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Abstract There is a growing concern about health hazards

linked to nitrate (NO3) toxicity in groundwater due to

overuse of nitrogen fertilizers in rice production systems of

northern Iran. Simple-cost-effective methods for quick and

reliable prediction of NO3 contamination in groundwater of

such agricultural systems can ensure sustainable rural

development. Using 10-year time series data, the capability

of adaptive neuro-fuzzy inference system (ANFIS) and

support vector machine (SVM) models as well as six

geostatistical models was assessed for predicting NO3

concentration in groundwater and its noncarcinogenic

health risk. The dataset comprised 9360 water samples

representing 26 different wells monitored for 10 years. The

best predictions were found by SVM models which

decreased prediction errors by 42–73 % compared with

other models. However, using well locations and sampling

date as input parameters led to the best performance of

SVM model for predicting NO3 with RMSE = 4.75–

8.19 mg l-1 and MBE = 3.3–5.2 mg l-1. ANFIS models

ranked next with RMSE = 8.19–25.1 mg l-1 and

MBE = 5.2–13.2 mg l-1 while geostatistical models led to

the worst results. The created raster maps with SVM

models showed that NO3 concentration in 38–97 % of the

study area usually exceeded the human-affected limit of

13 mg l-1 during different seasons. Generally, risk prob-

ability went beyond 90 % except for winter when

groundwater quality was safe from nitrate viewpoint.

Noncarcinogenic risk exceeded the unity in about 1.13 and

6.82 % of the study area in spring and summer, respec-

tively, indicating that long-term use of groundwater poses a

significant health risk to local resident. Based on the

results, SVM models were suitable tools to identify nitrate-

polluted regions in the study area. Also, paddy fields were

the principal source of nitrate contamination of ground-

water mainly due to unmanaged agricultural activities

emphasizing the importance of proper management of

paddy fields since a considerable land in the world is

devoted to rice cultivation.

Keywords ANFIS � Paddy fields � Noncarcinogenic risk �
Ordinary kriging � SVM � Risk probability

Introduction

In many parts of the world, agriculture mostly relies on

groundwater resources which are generally exposed to

higher risk of contamination due to excessive depletion of

low water stocks and rapidly enhanced human activities

such as excessively unmanaged application of fertilizers

and pesticides, producing urban sewage and industrial

wastes. These contamination might render groundwater

unsuitable for consumption and put human and animal life

as well as the whole environment at great risk (Babiker

et al. 2004).

Having high solubility and weak adsorption to soil

particles, nitrate is the most frequently introduced pollutant

into groundwater systems (Spalding and Exner 1993) since

it accompanies the largest life/death cycle in the biosphere.

Intensive agriculture is usually the main source of nitrate

contamination due to unmanaged and excessive application

of chemical fertilizers which alter the balance of nitrogen
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compounds in soil and introduce the excessive nitrogen to

the soil and consequently to the groundwater. High levels

of nitrate in groundwater originating mainly from agricul-

tural activities were encountered in almost all regions of

the world (e.g., Spalding and Exner 1993; Dudley et al.

2008; Burow et al. 2010; Melo et al. 2012; Dahan et al.

2014). The adverse health effects of high nitrate levels in

drinking water are well documented (Mousavifazl et al.

2013; Sundaraiah and Sudarshan 2014). Groundwater with

nitrate concentration exceeding the threshold of 3 mg l-1

NO3
-–N or 13 mg l-1 NO3

- is considered due to human

activities (the so-called human-affected value; Burkart and

Kolpin 1993; Eckhardt and Stackelberg 1995). However,

the maximum acceptable concentration of nitrate for

potable water according to the World Health Organization

(WHO) is 11.3 mg l-1 NO3
-–N or 50 mg l-1 NO3

-. Thus,

exploring the contaminated area and proposing suit-

able solution for sustaining the groundwater resources are

essential.

The first step in planning and management of ground-

water resources is assessing and predicting water quality.

Such assessment requires reliable quantitative models

which led to developing a lot of physical and mathematical

models. Conceptual or physical models have been widely

used to simulate water and solute transport in subsurface

environment during past decades. Nevertheless, the lack of

precise data diminishes the reliability of these models (Al-

masri and Kaluarachchi 2005). Machine-learning models

such as adaptive neuro-fuzzy interference (ANFIS) and

support vector machines (SVM) might be better alternatives

since these models acquire implicit knowledge among

dataset without requiring the knowledge of mathematical

relationship between the inputs and the corresponded out-

puts as well as explicit characterization and quantification of

physical properties and conditions (Almasir et al. 2005).

Even under limited data, machine-learning models provide

methods for quick and flexible estimation aimed at achiev-

ing high level of generalization and prediction accuracy

(Khalil et al. 2005). Among machine-learning models, SVM

are a new structure which were introduced as robust and

significant learning tool for classification and regression

problems. It is a novel inductive rule for learning from a

finite dataset and has shown good performance with small

samples (Liu et al. 2010). Although machine-learning

models have been widely used for simulating hydrological

process of surface water resources during past decades

(Jiang and Cotton 2004; Ahmad and Simonovic 2005;

Elshorbagy and Parasuraman 2008; Zou et al. 2010; Dai

et al. 2011; Asefa et al. 2006; Yu and Liong 2007; Lin et al.

2009; Liu et al. 2010; Deng et al. 2011), they have rarely

been used for assessing groundwater quality (Khalil et al.

2005).

Geostatistical modeling is another method for assessing

ground water quality. This method is based on the theory of

regionalized variables (Goovaerts 1997), and is generally

preferred for such assessment, because it allows to take into

account spatial correlation between neighboring observa-

tions to predict attribute values at un-sampled locations.

