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Abstract There has been an increasing interest to employ

crop growth simulation models for taking decision on

irrigation water management. The effectiveness of such

decisions mainly lies on the efficiency of the model in

simulating the crop growth and the yield, which are

influenced by the value of the parameters of the model.

Therefore, calibration of such models is necessary before it

can be employed for any application. This study proposes

an auto-calibration procedure for ORYZA2000, a rice crop

growth simulation model, for its application in South India.

The data employed for calibration is taken from a field

experiment conducted for 2 years in an experimental farm

in South India. The ORYZA2000 model was integrated

within Genetic Algorithm optimizer, which calls the sim-

ulator during each generation to evaluate the objective

function. The auto-calibrated model was tested for its

performance using a validation data set from the same

experimental data. The results showed that the calibrated

ORYZA2000 model is capable of simulating the full irri-

gation and water stress condition of rice crop effectively,

and can be used to develop deficit irrigation management

schedules.

Keywords Rice crop � Crop growth model �
ORYZA2000 � Genetic algorithm � Parameter estimation

Introduction

Agriculture is the world’s largest user of water in terms of

irrigated volume. The growing competition for water

between the agricultural and non-agricultural sectors has

increased the concern for sustainability of the irrigated

agricultural system. The need for increasing agricultural

production demands an increase in the cropped area

regardless of the availability of water resources for irriga-

tion; thereby make the water a limiting factor in many of

the irrigation projects. The great challenge for the coming

decades will be the task of increasing food production with

less water, particularly in countries with limited water and

land resources. Therefore, improved water management

practices, especially methods to improve the water use

efficiency, are warranted in the irrigation sector.

The per capita water availability in India is declining

continuously, and is likely to reach the stress/scarcity levels

in some regions within the next few years. This has lead to

injudicious abstraction of surface and ground water

resulting in several problems including rapidly declining

water table levels and salt water intrusion in coastal areas.

The increased frequency of extreme events (especially

drought) may further lead to unavailability of water to meet

current irrigation demands. The strategy for water alloca-

tion and use of irrigation water in the south Indian systems

has been neither demand based nor supply based (Moh-

anakrishnan 1990). Seasonal and in-seasonal allocations

depend on the resources available, crop seasons, and pri-

orities for water allocations prevailing in the particular

location of the system. The irrigation engineers make the

allocation decisions according to the ‘water duty’ specified

at the heads of the main and branch/distributary canals in

the command area (Pundarikanthan and Santhi 1996).

While this kind of water allocation is ideal in situations

where sufficient amount of water is available, the current

water availability in the country, which is a deficit situa-

tion, warrants an optimal water management strategy to

improve the current food production.
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Optimal irrigation scheduling under deficit conditions is

highly complex since it depends on the interaction of

physical constraints of the irrigation system, soil moisture

availability at the time of irrigation, growth stage of the

crop, effect of previous and subsequent irrigations on crop

growth and yield, and nature of weather conditions

(Soundharajan and Sudheer 2009). Traditionally, yield

reduction models based upon evapotranspiration (ET)

ratios (e.g., Doorenbos and Kassam 1979; Jensen 1968)

have been employed by many researchers for deficit irri-

gation management (Vedula and Mujumdar 1992; Kumar

et al. 2006). However, these models have two major lim-

itations: (i) they cannot provide crop yield in absolute

terms and (ii) they do not have endogenous optimization

capacity (Brumbelow and Georgakakos 2007). Yet another

concern is that most of the ET ratio based yield reduction

models consider crop yield reduction as a linear function of

crop ET within a stage of growth. Researchers have inte-

grated optimization schemes with ET ratio based yield

reduction models to arrive at optimal deficit irrigation

schedules (Rao et al. 1988; Paul et al. 2000; Prasad et al.

2006). These methods employ crop water production

functions on different crop growth stages, which can

optimize the total water requirement for different stages of

crop growth. Therefore, identification of the timing of

irrigation application becomes difficult.

Recent developments in simulation of bio-physical

models have given the opportunities for simulating the crop

growth and development in the field conditions. Ade-

quately calibrated and validated crop growth simulation

models provide a systems approach and a fast alternative

method for developing and evaluating agronomic practices

that can utilize technological advances in limited irrigation

agriculture (Saseendran et al. 2008). A few researchers

have employed crop growth simulation models for irriga-

tion scheduling (Rao and Rees 1992; Talpaz and Mjelde

1988; Soundharajan and Sudheer 2009) and the results

were encouraging. Nonetheless, the accuracy of process

oriented crop growth models depends on conceptual rep-

resentation of physiological processes and parameter val-

ues used in the mathematical representation (Zhai et al.

2004).

