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Abstract Primate social systems are difficult to charac-

terize, and existing classification schemes have been criti-

cized for being overly simplifying, formulated only on a

verbal level or partly inconsistent. Social network analysis

comprises a collection of analytical tools rooted in the

framework of graph theory that were developed to study

human social interaction patterns. More recently these

techniques have been successfully applied to examine

animal societies. Primate social systems differ from those

of humans in both size and density, requiring an approach

that puts more emphasis on the quality of relationships.

Here, we discuss a set of network measures that are useful

to describe primate social organization and we present the

results of a network analysis of 70 groups from 30 different

species. For this purpose we concentrated on structural

measures on the group level, describing the distribution of

interaction patterns, centrality, and group structuring. We

found considerable variability in those measures, reflecting

the high degree of diversity of primate social organizations.

By characterizing primate groups in terms of their network

metrics we can draw a much finer picture of their internal

structure that might be useful for species comparisons as

well as the interpretation of social behavior.

Keywords Social network analysis �
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Introduction

Recently the literature on animal behavior has witnessed a

boost of publications employing network analysis for the

description of complex social interaction patterns (for

overviews see May 2006; Krause et al. 2007; Croft et al.

2008; Wey et al. 2008; Whitehead 2008). Introduced by

Moreno (1946) in the social sciences in the 1940s, social

network analysis is not an entirely new concept, and also

its application to the study of animal sociality has already

been suggested decades ago (Wilson 1975). The reason for

its renaissance is twofold. First, the need to analyze

dynamics in large technical, economic, and social networks

such as the Internet, the World Wide Web, and global trade

networks led to the development of new concepts and

algorithms; and second, the development of faster and

much more powerful computers allows algorithms that

would have required months or years of processing time a

few years ago to be run on a normal desktop computer

within a reasonable timeframe.

According to Hinde the social structure of a group can

be described ‘‘in terms of the properties of the constituent

relationships and how those relationships are patterned’’

(Hinde 1983, p. 6). While this definition found broad

consent in the scientific community, its implementation in

the research programme was hampered by the complexity

of those patterns and the unresolved question of how

to analyze them. As a consequence, students of animal

behavior focused predominantly on single individuals and

dyads, or restricted themselves to statements about aver-

aged behavioral activities at the group level. Even dyadic
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social interactions within groups bring along considerable

difficulties, as individuals will interact with several other

group members, and likewise their interaction partners will

interact with several others, leading to statistical depen-

dencies that are difficult to deal with. While network

analysis is not a magic bullet that does away with all sta-

tistical problems, it can help to shed light on complex

interactions by considering interindividual dependencies

not as obstacles but as the very subject of investigation.

The social organization of primate groups has received

considerable attention for two reasons. First, as primate

species differ markedly in their organizational structure it

is of interest which environmental factors shaped those

systems, which evolutionary pressures are at work, and

which constraints they burden upon the individual (Crook

and Gartlan 1966; Gray 1985; Wrangham 1987). Insights

won in this area might not least be telling for the evo-

lution of human social organizations and certain aspects

of social behavior (Runciman et al. 1996). Second, the

structure of a group is likely to influence all kinds of

social behaviors, from mating behavior and foraging to

cooperation and social learning. Thus, including the social

structure as an explanatory variable might be crucial for

the understanding of any social behavior (Dunbar 1994;

Hemelrijk 1996).

The most basic approach to define the social organiza-

tion of a primate group might be just to determine the

number and sex of regularly associated conspecifics

(Struhsaker 1969). As a next step, information on the

hierarchy can be included by describing groups as ‘‘egali-

tarian’’ or ‘‘despotic’’ according to how pronounced the

hierarchy in the group is (Sade 1972; de Waal and Lutttrell

1989; Matsumura 1999). Other possible determinants of

the social systems of primates are ecological factors and

life-history traits such as body size, activity, and pattern of

infant care as well as the mating system and spatiotemporal

cohesiveness (Kappeler 1999). However, primatologists

soon felt uneasy with most classification schemes for social

systems when they did not capture the specific features

needed, or when it became evident that certain species did

not fit properly into one of the categories. As a conse-

quence some tried to refine the models by including more

and more distinctions (e.g., Kappeler 1999; Janson 2000;