Since the pioneering work of Delhomme (1976), geo-

statistics has been widely employed in hydrogeology to

obtain maps of peizometric surface, to estimate transmis-

sivity or hydraulic conductivity, to create iso-concentration

maps of groundwater contaminations, to produce iso-

probability maps that the concentration of a specific con-

taminant exceeds a threshold and as tool for inverse

problem solutions (Assaf and Saadeh 2006). Kriging

method has been reported as a suitable method for creating

the spatial distribution of nitrate concentration in contam-

inated groundwater (Babiker et al. 2004; Castrignano et al.

2008; Assaf and Saadeh 2006). However, the other geo-

statistical interpolation methods such as weighting moving

average and cokriging methods have less been considered.

Literature review indicates a lack of a comprehensive

study dealing with the evaluation of different fast-cost-ef-

fective methods for assessing nitrate toxicity in shallow

aquifers under point- and non-point-sources of pollution.

Therefore, the present research was designed to clarify the

performance of both machine-learning and geostatistical

modeling for predicting seasonal variations of nitrate tox-

icity and its associated noncancerous health risk in shallow

aquifers under both point- and non-point-sources pollution.

Based on long-term time series data, ANFIS and SVM

models as well as six geostatistical models including

ordinary Kriging (OK), Ordinary Cokriging with the

covariates of Ca2? concentration (OCK1) and total hard-

ness (OCK2) and weighting moving average with powers

of 2 (WMA2), 4 (WMA4) and 6 (WMA6) were employed

for diagnosing the negative impacts of human activities on

polluting groundwater resources.

Materials and methods

Site description and sampling

The experimental site located within 653794–679951 m

longitudes and 4030314–4064326 m latitudes in Mazan-

daran province, Northern Iran (Fig. 1a, b). In this part of

the province, the long-term average annual rainfall is

700 mm about 70 % of which occurs over the October–

March period (Karandish 2016). Long-term annual mini-

mum, maximum, and average temperatures of the study

area are about 12.5, 21.5, and 17 �C, respectively. Paddy
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fields are dominant in crop sown area in the study area

(Fig. 1c).

Groundwater in 26 monitoring wells distributed across

the study area (Fig. 1c) were sampled three times a month

during 10 years. Water samples were analyzed at the Water

Quality Laboratory of Mazandaran Regional Water Com-

pany for Nitrate concentration (NO3) and the 11 physical

and chemical properties of water were also analyzed.

Pearson correlation analysis was performed between the

measured chemical parameters to identify possible rela-

tionships and to define covariates for predicting methods.

The log normalized data were subjected to six geostatistical

methods including: weighting moving average (WMA) with

powers of two (WMA-2), four (WMA-4) and six (WMA-6),

ordinary kriging (OK) and Co-kriging with two covariates

of Ca2? concentration (OCK1) and TH (OCK2). In addition,

the capability of two machine-learning methods including

adaptive neuro-fuzzy inference systems (ANFIS) and SVM

for simulating NO3 concentration in groundwater was

assessed. The simulated and observed data were analyzed by

considering the cropping season of major crop (rice) grown

in the study area so that a year was divided into four periods

including preplanting period (winter), cropping season

(spring and summer), and the postharvest period (autumn).

Based on the national standards of Iran, seasons were

defined as spring (April, May, and June), summer (July,

August, and September), autumn (October, November, and

December), and winter (January, February, and March).

Geostatistical analysis approach

In classic statistical analysis, samples are treated as if they

are stripped of spatial dimension. In geostatistics, however,

the location of a data point is considered in conjunction to

its value. Semivariogram is a measure of spatial correlation

of a given variable. The experimental semi variogram (c) is

calculated by (Issaks and Srivastava 1989):

cðhÞ ¼ 1

2 � nðhÞ
XnðhÞ

i¼1

Zðxi þ hÞ � ZðxiÞ½ �2 ð1Þ

where n (h) is the number of sample pairs separated by

distance h, Z(xi) is the measured value at locationxi, and

Z(xi ? h) is the measured value at distance h from xi.

Range (R) is the distance where c reaches a constant value.

The value of semivariogram at R is defined as sill. In

theory, sill value is equal to the sample variance under the

assumption of second-order stationary. The value of c at

h = 0 in the semivariogram is called the nugget effect (C0).

c is used in kriging methods for estimating the weight

parameters and deriving the spatial distribution of estima-

tion variance. A detailed presentation of geostatistical

theories can be found in Goovaerts (1997), Chiles and

Delfiner (1999), and Webster and Oliver (2006).

ANFIS

In 1993, Jung introduced ANFIS considering the capa-

bilities of the fuzzy theory and the neural nets (Tang et al.

2005). A popular teaching method in neuro-fuzzy systems

is the fuzzy inference system, which uses the hybrid

learning algorithms to identify the fuzzy system parame-

ters and teach the model as well (Rehman and Mohandes

2008). ANFIS model is a five-layer structure, which is the

result of adding the fuzzy logical models to the artificial

neural net:

Fig. 1 The location of the study area in Iran (a), in Mazandaran province (b), land use classes and location of monitoring wells (w01–w 26) (c)
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In the layer 1 or input layer, the membership degree of

the nodes entering different fuzzy periods is determined by

using the membership functions (MFs). The shape of the

membership function and the amount of their overlapping

are optional, and are determined by Eq. (2):

lAðxÞ ¼
1

1 þ x�ci
ai

���
���
2bi

ð2Þ

where x is input, and a, b, and c are the comparative

parameters and the nonlinear coefficients of this equation,

which determine the shape of the membership function.

The set of the fuzzy variable coefficients is called S1 set or

the left-handed set (LHS). The output amounts of the first

layer show the membership amount for each input

regarding the different membership functions of the inputs.

Layer 2 is the result of multiplying the input amounts by

the nodes, and finally the firing strength. For example, for

the first node, we have

wi ¼ lA1
ðx1ÞlB1

ðx2Þ: ð3Þ

Nodes of layer 3 normalize the firing strength as

follows:

�W ¼ wiPn
i¼1 wi

; i ¼ 1; 2; . . .; n ð4Þ

where n is the number of nodes in each layer.

