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Abstract In this article, we used the inverse distance

weighting (IDW) method to estimate the rainfall distribu-

tion in the middle of Taiwan. We evaluated the relationship

between interpolation accuracy and two critical parameters

of IDW: power (a value), and a radius of influence (search

radius). A total of 46 rainfall stations and rainfall data

between 1981 and 2010 were used in this study, of which

the 12 rainfall stations belonging to the Taichung Irrigation

Association (TIA) were used for cross-validation. To

obtain optimal interpolation data of rainfall, the value of

the radius of influence, and the control parameter-a were

determined by root mean squared error. The results show

that the optimal parameters for IDW in interpolating

rainfall data have a radius of influence up to 10–30 km in

most cases. However, the optimal a values varied between

zero and five. Rainfall data of interpolation using IDW can

obtain more accurate results during the dry season than in

the flood season. High correlation coefficient values of over

0.95 confirmed IDW as a suitable method of spatial

interpolation to predict the probable rainfall data in the

middle of Taiwan.

Keywords Inverse distance weighting (IDW) � Spatial

interpolation � Rainfall data � Omission

Introduction

Rainfall is a highly significant piece of hydrologic data.

Such data are recorded as observational data through

comprehensively designed rainfall station networks. How-

ever, rainfall records are often incomplete because of

missing rainfall data in the measured period, or insufficient

rainfall stations in the study region. To resolve the prob-

lems of such partial rainfall data, probable rainfall data can

be estimated through spatial interpolation techniques.

Various spatial interpolation techniques have already

been employed in related fields. Such techniques can be

divided into geographical statistics and non-geographical

statistics. Examples include nearest neighbor (NN), Thi-

essen polygons, splines and local trend surfaces, global

polynomial (GP), local polynomial (LP), trend surface

analysis (TSA), radial basic function (RBF), inverse dis-

tance weighting (IDW), and geographically weighted

regression proposed by Fotheringham et al. (2002), which

are all classified as non-geographical statistics. On the

other hand, various forms of Kriging method are classified

as geographical statistics (Lam 1983; Jeffrey et al. 2001;

Price et al. 2000; Li and Heap 2008; Yeh et al. 2011).

As this article aims to discuss the spatial interpolation of

rainfall, the research literature carried out by Naoum and

Tsanis (2004) on the interpolation of rainfall in the island

of Crete, Greece was reviewed. The research had devel-

oped a new Geographical Information System (GIS)-based

spatial interpolation module that adopts a multiple linear

regression (MLR) technique. This technique can be com-

pared with other methods, such as splin_regularized,

spline_tension, IDW, kriging, and second-order polyno-

mial. When estimating precipitation at ungauged locations,

the MLR models provided better estimations than the other

spatial interpolation techniques. Li et al. (2006) used the
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annual precipitation over a span of 30 years between 1961

and 1990 from 2114 meteorological stations in China. The

data were compared with its respective nearby regions and

analyzed through spline, ordinary kriging (OK), and IDW.

The result in cross-validation tests shows that the precision

of interpolated results are very high. The relative mean

errors of three methods were 8.31, 8.76 and 8.76%,

respectively ranking as OK [ IDW = spline. Similar

results of OK [ Spline [ IDW (the mean absolute error,

MAE are 42.94, 44.79, and 49.86) The study carried out by

Chu et al. (2008) reported a similar trend.

Segond et al. (2007) indicated that high spatial and

temporal rainfall resolutions are required for urban drain-

age and urban flood modeling applications. Through IDW,

the spatial rainfall field can be obtained when data over a

whole catchment are interpolated. When using such

method, the results were proven satisfactory as the stimu-

lated data at individual sites preserved properties which

mimicked the observed statistics at an acceptable level for

practical purposes. Garcia et al. (2008) reported that Mul-

tiquadric–biharmonic (MQB) methods surpass IDW

methods in terms of interpolation accuracy for both con-

vective and mixed/stratiform events in the study regarding

the North American monsoon season over a dense gauge

network in the southwestern United States. However, it is

found that the order in the IDW method is more important

as under certain conditions, results obtained are just as

accurate as the MQB method. Dong et al. (2009) used OK,

co-kriging (CK), and IDW to interpolate daily precipitation

in Qingjiang river basin of China. Daily precipitation data

from 36 rainfall stations in June 2006 were analyzed, and

the result demonstrated that CK was superior to OK and

IDW. The author explained that IDW was unable to take

the spatial dependencies of adjacent rain gauges in the

basin into account. A similar conclusion was also reached

in another case study in Xinjiang, China. The study sug-

gested that the CK method is the most superior compared

with RBF, IDW, Kriging methods based on the results of

annual precipitation in 75 weather stations from 1995 to

2008 (Zhong 2010). A model composed of OK and entropy

with probability distribution function is proposed to relo-

cate the rainfall network and to obtain the optimal design

with the minimum number of rain gauges by Yeh et al.