Koenig 2002), while others argue to abandon this catego-

rization approach at all (Thierry 2008). Here, network

analysis might be more than a straw to clutch at. As it

introduces measures, usually on a continuous scale, that

describe certain structural characteristics, it allows us to get

rid of the categorization schemes: instead of squeezing

species into one of two categories (e.g., ‘‘centralized’’ or

‘‘egalitarian’’) one can give a centralization index for

each species, drawing a much finer and less controversial

picture.

While the potential of these new analytical tools is

definitely very tempting, the prodigious amount of mea-

sures, ratios, and indices leaves the novice puzzling over

which ones to choose. An extensive collection of such

measures is presented by Wasserman and Faust (1994),

although unfortunately more recently developed tools

cannot be found there. Croft et al. (2008) give an excellent

introduction on exploring animal social networks, and

Whitehead (2008) is a must-read for all those seriously

interested in this topic, though he primarily focuses on

analyses based on association data. Here, we focus on those

metrics that might help to characterize the overall structure

of a network of sociopositive interactions such as groom-

ing, contact sitting or social play, which are frequently

recorded in observational studies on primates. In the fol-

lowing we try to explain our choice of measure and why we

believe that these measures are most likely to capture the

specifics of primate networks. Thus, the aim of this paper is

to (1) suggest a set of network measures that we believe to

be useful to characterize interaction patterns within primate

groups and (2) present a global analysis of interaction

networks of 70 primate groups. The latter will be of use to

demonstrate the variability of the social systems within

primates and to reveal which network measures show

interesting disparities. We explore whether measures vary

systematically between taxonomic units and we emphasize

that such a comparative approach can be used to search for

relations between network characteristics and ecological

parameters or life-history patterns.

Methods

The analyzed dataset consists of the sociopositive interac-

tion matrices of 70 primate groups. They were partly taken

from the literature and partly from unpublished material

either collected by the authors or shared by colleagues. The

dataset comprises 30 species of 5 families and 17 genera,

including prosiminans, New World and Old World mon-

keys. Thirty-six groups were kept in captivity, 6 in parks or

larger outdoor enclosures (semi-free-ranging), and 28 were

observed in the wild. The behaviors that we considered

as sociopositive were grooming (45 groups), social play

(1 group), body contact (6 groups), a combination of

grooming and body contact (7 groups), and in 11 cases the

authors gave summarized data of ‘‘socio-positive behav-

ior’’ by pooling two or more of these behavioral categories.

These behaviors have in common that they require close

proximity of the involved individuals, usually over a pro-

longed time period.

Since more than a third of the interaction matrices (all

except grooming) included nondirected behaviors, we

treated all matrices as undirected. The sociomatrices were
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symmetrized by combining them with their transposed

form Msym = M ? M0. Decimal values were transformed

to integers by rounding or scaling multiplication. For our

purpose we defined a group as the set of those individuals

who are directly or indirectly connected with each other

through sociopositive interactions. That means that single

individuals or small subgroups of individuals that never

showed sociopositive interaction with other group mem-

bers were excluded from the sample. In two cases this

procedure led to the removal of a single individual, in two

cases of two individuals, and in one case of an isolated

subgroup of four individuals. This was done for two rea-

sons: first it can be argued that a group is a collection of

animals that interact with each other, and consequently

individuals that do not interact with the others might not be

considered as belonging to the group. Second, and more

importantly, a network is per definition a set of connected

individuals and several network measures do not deliver

meaningful results when applied to disconnected graphs.

Social network analysis is rooted in the mathematical

framework of graph theory. A group of primates can be

represented as a graph (G), consisting of vertices (or nodes)

resembling individuals and edges (or connections) resem-

bling social interactions between them. We can write

G = (V, E), where V is the set of vertices (v) and E the set

of edges (e). A graph can be defined by its adjacency

matrix A whose elements aij take the value 1 if an edge

connects the vertex i to the vertex j and 0 otherwise (with i,

j = 1,…, N, where N is the number of individuals in the

network).