Many of the currently used crop growth models are

highly complex and are generally characterized by a mul-

titude of parameters (Varella et al. 2010). Due to the var-

iability in agro-climatic zones and the specific cultivars, the

value of many of these parameters will not be exactly

known. Further, many of them may not be directly mea-

surable. Therefore, in most cases model calibration is

necessary. Model calibration helps reduce the parameter

uncertainty, which in turn reduces the uncertainty in the

simulated results. During a model calibration, selected

parameters are allowed to vary within predefined bounds,

until a sufficient correspondence between the model out-

puts and actual measurements are obtained. The actual

measurements for calibration of crop growth models come

from the field level experiments. However, generally the

experimental data may not be long enough, for accurate

estimation of model parameters, because experimentation

on crop systems is necessarily lengthy and expensive in

terms of land, equipment, and manpower. In addition,

when the number of parameters in a model is large (either

due to large number of sub-processes being considered or

due to the model structure itself) the calibration process

becomes complex and computationally extensive (Cibin

et al. 2010). In such cases, sensitivity analysis (SA) is

helpful to identify and rank parameters that have significant

impact on specific model outputs of interest (Saltelli et al.

2000). In general, SA is employed prior to the calibration

process in order to identify a candidate set of important

factors for calibration so that complexity of calibration

process can be reduced.

The objective of the current study is twofolds: (i) to

carry out global SA (GSA) of a rice crop growth simulation

model, ORYZA2000 (Bouman et al. 2001) and (ii) to

develop and demonstrate an auto-calibration procedure for

the ORYZA2000 model for applications in South India.

The parameters of ORYZA2000 model are optimized and

validated using the data collected from field experiments

conducted in three seasons in an agricultural research farm.

The remainder of the article is organized as follows. Fol-

lowing this introduction, a brief description about the

models and optimization algorithm are presented. Also, the

method of SA employed in this study is described in detail.

Subsequently the experimental set up and the field data

employed in this study are discussed, followed by the

discussion on results of the SA and the auto-calibration.

Materials and methods

In this study, the optimal values for the parameters of

ORYZA2000 model were estimated by integrating the

model within an optimization algorithm, thereby facilitat-

ing an auto-calibration framework. The framework used

the data collected from field experiments conducted in

three seasons and different treatments. The details of the

field experiments, crop growth model, optimizer, and the

auto-calibration framework are discussed in the following

sections.

Crop growth simulation model—ORYZA2000

ORYZA2000 is an eco-physiological crop growth model

that simulates the growth, development, and water balance

of rice in situations of potential, water-limited and
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nitrogen-limited conditions on a daily basis. While there

are a few other crop growth models for rice that are

available (e.g., RICEMODE (McMennary and O’Toole

1985), WOFOST (Boogaard et al. 1998)), the ORYZA2000

has been extensively used and tested for its efficiency in

water limited conditions, and the results were encouraging

(Belder et al. 2004, 2007; Feng et al. 2007; Arora 2006),

and therefore is considered in the current study.

In ORYZA2000 model, several modules such as for

aboveground crop growth, ET, nitrogen dynamics, and soil–

water balance, etc., are combined to simulate the crop

growth under different production conditions. The water

dynamics are simulated by a one-dimensional multi-layer

soil water balance module, which can simulates soil water

balance for different growing conditions. The model follows

a daily computation scheme for the rate of dry matter pro-

duction of the plant organs and phenological development.

By integrating these rates over time, dry matter production

and development stage are simulated throughout the grow-

ing season (Bouman and van Laar 2006). Daily dry matter

production is related to net radiation, temperature, and leaf

area index (LAI). The carbohydrates produced during the

crop growth are shared among roots, leaves, stems, and

panicles using partitioning factors along the development

stages, based on daily heat units and photoperiod. From

flowering onwards, leaf loss rate is simulated from an

experimentally derived loss rate factor, which is a function

of development stage and green leaf biomass (BM). A

detailed explanation of the model along with the program

source code is given in Bouman et al. (2001) (also are

available at www.knowledgebank.irri.org/oryzabeta). The

ORYZA2000 model assumes that the crop is well protected

against diseases, pests, and weeds, and consequently the

model does not consider the yield reduction due to these

factors.

In order to simulate the crop growth, the model requires

inputs of management practices, soil properties, and

weather data in addition to crop parameters. Except the

crop parameters, all of these inputs can be directly obtained

from field experiments. The required management prac-

tices are crop variety, spacing or plant population, trans-

planting depth, nursery duration, and fertilizer and

irrigation application. Soil properties required are volu-

metric soil water content at saturation, field capacity (FC)

and wilting point and corresponding soil water potential,

depth of puddled soil, and saturated hydraulic conductivity

of the soil. The weather data include the rainfall and

temperature during the growing season. The crop param-

eters include phenological development parameters and

many other parameters related to the process of crop

growth, and most of them can be obtained from literature.

However, the cultivar specific parameters such as devel-

opment rates, partitioning factors, relative leaf growth rate,

specific leaf area, and leaf death rate are to be calibrated

using experimental data (Bouman et al. 2001).

The parameters of the ORYZA2000 that are to be cal-

ibrated, specifically for the variety and environment under

consideration, were identified from Bouman et al. (2001).