(2011).

Nevertheless, several researchers have contrasting views

in this area of study. Dirks et al. (1998) compared four

spatial interpolation methods using rainfall data from a

network of 13 rain gauges on Norfolk Island. The more

computationally demanding method of Kriging provided

no significant advantage over any of the much simpler

IDW, Thiessen, or areal-mean methods. This further indi-

cates that in order to assimilate some characteristics of

spatially varying rainfall, the inverse distance method is the

most advantageous for interpolations using spatially dense

networks. In another case study, the daily precipitation data

from 72 meteorological stations between 1961 and 2000 in

Northeast China were analyzed using OK and IDW

methods with the weighting of longitude and latitude, and

gradient of height plus IDW (GIDW). For daily precipita-

tion, the results showed that the precision of the evaluated

value with IDW is greater than OK and GIDW (Zhuang

and Wang 2003). Hsieh et al. (2006) used daily summer

rainfall records from 20 rain gauges stations between 1990

and 2000 to predict the spatial rainfall distribution in the

Shih-Men Watershed in Taiwan using two schemes as OK

and IDW. The results indicated that IDW (mean error =

0.04) produced more accurate representations of spatial

distribution of rainfall than OK (mean error = 0.54).

Kurtzman et al. (2009) aimed at improving the spatial

interpolation of daily precipitation for hydrologic models.

Different parameterizations of IDW and a local weighted

regression (LWR) method were tested in a mountainous

terrain in the eastern Mediterranean using 16 years of daily

data. The LWR took into account of the weighting factors

of elevation which are the explanatory variable and dis-

tance, elevation factors, and aspect difference. The IDW

interpolation was preferred over the LWR scheme in 27 out

of 31 validation gauges. Wu et al. (2010) analyzed and

compared five typical interpolation models: IDW, OK, GP,

LP, and RBF. The results show that OK and IDW are

suitable methods for maximum and minimum precipita-

tions respectively; the results were consistent with the

30 years worth of data in 599 climate stations situated in

Texas, US as analyzed by Kong and Tong (2008). A sim-

ilar research was carried out by Li et al. (2010) utilizing the

mean yearly precipitation of 72 meteorological stations

from 1971 to 2008 in Zhejiang, China. Different interpo-

lation methods such as the combining stepwise regression

and IDW, kriging, spline, and trend were tested. The result

demonstrated that the combination of stepwise regression

and IDW showed the highest accuracy in prediction, and

was better than other methods.

From the above review and comparison of the related

researches on spatial interpolation techniques of rainfall, a

conclusion can be drawn. According to the comparisons,

each method has its advantages and disadvantages based on

its objectives, and hence the optimal interpolation method

to be adopted varies for different proposals. In general, OK

is only suitable for normal distributions; the advantage the

IDW method is its usefulness when the distribution of the

estimated parameters is not a normal distribution.

In this article, the IDW method is used to interpolate the

spatial rainfall distribution in the middle of Taiwan. The

choice of the IDW exponent was found to be more signif-

icant than the choice of whether or not to use elevation as

explanatory data (Kurtzman et al. 2009). In most cases, the
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critical influence parameter of IDW is the distance. For this

reason, elevation of rainfall stations is not considered in this

study. The study aims at improving interpolation accuracy

of rainfall using IDW, which is concerned with parameters

adjustment including the power (a value) and search radius.

Materials and methods

Study area and data

In this study, the region of the middle of Taiwan was

chosen as the main research area. There are 46 rainfall

stations distributed in this region. Figure 1 shows the

schematic diagram of the rainfall stations spatial distribu-

tion in the middle of Taiwan. The rainfall stations are

managed by two organizations. The 33 rainfall stations,

which are shown as blue points in Fig. 1, are managed by

Water Resources Agency (WRA), Ministry of Economic

Affairs, while the remaining 13 rainfall stations, which are

shown as red points in Fig. 1, are managed by TIA.

For the purpose of using IDW to interpolate spatial

rainfall, long-term observed rainfall data were necessary

for analysis in the process. Therefore, the daily rainfall data

of 30 years from 1981 to 2010 were adopted in this study.

IDW

IDW is based on the concept of Tobler’s first law (the first

law of geography) from 1970. It was defined as everything

is related to everything else, but near things are more

related than distant things. The IDW was developed by the

U.S. National Weather Service in 1972 and is classified as

a deterministic method. This is due to the lack of

requirement in the calculation to meet specific statistical

assumptions, thus IDW is different from stochastic meth-

ods (e.g., Kriging and TRA).