Primate social groups are expected not to differ so much

in the presence or absence of connections between indi-

viduals but rather in the number of interactions between

different dyads. Theoretically we can consider primate

networks as more or less complete graphs, which means

that most of the group members interact with each other,

though some perhaps only very rarely. Missing social ties

might often be due to lack of observation rather that an

indication that certain individuals never interact with each

other (see also Lusseau et al. 2008). Representing the

groups as weighted graphs allows us to acknowledge the

importance of quantitative differences in the relationships

between different individuals. That means that each edge is

assigned a specific weight that derives from the entry in the

interaction matrix representing the strength of a relation-

ship (the frequency of interaction within a dyad). The

matrix W with entries wij specifies the weights on the edges

connecting the vertices (with wij = wji in case of a sym-

metric matrix).

All analyses were carried out using Mathematica 6.0

(Wolfram Research Inc.). Mean values are reported toge-

ther with their standard deviation, and whenever we gave

the median of a measure, we indicated the first and third

quartile in brackets. For the calculation of independent

contrasts phylogenetic distances of the primate species

were taken from Purvis (1995) and completed with data

from Schneider et al. (2001), Cortés-Ortiz et al. (2003),

and Steiper and Ruvolo (2003).

Results

The group sizes of our sample range from 4 to 35, with a

median of 9 (6–16) individuals. These figures are quite

close to those of a rough literature survey of 184 primate

species (Rowe 1996) that suggests a median size of primate

groups of 9 (4–20). However, the median group size is only

a very rough summary measure that does not do justice to

the specifics of any single species.

Density and diameter

The density of a graph gives the proportion of existing

edges (dyadic relationships) relative to the total number

(Wasserman and Faust 1994). For the primate interaction

networks the median density was 0.75 (0.49–0.93) and the

median diameter, as the geodesic distance between the two

vertices which are furthest away from each other (Wass-

erman and Faust 1994), was 2 (2–3), suggesting that the

groups are overall very densely connected. This questions

the usefulness of these metrics to characterize primate

social networks, as they do not yield interesting disparities.

Consequently, also those measures that are based on

topological distances such as average paths length, close-

ness, and betweenness might be of only limited use. Hence,

this corroborates our previously expressed view that a

thoughtful network analysis of primate groups has to

incorporate quantitative differences in interaction fre-

quencies and consequently has to rely on weighted graph

measures.

Degree and vertex strength distribution

The degree k of a vertex is the number of edges that con-

nect to it. The distribution of vertex degrees can give a first

impression of the homogeneity or heterogeneity of a group.

If we also consider the weights of those edges connecting

to a specific vertex, we do not speak of degree but of vertex

strength. The vertex strength s of vertex i is given by:

si ¼
XN

j¼1

aijwij; ð1Þ

where a is the entry in the adjacency matrix and w the

corresponding weight. As a measure that summarizes the

shape of the vertex strength distribution we can calculate
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the skewness h as a ratio of the third to the second central

moment:

h ¼ 1

N

X

i

ðsi � �sÞ3
,

1

N

X

i

ðsi � �sÞ2
 !3=2

: ð2Þ

In 50 out of 70 cases the vertex strength distribution was

positively skewed, with a median skewness of 0.3 (-0.1 to

0.6). This means that a higher number of individuals have a

relatively low number of sociopositive interactions and a

small number of individuals have many sociopositive

interactions. However, while the strength distributions

were generally skewed to the right, we found no

convincing fit with a power-law distribution. We

emphasize the lack of this fit, because it has repeatedly

been stated in a more general context that biological

networks often show degree distributions that follow a

power law (Jeong et al. 2000; Barabasi and Albert 2007).

While this might be true for protein interaction or

metabolic networks, we found no indication for such a

similarity in the primate interaction networks. Practically,

the strength distribution shows how much individuals differ

in their participation in sociopositive interactions. In this

respect the skewness of the strength distribution is related

to degree and strength centrality, which we will discuss

later. The application of these measures is not restricted to

sociopositive interactions but they are equally useful for

analyzing involvement in agonistic interactions.