Layer 4 is the terms layer in which terms are achieved.

These terms are the results of operation on the input signals

into this layer:

Z1 ¼ �w1f1 ¼ �w1ðp1x1 þ q1x2 þ r1Þ ð5Þ

where r1, q1, and p1 are the consequent parameters.

Layer 5 is the last layer of the net which includes only

one node and is calculated via adding all input amounts

into its total output as Eq. (6):

Xn

i¼1

�wifi ð6Þ

Detailed description of the structure of a ANFIS model

and the calculation procedures were discussed in Dastirani

et al. (2010). One of the features of every ANFIS model is

the type of function considered for the model inputs. In this

research, different membership functions were employed.

In addition, different numbers of MFs were tried in each

application, and the best one giving the minimum errors

was selected.

SVM

Being introduced by Vapnik (1995), SVM are a classifier

derived from statistical learning theory. The SVM can be

used both for classification and regression problems and can

be represented as two-layer networks where the weights are

nonlinear in the first layer and linear in the second layer

(Bray and Han 2004). Support vector regression (SVR) is

used to describe regression with SVM in the literature. The

regression estimation with SVR is to estimate a function

according to a given dataset {(xi, yi)}n, where xi denotes the

input vector; yi denotes the output value; and n is the total

number of datasets (Tabari et al. 2012). Herein, the input

vectors (xi) refer independent variables whereas the target

values (yi) refer to nitrate concentration. The linear regres-

sion function uses the following function:

f xð Þ ¼ x � / xð Þ þ b ð7Þ

where / xð Þ is a nonlinear function by which x is mapped

into a feature space, b and x are a weight vector and a

coefficient that should be estimated from the data. Linear

regression is performed in a high dimensional feature space

via a nonlinear mapping. The coefficients b and x are

estimated by minimizing the sum of the empirical risk and

a complexity term.

R ¼ c
Xn

i¼1

Le f xið Þ; yið Þ 1

2
xk k2 ð8Þ

Leðf ðxiÞ; yiÞ ¼
0 for f ðxiÞ � yij j\e
f ðxÞ � y� e otherwise

�
ð9Þ

where c is a positive constant (implied as additional

capacity control parameter) that determines the trade-off

between the model complexity and the amount up to which

error larger than e are tolerated, xk k2
is the regularization

term which denotes the Euclidean norm, and Le is called

e-insensitive loss function that measuring the empirical risk

and has the advantage that we will not need all the input

data for describing the regression vector x.

As shown in Eq. (12), the loss function is equal to 0 if

the difference between the predicted f xð Þ and the measured

value yi is less than e. The choice of e is easier than the

choice of c and it is often given as a desired percentage of

the output values yi. So, a nonlinear regression function is

given by a function that minimizes Eq. (11) subject to

Eq. (12), as in the following expression:

f ðx; a; a�Þ ¼
Xn

i¼1

ðai�a�Þkðxi; xÞ þ b ð10Þ

With aia� ¼ 0; aia� � 0; i ¼ 1; . . .;N and the kernel func-

tion kðxi; xÞ describes the inner products in the D-dimen-

sional feature space.

kðx; yÞ ¼
XD

i¼1

/jðxÞ/iðyÞ ð11Þ

It should be mentioned that the features /j need not be

computed; rather what is needed is the kernel function that
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is very simple and has a known analytical form. In this

study, linear, polynomial, radial basis function, and sig-

moid kernels were used. The best kernel was determined by

a trial and error process. The coefficients aia� are obtained

by maximizing the following form:

Rðaia�Þ ¼ �eumN
i¼1ðai þ a�Þ þ

X
yiða� � aiÞ

� 1

2

XN

j¼1

ða� þ aiÞ � ða� þ aiÞkðxi; yiÞ

� subject to
XN

i¼1

ða� � aiÞ ¼ 0; 0� aia
� �C

ð12Þ

Only a number of coefficients aia� will be different from

zero, and the data points associated to them are called

support vectors (Mohandes et al. 2004; Kisi and Cimen

2009; Zhou et al. 2009).

Criteria indices

Prediction performances were assessed by cross-validation.

Also, mean bias error (MBE) and root mean square error

(RMSE) were calculated for comparing different interpo-

lation models as follows:

MBE ¼
Pn

i¼1 ðZðxiÞ � Z�ðxiÞÞ
n

ð13Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðZ�ðxiÞ � ZðxiÞÞ2

n

s

ð14Þ

where Z(xi) and Z*(xi) are the observed and estimated

values of NO3 concentration, respectively, and n is the

number of data points.

Health risk assessment

Risk assessment is defined as the process of estimating the

probability of occurrence of an event and the probable mag-

nitude of adverse health effects over a specified time period

(Gao et al. 2012). This research used the HRA model sug-

gested by the United States Environmental Protection Agency

(EPA, 1989), including mathematical models of noncarcino-

genic risks caused by a single factor (Ni et al. 2010), to cal-

culate the health risk of groundwater for drinking water supply

with respect to nitrate concentration. The noncarcinogenic

chronic toxic property of chemical pollutants in the human

body takes the reference dose as a yardstick: people whose

exposure level is higher than the reference dose are probably at

risk; those whose exposure level is equal to or lower than the

reference dose are less likely to be at risk. Potential noncar-

cinogenic risk for exposure to contaminant was evaluated as

follows (EPA, 1989):

HQ ¼ CDI=Rfd ð15Þ

where HQ is hazard quotient (unitless), Rfd is the reference

does (mg kg-1 day-1) and CDI is the exposure dose rate

(mg kg-1 day-1) representing the daily intake of assessed

pollutant per kg weight of a person. Rfd for nitrate was

1.6 mg kg-1 day-1. CDI was calculated as follows:

CDI ¼ C � IR � ED � EFð Þ= BW � ATð Þ ð16Þ

where C is the nitrate concentration in groundwater

(mg l-1); RI is the drinking rate (L day-1), representing a

person’s daily amount of drinking water; EF is the expo-

sure frequency, representing the days of assessed pollutants

intake per year in the evaluation period (day year-1); ED is

the exposure duration (year, the value recommended by the

U.S. EPA is 30 years), representing the years of lifelong

intake of assessed pollutants; BW is the average weight of

human bodies (kg); and AT is the average time (d, the

average noncarcinogenic time is ED 9 365 days).