A list of these parameters along with their recommended

range of values is presented in Table 1. These parameters

take different values at different development stage (DVS).

In Table 1, the DVS is represented in terms of fraction of

heat unit along the crop growth, where a value of DVS

equal to 2.0 represents maturity. The parameters RGRLMX

and RGRLMN are maximum and minimum relative leaf

growth rate, calculated from the daily increase in temper-

ature sum, which controls the leaf area growth. SLATB is

the specific leaf area, calculated as a function of develop-

ment stage (DVS), which in turn is used to calculate the

leaf growth during linear phase. During the linear phase of

the leaf growth (up to DVS = 0.65), there is a fixed rela-

tion between leaf weight and LAI. LRSTR is the stem

reserve available for growth after the respiration and

growth BM losses. FLVTB, FSTTB, and FSOTB are

fraction of shoot BM partitioned to leaves, stems and

storage organ, respectively. Till panicle initiation

(DVS = 0.65), BM is partitioned to leaves and stems only,

as there is no storage organ component during this phase of

crop growth. During the growth stage between panicle

initiation and flowering, all the three parameters are active

so that the BM is partitioned into all the three components.

After flowering, the total BM (TBM) produced by the plant

is allocated to storage organ only (Bouman et al. 2001).

The relative death rate of leaves (DRLVT) is calculated

from the weight of the green leaves as a function of DVS,

which affects the LAI after flowering. Except RGRLMX

and RGRLMN, other parameters are highly nonlinear.

Bouman et al. (2001) have recommended values for these

parameters for two different rice varieties: IR72 and IR64,

and suggested that the values of parameters for any other

rice variety would be very close to these recommended

values, however, need to be estimated. As there were 18

parameters for the model to be estimated, we performed a

SA in order to minimize the complexity in calibration and

to reduce the uncertainty in the estimated values of

parameters. The Sobol’s sensitivity method (Sobol 1993)

was employed in the current study for this purpose, and the

parameters were optimized using Genetic Algorithm (GA).

Sobol’s SA

Sobol’s method (Sobol 1993) is a variance based GSA

method in which the total output variance produced by any

model within an ensemble is decomposed into variance

caused by each parameter of the model. The method is

described below following Tang et al. (2007).
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Consider a generic model described by:

y ¼ f ðxjhÞ ð1Þ

where f(.) is the function described by the model, y is the

output from the model (crop yield in this study)

corresponding to the inputs x and h is the vector of

parameters of the model. Sobol’s variance decompo-

sition is:

DðyÞ ¼
X

i

Di þ
X

i\j

Dij þ
X

i\j\k

Dijk þ D12...m ð2Þ

where D(y) is the total variance of the output of the model,

Di is the measure of individual variance due to the ith

parameter, Dij is the variance induced due to the interaction

between ith parameter and jth parameter, and m is the total

number of parameters. For this study, the primary interest

was to get each parameters’ individual contribution (first

order indices) to the output and the total contribution (total

order) to the output. The first order and total order Sobol’s

sensitivity indices are defined as:

First order index: Si ¼ Di=DðyÞ ð3Þ
Total order index: STi ¼ 1� ðD� i=DðyÞÞ ð4Þ

where Si refers to the sensitivity of ith parameter to the

model output, STi refers the total order sensitivity that is the

sum of independent and interactive effects of ith parameter

to the output, and D*i is the average variance resulting

from all the parameters, except ith parameter.

The variance terms of the Eqs. 3–5—D, Di, and D*i, are

calculated by numerical integration in Monte Carlo

approximation framework (Sobol 1993, 2001; Tang et al.

2007). The total variance D is the statistical variance of the

output across the simulations. The Monte Carlo approxi-

mation for the variance terms are:

f̂0 ¼
1

n

Xn

s¼1

f ðhsÞ ð5Þ

D̂ ¼ 1

n

Xn

s¼1

f 2ðhsÞ � f 2
0 ð6Þ

D̂i ¼
1

n

Xn

s¼1

f ðha
s Þf ðh

b
ð�iÞs; h

a
isÞ � f̂ 2

0 ð7Þ

D̂�i ¼
1

n

Xn

s¼1

f ðha
s Þf ðh

a
ð�iÞs; h

b
isÞ � f̂ 2

0 ð8Þ

Table 1 ORYZA2000 parameters that influence the crop growth and their recommended range