Edge weight distribution and disparity

While the degree and vertex strength distribution give a

rough picture of the different ‘‘importance’’ of the indi-

viduals within a group, the edge weight distribution reveals

the variation in the quality of social relations: whether all

relations are equally strong in terms of interaction fre-

quencies or whether there are pronounced differences. At

the individual level, social interactions can be distributed

evenly between all interaction partners or unevenly, with

some interaction partners receiving much more attention

than others. This can be visualized easily by the sociograph

or by a histogram of an individual’s edge weights. To

quantify the edge weight disparity Barthelemy et al. (2003,

2005) introduced the quantity Y2(vi) for each individual

i given by:

Y2ðviÞ ¼
XN

j¼1

wij

si

� �2

: ð3Þ

Calculating the arithmetic mean over all Y2(vi) gives the

group-level disparity Y2. If all weights are of the same

order then Y2 should be close to 1/(N - 1). Figure 1 shows

the disparity measure for the primate groups, confirming

the skewed distribution of the edge weights. According to

Barthelemy et al. (2003) the inverse of Y2 can be

interpreted as an estimate of the number of important

edges with high weights. While this interpretation makes

the quantity more tangible, it cannot always be taken

literally as, e.g., a network with one strong connection and

four equally strong intermediate connection could deliver a

disparity measure 1/Y2 = 2.4. Nevertheless, edge weight

disparity seems to be a very useful descriptor for the level

of heterogeneity in social relationships. Again, these

relationships can be of agonistic or affiliative nature.

Centrality

Centrality measures indicate the ‘‘importance’’ (the loca-

tion) of an individual within a social network and on a

global level it serves to better understand group structure.

The definition of this ‘‘importance’’ can be reached tech-

nically by degree, closeness, betweenness, and eigenvector

centrality, among many others. Centrality is a measure that

shows the involvement of an individual in social relation-

ships regardless of their direction (they might be directed

towards it as well as pointing from it to another individual)

(Wasserman and Faust 1994). If the direction of the edges

is taken into consideration, further statements can be made

concerning the prestige (how many edges are pointing

towards this individual) or the sociability (how many

behaviors this individual directs to others) of a given

individual. Which centrality measure will be most useful

depends on the specifics of the measured variable and the

question in mind. Several centrality measures such as

betweenness centrality and closeness centrality are based

on topological distances and might be useful for the anal-

ysis of large and sparse networks such as those observed

in dolphins (Lusseau 2007) but are of limited value for
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Fig. 1 Edge weight disparity, a measure for the homogeneity of the

interactions with all interaction partners, plotted against group size for

all groups (N = 70)
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complete or near-to-complete graphs as we find in prima-

tes. Thus, for the purpose of our study we used degree and

eigenvector centrality, although in the following paragraph

we will also give a short overview of some of the most

commonly used metrics. Software packages for network

analysis sometimes allow the inclusion of edge weights for

the computation of centrality measures. However, these

edge weights are usually interpreted as distance, which

leads to different results than if they were interpreted as

interaction frequencies.

Degree and strength centrality

Individuals with high degree have many relationships with

others and thereby occupy a central location in the net-

work. In our analysis a ‘‘central location’’ for an individual

means that it is involved in most or many affiliative

interactions. If we want to include the effect of edge

weights on the centrality measures we can easily modify

the definition of actor degree centrality (Wasserman and

Faust 1994) by replacing degree with vertex strength

(Barrat et al. 2004). The vertex strength centrality Cs for

vertex vi is given by:

CsðviÞ ¼ si

N � 1
: ð4Þ

This standardized index is independent of group size N,

which enables us to compare this measure across groups of

different sizes. Cs ranges from 0 to 1, with 1 being the

highest possible strength centrality, reached only by the

central individual in a star-like network, and 0 being the

strength centrality of a completely isolated individual

(though the latter were removed from our sample). There

are different methods to derive a group centralization

measure. While Freeman (Freeman 1979) recommends the

use of his general centralization index, Snijders (1981)

suggests the variance of degree centrality as an indicator

for dispersion or heterogeneity. The variance attains its

minimum value of 0 when the vertex strengths of all

vertices are equal, while the maximum value will depend

on the group size N.