The IDW method is also for multivariate interpolation.

Its general idea is based on the assumption that the attribute

value of an unsampled point is the weighted average of

known values within the neighborhood (Lu and Wong

2008). This involves the process of assigning values to

unknown points by using values from a scattered set of

known points. The value at the unknown point is a

weighted sum of the values of N known points. In this

study, the IDW method is used to interpolate spatial data,

Fig. 1 Location of 46 rainfall

stations in the middle of

Taiwan. Blue and red dots
denote the rainfall stations

managed by the WRA and

Taichung Irrigation Association,

respectively. (Color figure

online)
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which is based on a concept of distance weighting. It can

be used to estimate the unknown spatial rainfall data from

the known data of sites that are adjacent to the unknown

site (Bedient and Huber 1992; Burrough and McDonnell

1998; Goovaerts 2000; Li and Heap 2008). The IDW for-

mulas are given as Eqs. 1 and 2.

R̂p ¼
XN

i¼1

wiRi ð1Þ

wi ¼
d�a

i

PN

i¼1

d�a
i

ð2Þ

where R̂p means the unknown rainfall data (mm); Ri means

the rainfall data of known rainfall stations (mm); N means the

amount of rainfall stations; wi means the weighting of each

rainfall stations; di means the distance from each rainfall

stations to the unknown site; a means the power, and is also a

control parameter, generally assumed as two as used by Zhu

and Jia (2004) and Lin and Yu (2008), or as six as set by

Gemmer et al. (2004). Several researches (e.g., Simanton and

Osborn 1980; Tung 1983) have experimented with variations

in a power, examining its effects on the spatial distribution of

information from precipitation observations. For this reason,

a value is conducted in the range of zero to five with an

incremental interval value of 0.1 in this article.

Cross-validation

As IDW is the chosen method to interpolate spatial rainfall

data for this article, cross-validation is essential to validate

critical parameters that could affect the interpolation

accuracy of rainfall data. In this case, a value and search

radius were evaluated for optimal parameters. This insures

the overall utility of the IDW models and enables optimal

data prediction that is comparable to the observed data.

Cross-validation, also called rotation estimation, is a

technique for assessing how generalized the results of a

statistical analysis are with respect to an independent

dataset. Common types of cross-validation methods

include k-fold cross-validation, twofold cross-validation,

repeated random sub-sampling validation, leave-one-out

cross-validation (LOOCV), etc. It is mainly used in settings

where the objective is to gain a prediction, and estimating

how accurately a predictive model will perform in practice

(Devijver and Kittler 1982; Seaman 1983; Geisser 1993;

Kohavi 1995). Cross-validation has been widely applied in

studying the accuracy of prediction methods in precipita-

tion fields. Related research studies include Gyalistras

(2003), Feng et al. (2004), Lloyd (2005), Li et al. (2006),

Hsieh et al. (2006), Chu et al. (2008), Wang et al. (2008),

and Kong and Tong (2008).

Cross-validation can be defined as a method for esti-

mating the accuracy of an inducer by dividing the data into

k mutually exclusive subsets (the ‘‘folds’’) of approxi-

mately equal size. The inducer is trained and tested k times.

Each time it is trained on the data-set minus a fold and

tested on that fold. The accuracy estimate is the average

accuracy for the k folds (Cressie 1993; Kohavi and Provost

1998). In general, LOOCV involves using a single obser-

vation from the original sample as the validation data, and

the remaining observations as the training data. This is

repeated such that each observation in the sample is used

once as the validation data. This is the same as a K-fold

cross-validation with K being equal to the number of

observations in the original sample. Because of considering

tenfold cross-validation is commonly used (McLachlan

et al. 2004). Thus, for the cross-validation purpose of this

study, from the total of 46 rainfall stations, the 12 rainfall

stations that belonged to the Taichung Irrigation Associa-

tion (TIA), within Taichung irrigation area (Fig. 2) were

adopted for this study.

Performance assessment

In this study, the root mean squared error (RMSE) was

adopted to assess the IDW models performances. The

RMSE is also called root-mean-square deviation (RMSD),

a measure frequently used on the differences between

values predicted by a model or an estimator and the values

actually observed from the thing being modeled or esti-

mated. RMSE is a robust measure of accuracy. These

individual differences are also called residuals, and the

RMSE is served to aggregate them into a single measure of

predictive power. The RMSE is applied widely in various

fields as follows: in hydrogeology, RMSE is used to

evaluate the calibration of a groundwater model; in mete-

orology, to see how effectively a mathematical model

predicts the behavior of the atmosphere; in GIS, the RMSE

is one of the measures used to assess the accuracy of spatial

analysis and remote sensing. In this study, the RMSE was

used to evaluate the optimal model of IDW. At the same

time, coefficient of correlation (r) was also used for eval-

uate whether the estimated data fits observed data. The

formulas of RMSE and r are considered by Phogat et al.

