more than 11 stations. In 
reference to the content of Fig. 6, for a single rain gauge 
scenario, the first most accurate station that represents 
the areal annual precipitation in the region is station #13. 
For a two rain gauge scenario, the tradition is to assume 
every scenario has station #13 in common trying to find 
the second best station which will best represent the meas-
ure of accuracy. In our case, station #18 is found to be 
the most accurate location to represent the two rain gauge 
scenario. In other words, accurate set of “two-station sce-
nario” using IDW estimator is stations “13, 18.” Similarly, 
stations “13, 18, 30” have achieved the maximum accuracy 
among other possibilities (e.g., three-rain gauge scenario). 
As the number of selected stations increases, the accuracy 
criterion approaches to its plateau and becomes independ-
ent of additional stations. In particular, after selecting 11 
stations, no further improvement can be traced in measure 
of accuracy.

Result of BK approach

In order to evaluate the network performance cited above 
under similar condition (i.e., different estimators), the result 
of network design using BK approach is represented in 
Fig. 7. As shown in Fig. 7, the variance of residuals over the 
entire study area reaches a plateau value after choosing 11 
stations. When selecting BK as the estimator, the one-station 
scenario is station #7. Other accurate optimum combinations 
can be seen in Fig. 7.

Comparison of the implemented schemes

At this stage, it might be useful to compare and contrast 
the two approaches to better rationalize the results. BK and 
Stc-IDW approaches presented in this paper both provide 
areal accuracy criterion belonging to the block as large as 
the study area. Moreover, both methods need to break down 
the study area into grid nodes to compute the measure of 
accuracy. In addition, BK and Stc-IDW can both require 
some sort of system identification. More specifically, system 
identification in BK corresponds to variogram modeling, 
while in Stc-IDW approach, before estimation, one needs 
some sort of parameter calibration. On the other hand, there 
are some differences between the two approaches. In BK 

Fig. 6   Optimum delineation of 
various rain gauge combinations 
using IDW method

Fig. 7   Optimum delineation of 
various rain gauge combinations 
using BK method
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approach, weighting coefficients are based on network topol-
ogy as well as process attribute value in an implicit way, 
while in Stc-IDW approach, the network topology will be 
the sole factor in computation of weighting coefficients. Fur-
thermore, BK and Stc-IDW approaches are different because 
computation of weighting coefficients in BK requires matrix 
inversion. These similarities and differences would pave the 
road to better rationalize the results emerging from the two 
approaches.

A procedure is presented in this section to compare the 
results and measure the efficiency of the new proposed accu-
racy estimation criterion. It should be mentioned that all 
parameters of the two estimators including the study area, 
size and the number of grid nodes and variogram models are 
the same. The only source of variability can be attributed 
to the estimator (i.e., interpolant) and associated accuracy 
criterion. Efficiency of network design using the proposed 
criterion can be traced by converting one of the method’s 
prioritization stations into the other method’s accuracy esti-
mation. In other words, we kept the exponentially decaying 
function of BK’s quite intact and tried to convert results of 
Stc-IDW to the former one for comparison purposes. In this 
way, both methods use the same measure of accuracy, and 
the performance of the proposed criterion can be examined 
as done in Fig. 8. As noted in Fig. 8, beside each station, one 
can notice two station numbers. The first number is associ-
ated with BK approach while that of Stc-IDW procedure is 
associated with the second number. Interestingly enough, the 
results of the two approaches are almost identical in terms 
of variance of residuals for various combinations as shown 
in Fig. 8.

The task of prioritizing the rain gauge stations in BK 
and Stc-IDW methods tend to decrease in a rapid rate 
at early stage of rain gauge addition and then changes 
more slowly as the number of stations saturated toward 
a lower asymptote. Even though, one can notice a minor 
change in delineating station number between the two 

approaches, as soon as the measure of accuracy reaches 
the constant value, around 55% of the total number of sta-
tions selected is exactly the same (i.e., #13, 17, 21, 24, 30, 
31 are selected for both procedures as part of 11-stations 
scenario) in both approaches and the difference between 
variance of residuals among the two approaches is quite 
marginal.

As shown in Fig. 8, one can notice that the first holding 
station for both methods may not be the same. When it 
comes to two rain gauge scenario, BK and IDW resulted in 
stations “7, 25” and “13, 18” which both methods selected 
one station at the center of the study area and one sta-
tion at one corner of the study area. For three-rain gauge 
scenario, stations “7, 25, 13” and “13, 18, 30” are singled 
out by the two methods. Looking at network configura-
tion as depicted in Fig. 1, three selected stations in both 
methods cover the study area. Upon further elaboration on 
delineating the best scenarios for various combinations, 
Fig. 8 clearly shows that the number of stations selected 
for eleven-rain gauge scenario (i.e., the turning point of 
exponentially decaying curve) is “7, 25, 13, 19, 21, 24, 15, 
11, 17, 31, 30” for BK method and “13, 18, 30, 29, 21, 31, 
20, 33, 32, 24, 17” for Stc-IDW method which contains 6 
identical stations and 5 stations near each other. This has 
a major implication for rain gauge network design when 
it comes to resorting to deterministic-based approaches.

It is worth noting that even though the Stc-IDW 
approach is based on totally different scientific back-
grounds, it provided exponentially decaying function 
very similar to that of BK approach. In other words, the 
proposed areal accuracy estimation criterion of Stc-IDW 
interpolant is in good agreement with conventional, rou-
tinely implemented variance-based BK approach. One 
could easily rationalize the similar results emerging from 
the two approaches by noting that in Stc-IDW, areas with 
less “percentage of area with acceptable accuracy” cor-
respond to high variance of residuals, hence, demanding 
for higher number of stations.

Fig. 8   Comparison of error 
variance of BK and IDW inter-
polation methods
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Conclusions

The accuracy of precipitation estimation over a given study 
area in a rain gauge network design is directly related to the 
number and spatial location of stations. Existing literature 
on rain gauge network design calls for development of a 
systematic procedure to define and implement an accuracy 
criterion based on one of the deterministic-based methods 
over the entire study area. The relevant literature is quite 
silent on how to move from point-wise estimation to block-
wise average in deterministic-based methods. Perhaps the 
need for such transformation emerges from the fact that in 
deterministic-based approaches, the kernel does not require 
any matrix inversion. The current study intended to effec-
tively benefit from this lack of need for matrix inversion in 
Stc-IDW scheme, critical assessment of results emerging 
from such approach, and also propose a mechanism for inde-
pendent verification of rain gauge network design elaborated 
by Cheng et al. (2008).

To fulfill this gap, a new criterion is presented to move 
from point-wise estimation to block-wise average, and its 
independent verification is achieved via comparing and 
contrasting the results with that of BK. According to the 
proposed criterion, for the first time, a probability-based 
measure is coupled with IDW interpolation method (i.e., 
Stc-IDW) to design a rain gauge network in southwest of 
Iran. After implementing the proposed methodology on 
an existing rain gauge network to prioritize the gauges, 
the result is compared with a variance-based interpolation 
method (i.e., BK). Good agreement is observed between the 
new proposed scheme and BK results.

An interesting exercise would be to use a time-consum-
ing approach or a random search procedure such as genetic 
algorithm to find the best set of stations among all potential 
candidates using the proposed criterion and better acknowl-
edge the efficiency and robustness of Stc-IDW as a typical 
deterministic-based method for rain gauge network design, 
which does not require matrix inversion. Moreover, other 
IDW/Stc-IDW parameters such as anisotropy ratio and 
anisotropy angle may also be used to better interpolate the 
attribute under consideration over the entire study area.
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