According to Gao et al. (2012), IR = 2 L day-1, ED = 30

years, EF = 365 day year-1, BW = 70 kg

Results and discussion

Data quality check and exploration

The descriptive statistics of NO3, total hardness (TH), and

calcium concentrations (Ca2?) data are presented in

Table 1. Nitrate concentration in 9360 samples ranged

from 0.1 to 120.05 mg l-1. On average, the concentration

of NO3 in groundwater was generally below the permissi-

ble limit of 50 mg l-1 as drinking health standard while it

was exceeded the human-affected value of 13 mg l-1 NO3

most of the study period. Average of NO3 concentrations of

groundwater samples collected during winter seasons was

17.5 mg l-1, consistently lower than their for the other

seasons (23.7, 36.8, and 29.6 mg l-1 related to spring,

summer, and autumn seasons, respectively). Nutrient and

water management and cultural practices, timing and

amount of precipitation, water table depth, and differences

in soil types and nitrate uptakes by plants are major factors

affecting nitrate concentration in groundwater. The maxi-

mum and minimum sample variances belonged to summer

(736.85) and spring (422.9) period, respectively.

All datasets exhibit non-normal distribution; particularly

in the spring (Skewness = 2.36, Kurtosis = 6.63) and

winter (Skewness = 2.88, Kurtosis = 9.09) datasets. Pre-

vious researches indicate that nitrate concentrations follow

a log-normal distribution. So, the data were log-trans-

formed prior to the calculation of semivariogram in the

geostatistical modeling to make the data normally
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distributed and satisfy assumptions of constant variability.

The minimum and maximum SD corresponded to spring

and autumn, respectively, after normalization.

Geostatistical modeling

Structural analysis

By superimposing trials of various models with different

combinations of model parameters including nugget, sill

and range of influence, the best approximation of the

semivariogram was selected based on root sum square

(RSS) index. A spherical model was selected for summer

and autumn dataset while the spring and winter semivari-

ogram was fitted with an exponential model (Fig. 2).

Spherical model was advised in the results of other

investigation for groundwater nitrate concentrations

(Babiker et al. 2004; Castrignano et al. 2008; Assaf and

Saadeh 2006).

The selected semivariogram for different periods and

their components are presented in Table 2. The

semivariogram for autumn had the highest sill which could

be attributed to the highest sample variance after normal-

ization and relatively large amount of maximum NO3

concentration (Table 1). On the contrary, the sill of the

semivariogram model for spring was the smallest which is

in consistent with lower sample variance and lower amount

of maximum nitrate concentration for spring. Spatial

dependence of groundwater nitrate concentration can be

classified according to nugget to sill ratio, known as

Cambardella Index (CI) (1994) with a ratio of CI\ 0.25,

CI 0.25–0.75 and CI[ 0.75 indicating a strong, moderate,

and weak spatial dependence, respectively. Nitrate con-

centration in groundwater had a moderate spatial structure

according to CI index (CI 0.26 for spring; 0.54 for Autumn

and 0.5 for winter) with R ranging from 2310 m (spring) to

43470 m (winter). Exception was for summer when NO3

had strong spatial dependency with R of 12540 m

(Table 2). The relatively well spatial continuity is a

reflection of the high stability and mobility of nitrates in

groundwater, which facilitate the migration of nitrates

untransformed well beyond their source of input given the

Table 1 Descriptive statistics of TH, NO3, and Ca2? in groundwater

Parameter Month Statistical parameter

Mean (mg l-1) SD (mg l-1) Variance (mg l-1)2 Min (mg l-1) Max (mg l-1) Skewness Kurtosis

NO3 Spring – 23.68 20.56 422.9 4.87 103.22 2.36 6.63

Log 2.887 0.752 0.566 1.58 4.64 0.15 -0.38

Summer – 36.83 27.145 736.85 6.65 120.05 1.26 1.56

Log 3.341 0.77 0.5927 1.89 4.79 -0.14 -0.89

Autumn – 29.615 26.49 701.6 0.1 108.54 1.13 1.14

Log 3.035 1.033 1.067 0.74 4.71 -0.45 -0.81

Winter – 17.465 21.09 444.6 1.97 104.11 2.88 9.09

Log 2.412 0.922 0.849 0.57 4.65 0.43 -0.15

Ca2? Spring – 125.38 47.6 2265.53 46 316 2.38 8.16

Log 4.776 0.325 0.1124 3.83 5.76 0.07 2.96

Summer – 138.1538 48.53 2355.18 76 296 1.82 3.11

Log 4.881 0.298 0.0889 4.33 5.69 0.97 1.09

Autumn – 135 47.51 2257.36 78 310 1.99 5.16

Log 4.857 0.303 0.092 4.36 5.74 0.76 1.07

Winter – 150.46 53.69 2883.3 66 332 1.65 3.43

Log 4.962 0.322 0.1036 4.19 5.81 0.36 1.07

TH Spring – 521.34 232.48 54047.11 305 1260 2.03 3.76

Log 6.186 0.358 0.128 5.72 7.14 1.15 1.01

Summer – 567.12 216.59 46914.35 345 1125 1.05 0.18

Log 6.278 0.35 0.1226 5.84 7.03 0.56 -0.78

Autumn – 537.88 216.42 46836.3 325 1225 1.46 2.04

Log 6.222 0.355 0.1261 5.78 7.11 0.68 -0.26

Winter – 571.35 257.2 66153.12 325 1315 1.58 1.57

Log 6.272 0.377 0.1419 5.78 7.18 0.98 0.11
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presence of highly permeable subsurface materials with

adequate dissolved oxygen (Canter 1997).