(2010) and Traore et al. (2010) and given as Eqs. 3– 4:

RMSEi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

t¼1

RiðtÞ � R̂iðtÞ
� �

s
; RMSEi� 0: ð3Þ

r ¼
Pn

t¼1 RiðtÞ � Ri

� �
R̂iðtÞ � R̂i

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

t¼1 RiðtÞ � Ri

� �2Pn
t¼1 R̂iðtÞ � R̂i

� �2
r ;

1� r� � 1

ð4Þ
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where: R̂iðtÞ means spatial rainfall values interpolated

using IDW in the unknown rainfall station (i); RiðtÞ means

observed rainfall data in the unknown rainfall station (i);

n means numbers of year (t) adopted, n was equal to 30 in

this study.

Analysis procedure

There are 46 rainfall stations used for interpolate rainfall

data by IDW models, adopting cross-validation as an

appropriate method to assess the accuracy of spatial

interpolated rainfall data. 25% of the 46 rainfall stations

were selected for a cross-validation process. The selection

of rainfall stations was based on the conditions of isotropic

and maximum search radius to increase the evaluated

groups in a cross-validation process. For this reason, the 12

rainfall stations that are managed by the TIA were selected

to conduct the model testing of validity using cross-vali-

dation. These 12 rainfall stations were selected in following

of Taichung, Zhunlan, Taian, Yuemei, Ciyao, Yuanli,

Rinan, Dajia, Danan, Dongshi, Fengyuan and Dadu.

Rainfall data required were continuous daily data in the

period of 1981–2010 (30 years). Table 1 shows the dis-

tance between respective rainfall stations, and is used to

calculate the weighting of individual rainfall station to the

objective rainfall station. To determine the optimal search

radii (O.S.R.) of IDW of the 12 rainfall stations, 11 search

radii (10–110 km) were executed (Table 2). The italicized

numbers in Table 2 represent the optimal number of rain-

fall stations nearby the objective that were selected for

daily rainfall interpolation. Figure 3 shows the schematic

diagram of different groups in Taichung rainfall station as

an example. It illustrates that different rainfall stations

within different selected search radii can used for inter-

polate rainfall data. For example, 19 and 45 rainfall stations

falls within the selected search radius of 30 and 70 km for

rainfall data interpolation. We compared and analyzed the

data with seven groups, assessing the relationship between

prediction accuracy with search radius (the number of

selected rainfall stations). This was used for further cal-

culations in cross validation. Finally, RMSE was used for

determining optimal parameters: a value and search radius

of IDW. This is done through data verification testing

which must be conducted subsequent to all procedures of

cross-validation. The data verification testing then com-

pared the data interpolated with observed data. To express

the applicability of IDW models, the results of rainfall data

interpolation using IDW were all determined by r.

Results and discussions

To interpolate the unknown rainfall data, 12 rainfall sta-

tions (Table 2) were assumed as unknowns and rainfall

data estimated using IDW in a common parameter of

a = 0–5.0. As the adopted data expressed as daily rainfall,

all interpolated data results were also expressed as daily

Fig. 2 Distribution of 12

rainfall stations for cross

validation
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Table 1 Distance (km) between 46 rainfall stations to the 12 objective rainfall stations for calculation of the individual weighting

Rainfall stations Taichung Zhunlan Taian Yuemei Ciyao Yuanli Rinan Dajia Danan Dongshi Fengyuan Dadu