In the primate database the highest individual central-

ization index Cs(vi) was 0.92, reached by an individual in a

nearly star-like group of five individuals, while the lowest

of 0.001 was reached by an individual in a group of 33

baboons. In a group-level comparison the variances of the

strength centrality varied between 0.007 and 0.32 (Fig. 2).

Eigenvector centrality

The eigenvector centrality of an individual is based on the

sum of the centralities of its neighbors, which enables an

individual to gain high centrality in two different ways:

it can itself have strong relationships with many other

individuals or be in contact with those individuals that are

most central. While the interpretation of eigenvector cen-

trality is not as intuitive as for degree or strength centrality,

it can be a valuable tool when it comes to processes that

involve the spreading of information within a group

(Ramos-Fernandez et al. 2009) or collective movement

decisions (Sueur and Petit 2008). Technically we can

consider the importance of interaction partners by making

the centrality ci of vertex vi proportional to the average

of the centralities of vi’s neighbors:

ci ¼ 1

k

XN

j¼1

wijcj; ð5Þ

where k is a constant. If we define the vector of centralities

as c = (c1, c2,…,cN), we can rewrite Eq. 5 as kc ¼ Wc;

where it follows that c is an eigenvector of the edge weight

matrix W with eigenvalue k. The eigenvector centrality

is then given by the eigenvector corresponding to the

largest eigenvalue (Bonacich 1972; Ruhnau 2000). The

eigenvector can then be normalized using the Euclidean

norm

cn
i ¼

ffiffiffi
2
p ci

PN
i¼1 c2

i

� �1=2
: ð6Þ

As a group measure for the whole graph we can

calculate a centralization index Ce as

Ce ¼
PN

i¼1 ðc
n;max
i � cn

i Þ
max G 2 Gn

PN
i¼1 ðc

n;max
i � cn

i Þ
� �; ð7Þ

where the nominator is the difference in the normalized

centralities to the maximal value occurring in the graph

cn;max
i ; and the denominator gives the maximal difference

maxG with respect to all possible graphs Gn. As follows

from Eq. 7 the centralization index Ce lies in the interval

[0,1]. While for topological graphs the star with E ¼
fðv1; viÞji ¼ 2; . . .;Ng produces the maximal difference,

there is no simple solution to find maxG for weighted
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Fig. 2 Group vertex strength centralization index as a measure of

centrality for each group, plotted against group size
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graphs. If we take the topological star as the denominator,

we allow for centralization indices[1, however, the index

is still easy to interpret: graphs with a centralization index

[1 are more centralized as a topological star. We could

refer to such graphs as ‘‘supercentral.’’ Figure 3 gives the

eigenvector centralization indices for the 70 primate

groups. In general, the primate groups showed relative

high centralization, with a mean eigenvector centralization

index of 0.68 ± 0.28. Nine groups qualified as supercen-

tral, with an eigenvector centralization index of larger than

1. The highest centralization of 1.5 was reached by a group

of 35 baboons (Fig. 4f).

Other centrality measures

Closeness centrality measures how close an individual is to

others in the network in terms of its ability to quickly

interact with others. It is assessed on the basis of geodesic

distances and does not only depend on direct but also

indirect edges. The shorter the geodesics of an individual,

the closer it is to its group members (Wasserman and Faust

1994).

Betweenness is a measure of the extent to which a

vertex lies on the paths between others and therefore has

control over the information flowing between others

(Newman 2005). This closeness measure considers the fact

that interactions between two individuals do not need to

depend on direct connections but are also possible via other

individuals that lie on paths between these two individuals.
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Fig. 3 Eigenvector centrality for all groups (N = 70) plotted against

group size. The solid line at y = 1 indicates the eigenvector centrality

for the star as the most centralized topological structure
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2
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Fig. 4 Graph representation of six example groups: vertices represent

individuals and edges represent relationships between individuals.

The thickness of the edges is proportional to the edge weight.