Parameter DVS Unit Range Process represented

Min Max

RGRLMX �C day-1 0.0001 0.09 Max relative growth rate of leaf area

RGRLMN �C day-1 0.0001 0.09 Min relative growth rate of leaf area

SLATB 0.00 ha kg-1 0.0001 0.09 Parameters of function to calculate specific

leaf area0.16 ha kg-1 0.0001 0.09

0.33 ha kg-1 0.0001 0.09

0.65 ha kg-1 0.0001 0.09

0.79 ha kg-1 0.0001 0.09

2.10 ha kg-1 0.0001 0.09

2.50 ha kg-1 0.0001 0.09

LRSTR – 0.01 0.99 Fraction of allocated stem reserve that

is available for growth

FLVTB 0.00 – 0.01 0.99 Fraction of shoot dry matter allocated to leaves at

corresponding development stages of crop (DVS)0.50 – 0.01 0.99

0.75 – 0.01 0.99

FSTTB 0.00 – 0.01 0.99 Fraction of shoot dry matter allocated to

stems at corresponding DVS0.50 – 0.01 0.99

0.75 – 0.01 0.99

1.00 – 0.01 0.99

FSOTB 1.00 – 0.01 0.99 Fraction of shoot dry matter allocated to storage

organs at corresponding DVS

DRLVT 1.00 day-1 0.001 0.09 Leaf death coefficient as function DVS

1.60 day-1 0.001 0.09

2.10 day-1 0.001 0.09

2.50 day-1 0.001 0.09
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where n defines the Monte Carlo sample size, hs represent

the sampled individual in the unit hypercube, and (a) and

(b) are two different sets of samples. Parameters from the

sample set (a) denoted as ha
s and hb

is denotes ith parameter

is taken from sample (b). ha
ð�iÞs denote all the parameters

from sample set (a) are taken except ith parameter. The

Eqs. 5–8 provide a way to compute the first order and total

order sensitivity of each parameter of the model.

Implementation of SA

The Eqs. 5–8 depict the original Monte Carlo approxima-

tion formulae for estimating the terms in the decomposition

of total variance. However, a robust computation strategy

proposed in Liburne et al. (2006) for the Sobol’s method is

applied in this study for computing the variance terms D,

Di, and D*i, which is as follows:

• Choose a base sample dimension (2000 in this study)

and generate sample using some sampling technique

(Latin Hypercube sampling in this study).

• Split the sampled parameter set into two equal matrices

(A and B) (see Fig. 1).

• Derive two matrices Ci and Di by swapping ith columns

of A and B (see Fig. 1).

• Perform the Monte Carlo simulation of the model using

all the samples in all four matrices (A, B, C, and D),

and compute the model performance index for each

simulation.

• Calculate sensitivity following Eqs. 9–11.

According to Liburne et al. (2006), the first order and

total order equations are:

Si ¼ D̂i

D̂
¼

YðAÞYðCiÞ � f 2
0

YðAÞYðAÞ � f 2
0

ð9Þ

STi ¼ D̂�i

D̂
¼ 1�

YðAÞYðDiÞ � f 2
0

YðAÞYðAÞ � f 2
0

ð10Þ

where, the mean

f0 ¼
1

n

Xn

s¼1

YS
A ð11Þ

Note that the Si and STi can be computed in eight

different ways (Liburne et al. 2006) using Eqs. 9 and 10 by

interchanging the simulation matrix A, B, C, and D in

Eqs. 9 and 10. The average value of these eight ensembles

of sensitivity indices is considered to be the representative

value of sensitivity for the parameter.

The total number of simulations required for this com-

putation is ((k ? 1) 9 n), where k is the number of

parameters and n is the sample size. Consequently in the

current study 38,000 model simulations are performed for

the SA (2,000 samples each for 18 parameters along with

2,000 base simulations).

Optimizer—GA

As discussed earlier, the calibration of the model is a highly

complex, non-linear optimization problem. The objective of

the optimizer in the current study is to identify the optimal

combination of parameters of the model that closely match

the simulated and measured crop yield. The major concern

here is that the objective function of minimizing the error

between the simulated and measured crop yield is not a direct

function of the decision variables (model parameters in this

case). Therefore, despite the existence of a large number of

traditional non-linear programming techniques for solving

this kind of optimization problem, a search based optimizer

is appropriate. In the current study, we employed GA (Hol-

land 1975; Goldberg 1989; Michalewicz 1992) as the opti-

mizer because of its various advantages, which includes their

potential to search the solution from a population of points

(not a single point), use objective function information itself

but not any derivatives, and use probabilistic transitions rules

but not deterministic rules. GA has found a large number of

applications in complex optimization problems in various

branches of science and engineering (Kohler 1990; Bickel

and Bickel 1990; Suckley 1991; Cook and Wolfe 1991). GA

was used for parameter estimation of bio-physical models

(Bulatewicz et al. 2009) and the results were encouraging.

Genetic Algorithm is a random search optimization

algorithm inspired by biological evolution that provides a

robust method for searching of the optimum solution to

complex problems. In a GA, the solution set is represented

Fig. 1 Illustration of parameter matrix formulation in Sobol’s

method. The matrices A and B are the base matrices of sampled

parameters. C and D are derived from A and B by swapping the

column of first parameter
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by a population of strings, which comprises of a number of

blocks each representing the individual decision variables

of the problem. Strings are processed and combined

according to their fitness (objective function value evalu-

ated using the components in the string), in order to gen-

erate new strings that contain the best features of two

parent strings. Strings with the highest fitness have the

greatest chance of contributing to future generations, sim-

ilar to the process of natural selection. Initially GA sug-

gests a set of candidate solutions to the problems, evaluates

the fitness function that is to be optimized, and arrives at

the optimal solution by the genetic operations in sub-

sequent generations. A detailed description about the GA is

beyond the scope of this article, and the readers are referred

to Goldberg (1989) and Michalewicz (1992).