Taichung – 23.2 20.6 18.4 20.6 32.8 25.9 23.2 14.3 18.4 12.0 14.5

Zhunlan 23.2 – 8.2 15.0 18.1 23.3 19.5 21.6 10.5 7.0 13.3 34.0

Taian 20.6 8.2 – 7.0 9.9 16.6 11.7 13.4 12.7 11.7 8.7 28.4

Yuemei 18.4 15.0 7.0 – 3.5 14.6 7.8 7.3 16.1 16.7 7.5 22.9

Ciyao 20.6 18.1 9.9 3.5 – 12.3 5.3 3.7 19.6 20.3 10.7 22.8

Yuanli 32.8 23.3 16.6 14.6 12.3 – 7.0 10.8 29.1 28.2 21.9 34.0

Rinan 25.9 19.5 11.7 7.8 5.3 7.0 – 4.7 23.3 23.2 15.3 27.5

Dajia 23.2 21.6 13.4 7.3 3.7 10.8 4.7 – 23.3 24.0 14.2 23.1

Danan 14.3 10.5 12.7 16.1 19.6 29.1 23.3 23.3 – 4.2 9.6 27.4

Dongshi 18.4 7.0 11.7 16.7 20.3 28.2 23.2 24.0 4.2 – 11.8 31.1

Fengyuan 12.0 13.3 8.7 7.5 10.7 21.9 15.3 14.2 9.6 11.8 – 20.7

Dadu 14.5 34.0 28.4 22.9 22.8 34.0 27.5 23.1 27.4 31.1 20.7 –

Baileng 24.6 17.4 23.9 28.8 32.3 40.2 35.4 36.1 13.2 12.2 22.9 39.0

Nanchuang-1 59.0 36.0 39.2 44.7 45.6 39.0 42.4 47.0 46.3 42.3 47.7 67.5

Shanhuhu 65.8 43.7 45.3 49.8 50.0 41.1 45.9 50.6 54.1 50.3 54.0 72.6

Taho 58.2 35.9 37.9 42.7 43.2 35.3 39.5 44.2 46.4 42.5 46.5 65.6

Tatan 55.6 35.9 35.1 38.0 37.5 27.1 32.8 37.4 46.0 42.9 43.5 60.2

Henglungshan 45.7 22.4 27.2 33.5 35.3 32.1 33.3 37.5 32.4 28.2 35.0 55.5

Tahu-1 35.7 13.1 16.2 22.3 24.0 22.0 22.3 26.3 23.5 19.8 24.4 44.6

Hexing 47.9 25.4 27.8 33.1 33.9 27.9 30.8 35.4 35.9 32.1 36.3 55.8

Sanyi-2 30.6 13.1 10.1 14.0 14.7 12.2 12.2 16.5 21.8 19.5 18.6 36.8

Nanshishan 48.9 32.2 29.2 30.6 29.4 18.0 24.3 28.7 41.3 38.9 37.0 51.8

Tapingtien 30.9 16.5 11.4 13.0 12.6 7.8 8.9 13.5 24.0 22.3 19.0 35.4

Shuanychi-2 27.7 8.2 16.4 23.1 26.3 31.0 27.7 29.8 13.5 9.3 20.2 40.2

Hsiangpi-1 35.5 13.1 20.3 27.3 29.9 31.3 29.8 33.0 21.4 17.2 26.4 47.0

Sungan 41.1 18.4 25.0 31.9 34.3 34.1 33.6 37.2 27.0 22.8 31.7 52.4

Choulan-2 21.6 2.0 6.5 13.1 16.3 22.3 18.1 19.9 9.5 6.6 11.4 32.1

Hsuenling 37.4 20.0 28.2 34.9 38.1 41.9 39.2 41.6 23.5 20.0 31.5 50.9

Toupienkeng 13.2 21.8 24.0 25.6 28.9 39.8 33.4 32.2 11.6 14.9 18.2 27.5

Cuiluan 52.7 40.3 48.4 54.7 58.1 62.9 59.8 61.8 40.9 38.4 50.1 67.1

Liufenliao 25.1 46.9 45.7 43.4 45.1 57.3 50.4 46.9 36.6 40.7 37.2 27.0

Tsaotun-4 19.5 40.6 39.7 38.0 40.0 52.3 45.3 42.2 30.2 34.2 31.4 24.4

Peishan-2 27.7 36.6 40.2 42.2 45.4 56.3 50.0 48.8 27.5 29.7 34.8 40.1

Chingliou-1 28.7 29.8 35.2 38.8 42.3 51.7 46.2 45.9 22.8 23.6 31.8 42.8

Toupien 21.7 43.3 38.1 32.6 32.5 43.3 37.1 32.5 35.7 39.7 30.1 9.8

Wanhsing-2 34.8 57.7 53.3 48.2 48.3 59.2 53.0 48.5 49.0 53.2 44.9 25.5

Lungshen Bridge 45.0 58.9 61.5 62.3 65.1 76.8 70.1 68.0 49.2 52.0 54.8 53.2

Chichi-2 36.9 54.0 55.3 54.9 57.4 69.5 62.6 60.0 43.7 47.1 47.8 43.3

Tuntou-2 55.9 75.9 75.9 74.3 76.2 88.5 81.5 78.2 65.4 69.1 67.8 57.6

Wangxiang 63.6 77.2 80.1 81.0 83.8 95.5 88.8 86.6 67.7 70.3 73.5 71.0

Tungpu 69.5 83.5 86.4 87.1 89.8 101.6 94.9 92.6 74.0 76.6 79.7 76.4

Hsiluan 54.0 67.0 70.1 71.1 73.9 85.5 78.9 76.9 57.6 60.1 63.6 62.2

Neimaopu-2 53.5 68.7 71.0 71.3 73.9 85.8 79.0 76.6 58.8 61.8 63.9 60.2

Hsilo-2 44.7 67.7 65.0 61.2 62.0 73.8 67.1 62.9 57.8 62.0 56.4 40.0

Hsiaolin-2 62.5 81.7 82.2 81.0 83.0 95.3 88.3 85.1 71.3 74.8 74.2 65.0

Linne-1 44.2 65.4 64.7 62.5 64.1 76.4 69.4 65.9 55.0 59.0 56.2 44.7

Unit: km
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rainfall data. Every different group of each rainfall station

was estimated individually using only the observed data