Pearson-correlation analysis was carried out between

NO3 concentration and different effective parameters

including water table depth (WD), total amount of pre-

cipitation (Rain), water temperature (T), and the soil

chemical properties including electrical conductivity (EC),

total dissolved solids (TDS), acidity (pH), CO3 concen-

tration, HCO3 concentration, Cl concentration, SO4 con-

centration, Ca2? concentration, Mg concentration, Na

concentration, and K concentration. These parameters well

represent the nutrient and water management and cultural

practices in the study area which affect the NO3 concen-

tration in groundwater. Figure 3 shows that, amongst all

parameters, TH and Ca2? had the highest correlation

coefficient with NO3
- concentration, and therefore, they

were incorporated for NO3
- estimation using cokriging

method as secondary variables (covariates). Structural

analysis showed that Except for cross-variogram on NO3
-

and Ca2? in summer for which an exponential model had

the least RSS, a spherical model was the best fitted to the

Fig. 2 Semivariograms (a) and Cross-Variograms for NO3-Ca2? (b) and NO3-TH (c) for different periods

Fig. 3 Pearson correlation coefficients of the different groundwater

parameters with NO3
- concentration

Table 2 Parameters of

semivariogram and cross-

variogram models for different

measuring periods

Parameter Period Model C0 C0 ? C R CI = Co/(C0 ? C)

NO3
- Spring Exponential 0.16 0.605 2310 0.26

Summer Spherical 0.001 0.598 12,540 0.002

Autumn Spherical 0.7 1.3 25,000 0.54

Winter Exponential 0.57 1.141 43,470 0.50

NO3
-–Ca2? Spring Spherical 0.018 0.0682 22,000 0.26

Summer Exponential 0.045 0.01 24,000 4.5

Autumn Spherical 0.13 -0.049 23,000 -2.65

Winter Spherical 0.027 0.1 22,000 0.27

NO3
-–TH Spring Spherical 0.0176 -0.07 24,000 0.25

Summer Spherical 0.05 -0.0214 22,000 -2.34

Autumn Spherical 0.15 -0.05 22,000 -3.0

Winter Spherical 0.047 -0.025 20,000 -1.88
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dataset for the other periods (Table 2; Fig. 2). According to

CI, for OCK1 and OCK2 semi-variograms, groundwater

nitrate concentration had generally a weak spatial structure

with some exceptions (Table 2). No significant improve-

ment was observed in R with respect to Ca2? or TH.

Evaluating the geostatistical models

Different geostatistical techniques were used to estimate

NO3
- concentration in groundwater for all sampling peri-

ods. Produced maps by OK were smoother and were sub-

stantially different with WMA since OK considers the

pattern of spatial dependence of observed data, while the

WMA method considers only the distance between esti-

mated and observed locations (data not shown). Also, the

locations of wells are more obviously shown in WMA

maps since WMA generally produces spikes around the

sample points (Lloyd 2005). Unlike WMA, produced maps

by OCK represented more similarities with the OK map

especially when incorporating Ca2? as covariate.

Having the least RMSE, MAE, and MBE (Table 3), OK

provided the best results for all datasets among different

geostatistical methods, which is in consistent with other

studies (Babiker et al. 2004; Assaf and Saadeh 2006). Less

accurate results under OCK could be attributed to

insignificant correlation between the primary and sec-

ondary variables and weak spatial correlation (Goovaerts

1997, 2000). Despite a higher correlation between NO3
-

and Ca2? compared with that between NO3
- and TH, Ca2?

may not still improve the prediction accuracy through

OCK1 if the spatial continuity of Ca2? is weaker than of

NO3
-, as was observed here (Tables 3). However, the

better performance of OCK than WMA shows that OCK

may increase the estimation accuracy by using the sec-

ondary data available at un-sampled locations even in the

presence of a moderate cross-correlation between the pri-

mary and secondary variables (Table 2).

Positive MBE index for all interpolation techniques

revealed an overall underestimation for all methods

(Table 3). Higher bias was observed in summer and

autumn which could be attributed to higher variation of

NO3
- concentration due to both agricultural activities and

intensive precipitation. Overall, OK provided more

acceptable bias for all observed wells than the other

methods. Also, created error maps for OK showed that the

average values of standard error of the estimations were

1.11, 1.79, 1.63, and 1.34 mg/l for spring, summer,

autumn, and winter, respectively, which were less than

sample variance on the corresponded sampling dates (data

not shown). This result indicates that OK interpolation is a

reliable method for estimating NO3
- concentration. How-

ever, the visual inspection of the observed NO3 and the

NO3 values estimated by the OK model by means of scatter

plots in Fig. 4 demonstrates that even applying Ok method

did not led to a high agreement between observed and

simulated NO3 in the study area.

Evaluating ANFIS and SVM models

For both ANFIS and SVM models, NO3 concentration was

defined as a dependent output variable in ANFIS and SVM

models while the Julian day number (DOY) of the sam-

pling date, well locations as X- and Y-coordinates, Ca2?

and TH concentrations were defined as independent

input variables in these models. DOY was defined based

on the sampling dates. For example, if sampling is carried

out on February 5, 15, and 25, the DOY will be set to 36,

46, and 56, respectively, and so on for the other months.

Three input combinations evaluated in this research were

as follows: (i) DOY, X-coordinate, and Y-coordinate

(ANFIS1 and SVM1); (ii) DOY, X-coordinate, Y-coordi-

nate, and Ca2? (ANFIS2 and SVM2); and (iii) DOY,

X-coordinate, Y-coordinate, and TH (ANFIS3 and SVM3).