Field experiments

The ORYZA2000 model was calibrated using the data

from field experiments conducted at Tamil Nadu Agricul-

tural University, Coimbatore, India during 2 years (1999

and 2000). The experiments were laid out in a split plot

design with three replications of three different water

applications by growing medium duration rice variety. The

experiments were continued in three consecutive seasons

(June–October 1999 (kharif season), September 1999–

February 2000 (rabi season); June–October 2000) in the

2 years of study (Luikham 2001). The water applications

considered for the experiment were (i) application of 5 cm

irrigation water depth as and when the standing water has

disappeared—no deficit condition (IR1) (ii) application of

5 cm irrigation water depth 1 day after the standing water

has disappeared (IR2), and (iii) application of 5 cm irri-

gation water depth 3 days after the standing water disap-

peared (IR3). Details of the experiments and crop period

are presented in Table 2, which also includes the infor-

mation about rainfall during the crop growth period.

The nutrient supply for the crop was done at full rec-

ommended levels as per the Crop Production Manuel for

the area (TNAU 1994) in order to insure that the crop will

not have any nutrient deficiency during the experiment.

The major properties of the soil in which the crop was

grown is presented in Table 3. Soil information collected

during the experiment were fraction of sand, silt, and clay;

textural class; organic matter (%); soil pH; electrical con-

ductivity (dS m-1); volumetric water content at FC; and

permanent wilting point (PWP), and infiltration rate. Using

these informations, the soil properties such as saturated

hydraulic conductivity, volumetric water content at satu-

ration, and soil moisture tension at different moisture levels

were determined using the pedo-transfer function proposed

by Saxton and Rawls (2006). It may be noted that the

computed values of moisture content at FC and PWP were

closely matching with the measured values.

During the experiments, the dates of sowing, emergence,

transplanting, active tillering (AT), panicle initiation,

flowering, and physiological maturity were recorded in

each experimental plot. In order to determine the total crop

BM and LAI at different stages of crop growth, crop

samples were collected at AT, panicle initiation, flowering,

and maturity. At the time of harvest, yield components

were measured in terms of total crop yield, weight of 1,000

Table 2 Details of experiments on Rice (Oryza sativa)

Location Coimbatore (11�N 77�E)—altitude 426.7 m

Cropping season Kharif 1999 (June–October) Rabi 1999 (October–February) Kharif 2000 (June–October)

Water application IR1, IR2, IR3 IR1, IR2,IR3 IR1, IR2, IR3

Nitrogen splits N1, N2, N3 N1, N2, N3 N1, N2, N3

Cultivar ADTRH 1 CORH 2 ADTRH 1

Sowing date June 10 Sep 30 June 9

Transplanting date July 6 Oct 29 July 4

Panicle initiation date Aug 10 Dec 8 Aug 4

Flowering date Sep 4 Jan 3 Sep 7

Maturity date Oct 10 Feb 8 Oct 6

Duration (days) 120 130 118

Seedlings per hill 1 1 1

Plant population (hills m-2) 50 50 50

Rainfall (mm) 118.4 141 310.8

IR1 application of 5 cm irrigation water depth as and when the standing water has disappeared—no deficit condition, IR2 application of 5 cm

irrigation water depth 1 day after the standing water has disappeared, IR3 application of 5 cm irrigation water depth 3 days after the standing

water is disappeared, N1 7DAT—25.5 kg; 21DAT—49.5 kg; PI—49.5 kg, and FF—25.5 kg, N2 Basal—75 kg; AT—37.5 kg, and PI—37.5 kg,

N3 Basal—37.5 kg; AT—37.5 kg; PI—37.5 kg; and FF—37.5 kg, DAT days after transplanting, PI panicle initiation, FF fifty percent flowering,

Basal 1 day before transplanting, AT active tillering)
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grains and the straw weight. During the period of experi-

ment, the climatic parameters such as values of minimum

and maximum temperature, minimum and maximum

relative humidity, sunshine hours, wind speed, and rainfall

on each day were recorded.

Auto-calibration of ORYZA2000

The procedure of auto-calibration of the model is presented

in Fig. 2 in the form of a flow chart. Initially, the GA

generates candidate models for the decision variables

(parameters) from the feasible region. Using these values

for the decision variables, the ORYZA2000 model simu-

lates the crop growth and yield. The model is provided with

the soil properties observed during the experiment. The

simulated values are used in evaluating the fitness function,

based on which the GA develops the next generation

candidates. The optimization of fitness function is contin-

ued till the maximum number of generation is reached.