respective to individual rainfall station’s search radius.

After interpolation of daily rainfall levels, data were then

compiled accordingly to create data expressed as ten-day

rainfall, monthly rainfall and annual rainfall.

To identify the optimal parameters of IDW, a value and

research radius, and the minimum RMSE were calculated.

Table 3 shows the minimum RMSE in the forms of both

monthly rainfall and annually rainfall. At the same time,

the O.S.R. and a value were recorded in the condition of

the minimum RMSE. Comparing the annual O.S.R. and

monthly a values, the results showed two phenomena.

Firstly, in a viewpoint of annual O.S.R., 75% O.S.R. were

within 10–20 km, there was only one anomaly (80 km)

which occurred in Fengyuan rainfall station; it deemed the

Table 2 Optimal numbers of rainfall stations evaluated by different search radii (10–110 km) of 12 objective rainfall stations

Group search radius Rainfall stations

Taichung Zhunlan Taian Yuemei Ciyao Yuanli Rinan Dajia Danan Dongshi Fengyuan Dadu

Group 1 (10 km) 0a 4 5 5 4 2 5 3 3 4 3 1

Group 2 (20 km) 7 16 14 13 11 8 10 9 11 14 13 2

Group 3 (30 km) 19 23 24 19 19 16 18 17 23 23 19 13

Group 4 (40 km) 27 29 30 28 27 25 27 25 28 29 29 21

Group 5 (50 km) 34 34 34 34 34 29 31 33 36 34 34 28

Group 6 (60 km) 41 37 36 36 36 34 35 35 41 38 39 35

Group 7 (70 km) 45 41 39 39 39 36 38 39 43 42 42 42

Group 8 (80 km) 43 42 42 42 39 41 42 45 45 45 45

Group 9 (90 km) 45 45 45 45 42 44 44

(Group 10 (100 km) 44 45 45

Group 11 (110 km) 45

Number of groups 7 9 9 9 9 11 10 10 8 8 8 8

Optimal number of stations 7 4 14 19 4 8 5 9 11 4 45 21

a No any rainfall stations within the effect radius

70 km, 45 rain gauges 

60 km, 41 rain gauges 

50 km, 34 rain gauges 

40 km, 27 rain gauges 

30 km, 19 rain gauges

20 km, 7 rain gauges

10 km, 0 rain gauges

Search radius 

Taiwan Strait 

Taichun
rainfall station

Fig. 3 Schematic diagram of

rainfall station groups of

different search radius—use

Taichung rainfall station for

example
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use of numerous rainfall stations unnecessary for data

interpolation under most conditions. Nevertheless, the

greater result accuracy occurred when only four to five

rainfall stations were considered such as Zhunlan, Ciyao,

Rinan, and Dongshi rainfall stations as opposed to incorpo-

rating data from all 45 rainfall stations. A similar trend also

occurred with monthly rainfall levels. The results revealed

that the interpolation accuracy of rainfall was greater with

increasing rainfall stations and to an optimal up-limit.

However, the interpolation accuracy can become inferior

when the number of rainfall stations considered exceeds the

optimal value. In all cases of this article, when considering

all 45 stations, less than 20 stations, and less than 10 stations,

the optimal number of rainfall stations 8, 83 and 58%,

respectively. Excessive number of rainfall stations consid-

ered for interpolate rainfall could cause the data to become

meaningless. Such results are similar to previous researches

such as those conducted by Li et al. (2006), Lin and Yu

(2008), and Chu et al. (2008) which the optimal number of

rainfall stations were 10, 13 and 15 respectively.