Out of the total 10-year data, 70 % of data which (data for

7 years) were incorporated in the train phase while the

other 30 % of data related to the other 3 years were

incorporated in the test phase.

Different ANFIS architectures were tried using a written

code in MATLAB language including fuzzy logic. The

efficient models were determined for each input

Table 3 Cross-validation

between measured and

estimated values of NO3
-

concentration

Period Method

Evaluating index (mg/lit) WMA-2 WMA-4 WMA-6 Kriging CoKrig-1 CoKrig-2

Spring MBE 6.55 6.71 6.76 5.22 5.25 5.02

RMSE 20.35 20.51 20.52 20.01 20.55 20.49

Summer MBE 31.52 31.52 31.52 9.69 7.70 7.75

RMSE 44.353 44.353 44.353 29.706 33.188 33.49

Autumn MBE 31.52 31.52 31.52 9.69 7.70 7.75

RMSE 31.01 30.91 31.09 29.06 30.50 29.97

Winter MBE 6.48 6.15 5.99 6.61 5.10 5.10

RMSE 22.00 22.74 23.33 22.13 23.86 23.90
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combinations. Then, ANFIS models were tested and given

results were compared using criteria indices. Table 4 rep-

resents the final architectures of ANFIS models for the test

phase where the performance statistics are included. Two

MFs were found to be sufficient for simulating NO3
- with

ANFIS models. The increase in the number MFs not only

does not provide any significant improvement in the

results, but also increases the number of parameters to be

optimized. Because of that, the number of MFs should be

kept in the minimum number (Ozger and Yildrim 2008).

Gaussian combination (Gus2) membership functions were

the best MFs for all ANFIS models. With respect to RMSE,

ANFIS1 model with inputs of DOY, X- and Y-coordinates

had the best performance (RMSE = 8.19–17.3 mg l-1 and

MBE = 5.2–9.7 mg l-1) for all seasons followed by

ANFIS2 with inputs of DOY, X- and Y-coordinates and

Ca2? concentration (RMSE = 9.73–25.1 mg l-1 and

MBE = 6–13.2 mg l-1). Generally, better results were

obtained for spring periods while the worst one was

obtained for autumn period.

As shown in Table 4, all ANFIS models underestimated

NO3 concentrations. However, a visual inspection of the

observed NO3 and the NO3 values estimated by the ANIFS

models by means of scatter plots in Fig. 5 clearly indicate

the high potential of ANFIS modeling. Despite high values

of R2 in Fig. 5, it should be noted that the R2 term provides

information for the linear dependence between observed

and simulated NO3
-; and R2 values equal to 1 does not

guarantee that a model captures the behavior of the

investigated parameters (Tabari et al. 2012).

SVM models were implemented by a written program

code in MATLAB language by which different SVM

architectures were tried. Finally, the appropriate model

structures were determined for each input combination.

Then, SVM models were tested and the results were

compared with performance statistics. The results of SVM

models are presented in Table 5. When SVM models are

applied, an appropriate choice of kernels allows the data

became separable in feature space although being non-

separable in the original space. This allows one to obtain

nonlinear algorithms from algorithm previously restricted

to handling linearity separable datasets (Bray and Han

2004). Here, radial basis function was the best kernel for all

SVM models. SVM1 with RMSE = 4.75–8.19 mg l-1 and

MBE = 3.3–5.2 mg l-1 had the best performance for

simulating NO3
- concentration. SVM2 and SVM3 models

had nearly the same performance, and the selection of one

of these models over the other should be dependent upon

the available data. Scatterplots of observed and simulated

NO3 concentrations with SVM models demonstrate the

high potential of SVM modeling with high R2 index

(Fig. 6).

Comparison of the models

The global evaluation ranking of the approaches used was

done based on RMSE and MBE indices and the results are

summarized in Table 6. For all periods, SVM1 ranked first

(RMSE = 4.75–8.19 mg l-1) followed by SVM2 (RMSE =

6.34–12.1 mg l-1) and SVM3 (RMSE = 5.1–11.5 mg l-1).

ANFIS models could be considered as 4th to 6th best models

(RMSE = 8.19–25.1 mg l-1) while geostatistical methods

occupied that the last places for estimating NO3
- concentra-

tion with RMSE = 22.1–44.6 mg l-1.

ANFIS models combine the transparent, linguistic rep-

resentation of fuzzy system with the learning ability of

ANN. Therefore, they can be trained to perform an input/

output mapping just as with an ANN, but with the addi-

tional benefit of being able to provide the set of rules on

which the model is based. This given further insight into

the process being modeled (Sayed et al. 2003). The main

Fig. 4 Scatter plot of observed and simulated NO3
- for OK models

Table 4 The final architecture and performance statistics of the

ANFIS models for the test phases

Periods Models Best MFa NMF RMSE MBE

Spring ANFIS1 Gus2 2 8.19 5.2

ANFIS2 Gus2 2 9.73 6

ANFIS3 Gus2 2 8.96 5.6

Summer ANFIS1 Gus2 2 17.3 9.7

ANFIS2 Gus2 2 21.7 11.7

ANFIS3 Gus2 2 22.4 12

Autumn ANFIS1 Gus2 2 16.9 9.5

ANFIS2 Gus2 2 25.1 13.2

ANFIS3 Gus2 2 20.4 11.1

Winter ANFIS1 Gus2 2 9.93 6.1

ANFIS2 Gus2 2 10.5 6.4

ANFIS3 Gus2 2 10.4 6.35

a Gb:Gus2 Gaussian combination MF, MF membership function
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advantage of using SVM is their flexibility and ability to

model nonlinear relationship. Furthermore, the SVM

training process always seeks a global optimized solution

and avoid over-fitting that eventually leads to better gen-

eralization performance than ANN models. SVM is able to

select the key vectors in the training process as it supports

vectors and remove the nonsupport vectors automatically

from the model. This makes the model to cope well with

the noisy condition. The main disadvantage of the SVR

technique is that it has no physical basis and belongs to a

class of data-box approaches. In addition, the SVR can

only be used when the training data are available (Bray and

Han 2004; Zhou et al. 2009; Kisi and Cimen 2009).