Table 3 Soil Properties of the experimental farm

Parameter Value

Soil textural class Clay loam

Clay:silt:sand (%) 39.5:18.5:40.6

hwpðwwpÞ 0.236 (1463 kPa)

hfcðwfcÞ 0.357 (33 kPa)

hsðwsÞ 0.441 (5 kPa)

Ks 1.51 mm h-1

h Volumetric soil water content (fraction); w soil water potential

(kPa); wp, fc, and s are wilting point, field capacity, and saturation,

respectively; and Ks saturated hydraulic conductivity

START

Generation of Initial Population 

Update ORYZA2000 Inputs 
(RGRLMX, LRSTR, FLVTB, FSTTB, 

FSOTB, DRLVT) 

Run ORYZA2000 

Fitness Evaluation 
(Normalized squared error between 
Observed and Simulated Crop Yield, 
Biomass & Leaf Area Index)

Is stopping 
criteria met?

Selection 

Cross over 

Mutation 

Yes

No

Solution: Max relative leaf 
growth rate; biomass 
partitioning to leaf, stem and 
panicle; leaf death rate. 

END

Variable 
Leaf growth parameters (RGRLMX, 
RGRLMN, SLATB) 
Biomass partitioning fraction to Leaf, stem & 
Panicle (FLVTB, FSTTB, FSOTB) 
Leaf death rate  (DRLVT) 

G
A

 O
pe

ra
ti

on
s 

Next Generation of 
Decision Variables  

Observed values of 
Crop Yield, Biomass 
& LAI from field 
experiments. 

Fig. 2 Flow chart of the

auto-calibration in

simulation-optimization

framework
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The average daily percolation rate was fine tuned after

the calibration of the model in order to represent the actual

field conditions by considering the measured values of

water balance components in the experimental field. The

contribution of water through capillary pores to the crop

root zone was not considered, since the water table of the

experimental field is significantly deep. The effective

rainfall during the period of crop growth was computed

using the procedure outlined by Bouman et al. (2001), in

which the any amount of rainfall above the field bund

height is considered to be not supplementing the irrigation.

Results and discussions

Sensitivity of ORYZA2000 model parameters

The Sobol’s SA suggested that nine parameters out of the

total 18 parameters of ORYZA2000 were sensitive for the

cultivars considered in this study. Table 4 presents the

ranking of parameters in their order of sensitivity according

to the value of Sobol’s first order index. The most sensitive

parameter is RGRLMX, which influence the leaf growth of

the crop. The FLVTB, a parameter that facilitates the

transfer of shoot BM to leaf growth in the model

simulation, is found to be the next sensitive one at a growth

stage corresponding to 0.50 DVS, which represents an

active leaf growing stage where more leaf production

occurs. As the death of leaves take place after flowering,

the parameter DRLVT (leaf death rate) at grain filling stage

and later (corresponding to 1.00 DVS and above) is also

found to be sensitive. The parameters LRSTR and FSTTB

(at growth stage corresponding to 1.00 DVS, which is grain

filling stage) are found to be important in the crop simu-

lation as these parameters influence the transfer of BM

from the stem to grain during the filling process in the

model simulation. It is noted that some of the parameters

are not sensitive at all for these cultivars as their sensitivity

index was zero. The results of the SA suggest that cali-

bration should mostly be focused on estimating the values

of the first nine parameters, and therefore only these

parameters are considered for auto-calibration. For the non-

sensitive parameters, the values corresponding to cultivar

IR72 was used, as suggested by Bouman et al. (2001).

Parameter estimation using auto-calibration procedure

The data from the experiments described above corre-

sponding to maximum production condition (no deficit

condition—IR1) was used for estimation of ORYZA2000

model parameters (9 sets of experiments). The remaining 18

sets of experimental data were used for assessing the per-

formance of the model (validation). As mentioned earlier, 9

model parameters, viz. BM partitioning factors (total 4

parameters, stem reserve factor (1 parameter), relative leaf

growth rate (1 parameter), leaf death rate (total 3 parame-

ters), are estimated during calibration of the model. The

measured data during the field experiments were LAI and

TBM at four different stages of growth and the crop yield at

the time of maturity, and were used for computing the fitness

function by the GA during the auto-calibration procedure.

The selection of fitness function in any optimization

problem is crucial in identifying the appropriate values for

the decision variables. In the current study, the decision

variables were the parameters of the ORYZA2000 model.