Table 3 Optimal parameters of IDW for interpolation of spatial rainfall data

Rainfall

stations

Item Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. Annual

Taichung RMSE 5.7 22.0 20.8 35.5 61.9 79.2 104.5 73.5 59.5 10.8 3.3 9.8 41.2

a 2.7 0.7 0.1 0.1 0.1 2.4 0.1 0.1 1.6 0.1 1.9 2.3 0.1

O.S.R. 30 30 20 20 20 70 20 20 30 20 20 50 20

Zhunlan RMSE 7.3 14.6 12.9 30.9 56.3 54.4 61.4 73.2 24.7 13.1 5.1 8.0 31.8

a 1.8 1.0 1.6 1.2 0.2 1.0 1.1 1.2 2.1 2.0 0.5 1.5 0.9

O.S.R. 20 10 50 30 10 10 10 40 70 20 10 10 10

Taian RMSE 6.6 28.5 20.1 25.3 45.9 82.4 57.8 73.5 36.7 9.7 7.7 7.4 34.8

a 3.2 1.7 1.8 0.1 1.8 2.7 2.0 1.5 1.2 5.0 4.0 2.2 2.8

O.S.R. 10 20 20 10 20 20 30 50 30 10 10 10 20

Yuemei RMSE 7.8 17.5 15.7 29.2 58.0 99.1 94.5 79.2 37.8 20.5 5.0 7.0 42.4

a 1.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1.1 1.6 0.1

O.S.R. 40 30 40 30 30 40 30 90 30 40 20 90 30

Ciyao RMSE 16.3 22.0 30.1 21.4 67.1 119.9 52.8 88.9 39.4 9.8 6.3 8.4 41.2

a 0.1 5.0 0.7 0.1 4.5 1.8 5.0 3.7 5.0 5.0 0.2 0.1 4.7

O.S.R. 20 10 20 10 10 10 10 10 90 20 10 10 10

Yuanli RMSE 10.2 26.8 31.6 73.6 56.9 48.3 66.5 98.9 40.9 18.0 20.4 11.3 44.9

a 5.0 5.0 1.4 5.0 5.0 5.0 0.1 5.0 1.9 0.1 0.1 5.0 5.0

O.S.R. 10 20 20 10 20 10 10 10 20 10 30 10 20

Rinan RMSE 13.2 21.1 23.4 25.2 41.3 52.9 42.6 48.7 141.1 5.3 7.4 6.2 38.1

a 0.1 0.6 1.3 0.1 0.1 5.0 5.0 5.0 5.0 5.0 0.5 2.9 5.0

O.S.R. 10 20 10 10 10 10 10 10 10 60 10 10 10

Dajia RMSE 7.1 49.7 19.1 43.9 45.0 71.2 61.8 88.2 32.1 8.2 9.5 8.0 38.5

a 0.7 0.1 0.1 1.3 0.4 1.3 2.0 2.5 1.7 1.7 0.3 1.6 1.5

O.S.R. 10 20 10 30 20 20 20 20 30 30 10 60 20

Danan RMSE 8.0 15.4 29.1 25.9 36.8 77.3 76.1 85.6 47.4 12.4 11.0 14.6 38.2

a 3.1 0.1 0.1 2.0 1.8 3.7 3.2 0.9 1.9 0.8 3.2 0.1 2.3

O.S.R. 20 10 20 40 20 30 20 10 20 10 20 20 20

Dongshi RMSE 6.2 17.4 25.4 49.3 35.7 53.0 49.9 110.9 43.3 15.9 6.9 4.9 37.5

a 2.1 1.1 2.0 5.0 2.3 1.9 0.1 5.0 2.1 5.0 0.5 1.0 2.1

O.S.R. 70 20 20 10 30 10 10 10 10 60 10 70 10

Fengyuan RMSE 6.4 14.4 20.3 21.8 40.8 88.0 77.4 80.5 27.2 6.8 5.2 6.9 35.3

a 1.0 0.1 3.2 3.7 0.9 3.8 3.1 1.2 3.0 1.1 2.3 0.6 3.1

O.S.R. 20 10 30 20 80 10 10 30 10 40 20 20 80

Dadu RMSE 16.3 10.5 15.0 23.4 41.8 40.8 49.5 65.9 48.1 8.0 4.4 7.3 29.5

a 0.3 4.9 0.6 2.0 0.1 3.6 0.1–5.0 5.0 3.9 0.1-5.0 1.2 1.8 4.4

O.S.R. 20 40 20 20 20 30 10 30 40 10 20 30 40

O.S.R. optimal search radius
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The second phenomenon was that the optimal a value

varied greatly from zero to five. There was only a 1.92%

probability met and that the optimal a was equal to 2.0. It

revealed that the prediction accuracy of rainfall could not

the optimal when using a value at 2.0. Even at a 2.0 a
value, it is only a general consent but cannot be considered

scientific. The result in this article have identical views

with several researches including one by Chu et al. (2008)

reported the optimal a value was equal to 3.31 when 15

rainfall stations were considered to measure a case of

Gansu, China. Wang et al. (2008) also reported a case in

China where the prediction accuracy of annual rainfall had

the highest significance when the a value was considered in

the range of three to five. However, Dirks et al. (1998)