NO3 spatial variability pattern and quality

assessment

Spatial variability of nitrate concentration was prepared by

SVM1 model in five thematic classes indicating ‘‘safe’’

class (NO3\ 13 mg l-1), ‘‘moderately human affected’’

class (13\NO3\ 20 mg l-1), ‘‘extremely human affec-

ted’’ class (20\NO3\ 50 mg l-1, i.e., 50 is the maxi-

mum acceptable level for drinking), ‘‘unacceptable for

drinking’’ class (50\NO3\ 75 mg l-1) and ‘‘extremely

unacceptable for drinking’’ class (NO3[ 75 mg l-1)

(Fig. 7). The pattern of spatial distribution was nearly

erratic while it was more spatially structured in autumn

when NO3 concentration gradually decreased southward

and westward. This pattern has been suggested to result

from the disappearances of nitrate by natural de-nitrifica-

tion in the direction of groundwater flow (Babiker et al.

2004).

Nearly, most parts of the study area displayed a rela-

tively weak association with maximum acceptable concen-

tration of nitrate for potable water (50 mg l-1) according to

the World Health Organization (WHO). Exception was for

a few spots in spring and summer, especially centered

around W01 observation well, indicating a possible pol-

lution by point sources. Nevertheless, a large part of the

study area was found to be suffering from nitrate concen-

tration exceeding the human-affected threshold of

13 mg l-1 (Fig. 7). Of all the period tested, winter had the

smallest area affected by excessive nitrate pollution

(40.3 % of the study area) whereas just about 9.8–23 % of

the area felt in the range of 0–13 mg l-1 for the other

periods. Nitrate concentration commonly ranged from 20 to

50 mg l-1 during spring, summer, and autumn period,

indicating an ongoing potential risk from groundwater

pollution. Thus, recognizing the most vulnerable area could

help with a better understanding of the pollution source in

the study area.

The probability maps of NO3[ 13 mg l-1 (PN13) were

generated for all periods (Fig. 8) which were classified

with 5 equal classes of PN13 including 0–0.2, 0.2–0.4,

0.4–0.6, 0.6–0.8, and 0.8–1. Despite a decreasing trend of

NO3 from summer to winter, about 56–97 % of the area

Fig. 5 Scatter plot of observed and simulated NO3
- for ANFIS models

Fig. 6 Scatter plot of observed and simulated NO3
- for SVM models

Table 5 The final architecture and performance statistics of the SVM

models for the test phase

Period Model Best Kernel RMSE MBE

Spring SVM1 Radial Basis Function 4.75 3.3

SVM2 Radial Basis Function 6.34 4.2

SVM3 Radial Basis Function 5.10 3.5

Summer SVM1 Radial Basis Function 8.19 5.2

SVM2 Radial Basis Function 10.7 6.5

SVM3 Radial Basis Function 11.5 6.9

Autumn SVM1 Radial Basis Function 7.44 4.8

SVM2 Radial Basis Function 12.1 7.2

SVM3 Radial Basis Function 10.1 6.2

Winter SVM1 Radial Basis Function 5.98 4.0

SVM2 Radial Basis Function 7.26 4.7

SVM3 Radial Basis Function 8.89 4.5
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showed the highest probability (0.8\PN13\ 1) of

NO3[ 13 mg l-1 with the minimum and maximum PN13

for spring and autumn, respectively. Exception was for

winter when less than 10 % of the study area was at high

risk of groundwater contamination (0.8\PN13\ 1). Also,

a considerable parts of the study area (0.6–20.1 %) showed

a strong probability (0.6\PN13\ 0.8) of groundwater

pollution induced by human activities. From nitrate con-

tamination viewpoint, water of acceptable quality

(PN13\ 10 %) may be found in a few part of the study

area. Overall, having PN13[ 50 %, a large part of the

study area is at high risk of nitrate contamination, quite

likely due to human-related pollution, accounted for 78.5,

97.7, 97.8 and 42.7 % in spring, summer, autumn, and

winter, respectively. Thus, groundwater is more vulnerable

to nitrate contamination in summer and autumn than the

other periods.

Results revealed a considerable difference in ground-

water NO3 concentration attributed to land use (Fig. 1b)

which is well documented in previous researches (Burow

Fig. 7 Classified spatial variability maps of groundwater nitrate level combined with related histograms for spring (a), summer (b), autumn (c),

and winter (d)

Table 6 Summary of the ranking of the selected models

Period Method Rank Period Method Rank Period Method Rank Period Method Rank

Spring SVM1 1 Summer SVM1 1 Autumn SVM1 1 Winter SVM1 1

SVM3 2 SVM2 2 SVM3 2 SVM2 2

SVM2 3 SVM3 3 SVM2 3 SVM3 3

ANFIS1 4 ANFIS1 4 ANFIS1 4 ANFIS1 4

ANFIS3 5 ANFIS2 5 ANFIS3 5 ANFIS3 5

ANFIS2 6 ANFIS3 6 ANFIS2 6 ANFIS2 6

OK 7 OK 7 OK 7 WMA-2 7

WMA-2 8 OCK1 8 OCK2 8 OK 8

OCK2 9 OCK2 9 OCK1 9 WMA-4 9

WMA-4 10 WMA-2 10 WMA-4 10 WMA-6 10

WMA-6 11 WMA-4 11 WMA-2 11 OCK1 11

OCK1 12 WMA-6 12 WMA-6 12 OCK2 12
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et al. 2010; Melo et al. 2012; Dahan et al. 2014). Com-

monly, monitoring wells located in ‘‘paddy fields’’ class

had highest average of nitrate concentration followed by

those located in ‘‘urban’’ class. The least NO3 concentra-

tion was attributed to ‘‘dense forest’’ class with an average

of 7.97–19.49 mg l-1 during the study period. Non-point-

source pollution is evidence in paddy fields, where more

than 90 % of it was associated with NO3
-[ 13 mg/lit.