The model output is in terms of LAI, TBM at different

stages of growth, and the total yield of the crop at the end

of growing season. Typically the model parameters are

usually estimated by solving the minimization problem,

where the sum of squared error between the simulated and

measured values of the model output is minimized. It may

be noted that the three outputs from the model are different

in nature in terms of their unit of expression and the

magnitude of values. Therefore, a proper combining

mechanism has to be selected for considering the error

minimization of all the three outputs together. As suggested

by Wallach et al. (2001), we used the following fitness

function to be evaluated by GA:

Table 4 Sobol’s sensitivity indices for ORYZA2000 model

parameters

Parameter DVS Rank Sobol’s first order index

RGRLMX 1 0.6687

RGRLMN 10 0

SLATB 0.00 10 0

0.16 10 0

0.33 10 0

0.65 10 0

0.79 10 0

2.10 10 0

2.50 10 0

LRSTR 6 0.0261

FLVTB 0.00 9 0.0181

0.50 2 0.0435

0.75 5 0.0284

FSTTB 0.00

0.50

0.75

1.00 8 0.0237

FSOTB 1.00

DRLVT 1.00 3 0.0415

1.60 4 0.0324

2.10 7 0.0252

2.50 10 0
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where, LAI—leaf area index; TBM—total BM (kg ha-1);

Y—yield (kg ha-1); with subscript variables ‘o’ and ‘s’

corresponding to the observed and simulated values,

respectively; ‘i’ refers to the stage of crop growth, ‘j’ refers

to the season number of the experimental data.

The calibrated values of parameters are presented in

Table 5. Note that the phenological development parame-

ters were directly estimated from effective temperature and

observed phenology (dates of transplanting, panicle initi-

ation, flowering and maturity) following Bouman et al.

(2001). It may be noted that the calibrated values of

parameters are lying in between the recommended value of

these parameters for rice varieties IR72 and IR64 (Bouman

et al. 2001).

The effectiveness of the model simulation during cali-

bration and validation are presented in Table 6 in terms of

the performance indices. The performance index used in

this study is NRMSE, which is a ratio of the root mean

square error (RMSE) of the estimation and the observed

average value of the variable. Ideal value of this index is

zero, and any value close to zero indicates a good model

performance (less residual in model output). It can be

observed from Table 6 that the ORYZA2000 model is able

to simulate the total crop yield (Y) reasonably well, as the

NRMSE during calibration as well as validation are close

to zero. It may be noted that the RMSE reported in Table 6

is computed from a total 18 experiment data. A lower value

of RMSE, equal to 287 kg.ha-1 during the validation of the

model, indicates that the parameters that are estimated by

the auto-calibration framework are able to simulate the

crop growth reasonable well in other situations than it is

calibrated for. It can also be observed from Table 6 that the

estimated parameters of ORYZA2000 is effective in sim-

ulating the LAI and the TBM during the validation of the

model, though the NRMSE is slightly on the higher side

compared to that corresponding to the yield.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðxo

i � xs
i Þ

2

n

s

ð13Þ

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðxo

i � xs
i Þ
�
n

q

Pn
i¼1 xo

i
�
n

ð14Þ

where xo
i —observed parameter ‘i’; xs

i —simulated parame-

ter ‘i’; n—number of parameters.

A scatter plot for comparison of the observed and sim-

ulated values of LAI, TBM and the total yield are presented

in Fig. 3a–f for visual examination. It may be noted that the

data points are less scattered are very close the ideal line of

45�. Nonetheless, the LAI (Fig. 3b) and BM (Fig. 3d)

shows a higher scatter in validation compared to the others.

This can be plausibly attributed to the error in simulation at

various stages of the crop growth, which can be better

understood with the data presented in Table 7, which

depicts the performance measures of the model at various

stages of growth.

Note from Table 7 that the RMSE value of LAI at

flowering and maturity in the validation data are close to

each other (1.355 and 1.384, respectively), indicating the

simulation of LAI by the model at these two stages are

similar. This result may plausibly be due to the model

assumption that the entire amount of BM is sent to grain

filling after the flowering, which may not be actually the

case in the field. Therefore, the simulated value of LAI

shows much deviation from the measured, which attributes

to the scattering in the Fig. 3b.

It can also be noted from Table 7 that the NRMSE for

BM simulation at the AT stage (1.85) is much higher than

other growth stages (all are less than unity). It should be

noted that the AT of rice crops takes place after trans-

plantation, and the transplanted crop in the actual field may

take some time to stabilize and establish the growth

(transplantation shock). Since the model assumes contin-

uous growth of the crop even after transplantation, the

transplantation shock may not be appropriately simulated

Table 5 Auto-calibrated values for ORYZA2000 model parameters

Parameter DVS Value

RGRLMX 0.0104

LRSTR 0.755

FLVTB 0.00 0.799

0.50 0.759

0.75 0.100

FSTTB 1.00 0.598

DRLVT 1.00 0.005

1.60 0.015

2.10 0.059

Table 6 Performance measures of simulations of ORYZA2000 using

auto-calibrated values of parameters (for full season)

Parameters Calibration Validation

Mean RMSE NRMSE Mean RMSE NRMSE

LAI 3.32 0.398 0.12 2.91 1.05 0.360

BM

(kg ha-1)

9078 812 0.09 6295 2331 0.370

Y (kg ha-1) 7816 285 0.036 6273 287 0.045
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Fig. 3 Scatter plot of simulated and measured values of LAI (a calibration, b validation), BM (c calibration, d validation), Yield (e calibration,

f validation)
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by the model. This difference in growth rate (between

actual and simulated) may be the plausible reason for high

NRMSE value for BM at the AT stage. This may also

create a bias in simulation of BM along the crop growth,

which may be the plausible reason for the difference

between simulated and measured BM at different stages of

growth (Fig. 3d).