Fig. 4 RMSE variation of

different search radii

(10–110 km) and a value (0–5)

of 12 rainfall stations
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showed that the exact choice of the numerical value of the

power has minimal effect on the resulting errors providing

data using the a values within the range of 1.5–4. It was an

inconsistent argument with this article, because several

optimal a values of this article occurred in the range 0–1.5

and even at 4–5. Table 2 also showed that the annual

RMSE existed in the range of 29.5–44.9. Figure 4 displays

a series of 12 sub-diagrams on the RMSE variation at

Fig. 5 RMSE variation of

different search radii

(10–110 km) using annual

optimal a value in each month

of 12 rainfall stations
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different search radii (10–110 km) and a value (from zero to

five with an increment interval of 0.1). The finding was a

large RMSE variation of different groups (search radius)

occurred when a approach zero, the RMSE variation also

reduced with the increase in a. This showed that the mini-

mum variation occurred at the largest a value, regardless of

the number of rainfall stations used for interpolation. How-

ever, the minimum variation of RMSE remains uncertain on

based of the optimal a and search radius. Therefore the

optimal a and search radius must be further measured.

Figure 5 diagrams the RMSE variation of different

groups using annual optimal a value in each month. These

results show that all 12 rainfall stations follows the same

trend: the RMSE value was relatively lower in dry seasons

(from October to April) than in flood seasons (from May to

September), it denoted that the data obtained during dry

seasons are more accurate than in flood seasons. This point

of view in this study is consistent with the study done by

Kong and Tong (2008). It would therefore consider that

spatial rainfall interpolated in flood season is inferior to the

data interpolated during dry seasons due to extreme rainfall

events. However, another research had indicated that IDW

was better than kriging and suggested for spatial rainfall

prediction in summer (Hsieh et al. 2006). The relationship

Fig. 6 Scatter plots of monthly interpolation of spatial rainfall data
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between the interpolated rainfall values and the true

observed data was also evaluated. Figure 6 showed a sig-

nificant accuracy of the predicted data during low rainfall

value, and the deviation increased gradually with increased

rainfall. The trend could explain the cause of high RMSE

values occurring during flood seasons (Fig. 5). The

phenomenon implied large deviations were caused from

extreme rainfall events in the flood season.

Finally, for the purpose of evaluating the suitability of

using IDW for interpolated data, daily rainfall data inter-

polated were accumulated into 36 ten-day rainfall values

from 1 year, and was compared with the observed data.

Fig. 7 Comparison of

observation and interpolation of

spatial rainfall data using

optimal monthly and annual a
values
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The coefficient of correlation (r) was utilized as an indi-

cator to evaluate the fittingness of IDW. Cross-validation

methods were applied to 12 optimal monthly a values and a

single annual one on an individual basis. The r can be

expressed as rm and ra. 30-years worth of average data

(1981–2010) presented in the form of 10-day interpolated

rainfall were compared with observed data in Fig. 7. The

result showed that rm and ra were all higher than 0.95 in 12

rainfall stations. It was evident that, rainfall interpolations

using IDW showed significant similarities with the

observed data, either using optimal monthly a values or as

independent annual values. Therefore an argument can be

drawn from this study: that IDW is a suitable method for

rainfall interpolation under the conditions that optimal a
and search radius must be measured.

Conclusion

In this article, the authors have three findings about using

IDW for interpolate spatial rainfall: (i) The predicted

accuracy of rainfall interpolated can be improved through

the a value adjustment, and that the a value usually is not

equivalent to two. Therefore, for the purpose of increasing

prediction accuracy, searching an optimal a value as a

preparation step is necessary. (ii) The number of known

rainfall station is also another influential parameter; most

cases show that the prediction accuracy increases with the

increasing numbers of known rainfall station. However, the

accuracy of rainfall data interpolation could be reduced by

the interference from the use of excessive rainfall stations.

Nevertheless, radius of influence is important to effective

interpolation of rainfall data. The optimal result is based on

only using rainfall stations within the radius of influence.

(iii) Application of IDW for spatial rainfall data interpo-

lation, results show the prediction accuracy are better

during dry seasons (October to April) than in flood seasons

(May–September). It reveals that IDW has significant

prediction ability in small rainfall events than in extreme

rainfall events. In summary, through analyzing the opti-

mization steps of a value and radius of influence, IDW is

deemed as a suitable spatial interpolation method of

rainfall.
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