Being an essential for productive agriculture, fertilizer

application is one of the most important factors affecting

groundwater contamination under paddy fields as is docu-

mented in the previous researches (Spalding and Exner

1993; Dudley et al. 2008; Burow et al. 2010; Melo et al.

2012; Dahan et al. 2014). Since 80 % of the study area

devoted to rice cultivation, temporal variations in NO3

concentration could be explained based on three periods of

preplanting (winter), transplanting (spring and summer),

and postharvest (autumn). In paddy fields, fertilizers are

commonly applied in spring. Thus, higher nitrate concen-

tration in summer well reflects the lag time between the

applications of fertilizers during the rainless season to the

time required to nitrates leach into the groundwater. During

postharvest period (autumn), nitrate concentration in

groundwater was higher than that of preplanting (winter)

period mainly related to solute transport to the groundwater

due to heavy rainfall in autumn as what does heavy irri-

gation followed by fertilization for the summer crops sown

in the spring. However, higher nitrate concentration in

planting and postharvest periods indicates the considerably

negative effect of agricultural activities in the study area.

Irrigation practice and management may also influence

nutrient transport to groundwater in the paddy fields (Gao

et al. 2012). Flooding irrigation, especially after fertilizer

application, increases nitrate losses into groundwater

compared with dry farming. Also, irrigation water quality

can have a profound impact on groundwater quality espe-

cially under flooding irrigation due to having dissolved

mineral salts (Grattan 2002). A considerable depletion in

groundwater level in summer (data not shown) due to

irrigation may deteriorate groundwater quality during rice

growing season due to a strong relationship between the

increase of salt contamination and the lowering of piezo-

metric levels (Lashkaripour and Ghafoori 2011; Chaudhuri

and Ale 2014). In addition, the shallow aquifer in paddy

fields which is relatively close to the surface may receive

direct input of NO3-rich leachate from the agricultural soils

(Gao et al. 2012).

Figures 1b, 7, and 8 show that regions surrounded by

both paddy fields and urban classes had the highest NO3

concentration which reflects the additive negative effect of

Fig. 8 Spatial distribution of excessive groundwater nitrate probabilities in the study area combined with related histograms for spring (a),

summer (b), autumn (c), and winter (d)
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both classes for contaminating groundwater. Point source

pollution could be found around W01 borehole with con-

sistent NO3[ 50 mg/lit, presumably due to releases of

untreated wastewater to open areas, ditches, and septic

tanks and the common practice of dumping solid waste.

Health risk assessment

The spatial distribution of HQ of nitrate is illustrated in

Fig. 9. The HQ assumes that there is a level of exposure

(i.e., Rdf) below which it is unlikely for even sensitive

pollutions to experience adverse health effects; there may

be a concern arising for the potential noncarcinogenic

effect of the HQ exceeds the unity. HQ due to nitrate

showed seasonal changes of 0.09–1.71 in spring, 0.14–2.02

in summer, 0.14–0.83 in autumn, and 0.07–0.78 in winter.

HQ exceeded the unity in about 1.13 and 6.82 % of the

study area in spring and summer, respectively, which

indicates that long-term drinking of groundwater or irri-

gation using groundwater poses a significant health risk to

local resident (Gao et al. 2010).

Figure 10 shows that paddy fields were commonly

associated with the highest risk value. Totally, noncar-

cinogenic risk values of nitrate decreased in the following

order: paddy fields[ urban[ dense forest[ dry farming.

Exception was for spring when it had higher HQ compared

with urban land use. Relatively higher risk value under

agricultural lands has been reported by other researchers

(Gao et al. 2010). Higher values of HQ under paddy fields

could be attributed to unmanaged use of fertilizers during

the growing season.

Conclusion

In this research, the spatial and temporal variation of nitrate

concentration in groundwater of Northern Iran’s coastal

areas as well as its noncarcinogenic health risk was

assessed using different machine-learning and geostatisti-

cal models. The comparative analysis demonstrated the

high capability of simple SVM models for predicting

nitrate concentration in groundwater. Created raster maps

with SVM models revealed a high risk of nitrate pollution

in a large part of the study area which is mainly under rice

production. However, nitrate contamination from urban

sources is also possible. Higher risk of groundwater con-

tamination during the rice cultivation as well as postharvest

periods compared with preplanting period well reflects the

negative effect of unmanaged use of chemical fertilizers for

contaminating the groundwater. In addition, over-abstrac-

tion of groundwater resources for irrigation in rice growing

season and leaching of nitrate through heavy precipitation

Fig. 9 Spatial distribution of HQ due to nitrate in spring (a), summer (b), autumn (c), and winter (d)

Fig. 10 HQ due to nitrate for different land uses in spring (a), summer (b), autumn (c), and winter (d)
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during postharvest periods causes further contamination of

shallow groundwater aquifers. Health risk analysis

revealed a necessity of devising policy guidelines for using

groundwater due to high levels of HQ which poses a sig-

nificant health risk for Mazandaran’s residents. Overall,

sustaining the environment and protecting the human

health requires a serious attention to manage the agricul-

tural activities in paddy fields since a considerable part of

the agricultural land in Mazandaran province is allotted to

rice cultivation in which more than 40 % of the total Iran’s

rice production is produced. Controlled use of fertilizers,

optimal irrigation based on the plant water demand, pre-

venting overexploitation of the shallow groundwater, and

removing point source pollution would help with providing

sustainable agriculture in the study area.
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