From Fig. 3e, f, it can be observed that the simulated

yield is slightly overestimated compared to the measured

yield during the experiments. This can be plausibly

attributed to the time duration for the flowering to occur in

the actual field. It may be noted that it may take a few

weeks for all the plants to complete the flowering, while

the model considers that the flowering of all plants take

place simultaneously. Since the BM is completely used for

grain filling by the model after flowering, the model may

output a higher yield.

Figure 4 depicts the daily simulation of LAI and TBM

along the crop growth for a typical experiment set up used

for validation of the model. The observed values of these

variables at different stages of growth are also presented in

the Fig. 4, for visual comparison. It is noted from Fig. 4

that the behavior of simulation of LAI and BM accumu-

lation along the crop growth is very well represented in the

model as is evidence by the close values of these variables

at different growth stages.

It is worth mentioning that simulated yield, LAI and BM

using the default values of the parameters (those recom-

mended by Bouman et al. (2001)) for IR72 and IR64

varieties of rice showed large deviation from those

simulated by the model using the estimated parameters,

though the values are close to default values. The yield

simulated by the model, when IR72 parameters are used, is

Table 7 Performance measures of simulations of ORYZA2000 using auto-calibrated values of parameters (stage wise)

Parameters Calibration Validation

AT PI F M AT PI F M

Mean

LAI 0.86 (0.82) 3.08 (2.94) 6.09 (5.90) 3.27 (3.01) 0.73 (0.52) 2.70 (2.56) 5.38 (4.35) 2.82 (1.70)

BM (kg ha-1) 1878 (1469) 4973 (4592) 12316 (11992) 17147 (16801) 603 (1652) 2618 (4255) 8954 (11295) 14494 (15137)

Y (kg ha-1) 7816 (8019) 6273 (6332)

RMSE

LAI 0.308 0.410 0.342 0.503 0.306 0.752 1.355 1.384

BM (kg ha-1) 762 941 770 759 1118 2093 2722 2128

Y (kg ha-1) 285 287

NRMSE

LAI 0.357 0.133 0.056 0.153 0.416 0.278 0.252 0.490

BM (kg ha-1) 0.405 0.189 0.062 0.044 1.85 0.80 0.30 0.14

Y (kg ha-1) 0.036 0.04

Mean the values in the bracket are the average of the simulated values and those outside the brackets are the average of the observed values,

AT active tillering, PI panicle initiation, F flowering, M maturity

200 220 240 260 280
0

3

6

9

12

Le
af

 A
re

a 
In

de
x

Julian Days

 Simulated
 Measured

200 220 240 260 280

0

3000

6000

9000

12000

15000

B
io

m
as

s,
 k

g.
ha

-1

Julian Days

 Simulated
 Observed

Fig. 4 Simulated and measured LAI and BM along the crop growing

period (Kharif 1999, Irrigation Treatment IR2)
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8103.8 kg ha-1, and that corresponding to IR64 parameters

is 5703.9 kg ha-1 against a measured yield of 8,660

kg ha-1. Note that the calibrated model simulated a yield

of 8,910 kg ha-1, which is sufficiently close to the mea-

sured value. Therefore, it can be suggested that a calibra-

tion of the model parameters is essential when a different

variety of rice and cultivar are used in the field.

From the foregoing discussions, it is evident that the

parameters of the ORYZA2000 models can be effectively

estimated for any rice variety using field experimental data

in a simulation-optimization framework. The estimated

parameters of the model show good generalization prop-

erty, and therefore can be used in developing appropriate

irrigation schedules for the crop.

Summary and conclusions

In the current study, an auto-calibration framework is

proposed to estimate the optimal parameter values of

ORYZA2000 model, a rice crop growth simulation model,

using GA. The crop growth simulation model is integrated

within the GA, and field experimental data has been

employed to calibrate the model using the simulation-

optimization framework. Prior to the calibration of the

model, a SA was performed to prune the number of

parameters that are to be calibrated.

The results of the study indicate that the calibrated

ORYZA2000 model was able to effectively simulate the

crop growth under full irrigation and water deficit condi-

tions. During the validation of the model, it is observed that

the simulated yield closely matches with the measured

yield under different experiment treatment. The model was

found to be efficiently simulating the BM production at

various stages of crop growth. It is noted that while there

are 18 parameters for the model, some of them are not very

sensitive to the final yield and can assume the values rec-

ommended by Bouman et al. (2001). The results also

suggest that calibration of the model is necessary as the

simulated values of yield, LAI and BM are showing large

deviation from those values simulated using default values

of the parameters. Overall, the results of the study are

highly encouraging, and the calibrated model could be used

for developing optimal irrigation schedule for rice crop

under various levels of water deficit condition.
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