Different symbols for the vertices indicate assignment to different

subgroups based on an algorithm developed by Newman and Girvan

(2004). Graphs represent groups of a captive squirrel monkeys,

Samiri sciureus (Vaitl 1977), b wild adult male chimpanzees, Pan
troglodytes (Nishida and Hosaka 1996), c wild wedge-capped

capuchin monkeys, Cebus olivaceus (O’Brien 1993), d captive

long-tailed macaques, Macaca fascicularis (Butovskaya et al.

1996), e wild bonnet macaques, Macaca radiata (Koyama 1973),

and f wild baboons, Papio papio (Sugawara 1979). Examples were

chosen to demonstrate groups with high (?) or low (-) values of the

following network metrics: edge weight disparity (Y2), network flow

(NF), eigenvector centrality (Ce), community modularity (Q),

strength assortativity (bw), and vertex strength centralization (Cs)
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Betweenness and closeness centrality are frequently

employed in network analysis; however, as they are strictly

topological measures calculated on the basis of geodesics,

they are of only limited use to analyze dense networks of

small groups.

Community modularity

Community modularity is a structural graph measure

introduced by Newman and Girvan (2004). It measures the

degree of fragmentization of a group into subgroups by

comparing interaction frequencies within and between

subgroups. The distinction into subgroups can be based on

specific characteristics of the animals such as sex, age class

or matriline, or one can try to find the partitioning into

subgroups that maximizes the community modularity (e.g.,

Lusseau and Newman 2004; Wolf et al. 2007). For the

latter we use an agglomerative algorithm suggested by

Clauset (2005), though several alternatives exist (Newman

2006). After the vertex set V of graph G is divided into

j exclusive subsets S we can calculate the community

modularity Q as:

Q ¼
Xj

i

pii � o2
i ; ð8Þ

where pii is the proportion of edges within community Si,

and oi is the proportion of edges that start from community

Si. For a random partition of V, Q should be close to 0,

while Q close to 1 indicates strong structuring. The mea-

sure was originally developed for binary graphs; however,

by representing edge weights as multi-edges it can also be

used to quantify community structure in weighted graphs

(Fig. 4). Applying this algorithm to the primate data,

groups were partitioned into 1–6 subgroups (median 2,

2–3) with a median subgroup size of 4 (3–5) individuals.

The groups showed considerable variation in their overall

community modularity (mean 0.21 ± 0.16, Fig. 5), dem-

onstrating that primate groups can be either strongly

structured with clearly identifiable subgroups or much

more homogeneous with respect to their social interactions.

While this finding will not strike the experienced prima-

tologist as a new insight, as it is well known that primate

social structures are highly variable, we want to emphasize

the usefulness of this measure to quantify the degree of

heterogeneity of a social system. With a quantitative

measure at hand it will be much easier to compare different

groups or to relate group heterogeneity with other social or

ecological variables.

However, at this point we also have to caution against

too much confidence in network analysis. If the subgroup

assignment is not based on individual characteristics (such

as sex, age or kin) but on a modularity-maximizing

algorithm, then one should ask for the biological inter-

pretation of this partitioning. In most cases the algorithms

will confirm the perception of the observer, but under

certain conditions the suggested partitioning will split

matrilines or group individuals together that do not seem to

have much in common. To illustrate this potential pitfall

we give two artificial examples in Fig. 6. This problem is

especially severe if the network analysis is based on a poor

data set. Then, even small changes in the raw data might

lead to completely different partitions. How robust the

subgroup assignment is against sampling errors or natural

random variation can be estimated using a bootstrap pro-

cedure (Lusseau et al. 2008) where bootstrapped data are

resampled with replacement from the original raw data. For

each of the 70 groups we ran 100 bootstraps, each time

evaluating the subgroup assignment. For 41 groups this

resulted in the same partitioning in over 50% of the runs,
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Fig. 5 Community modularity for all groups (N = 70) plotted

against group size
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Fig. 6 A hypothetical example of a macaque group with two

matrilines (F1–F4 and F5–F7) and two males (M1 and M2). In a,

the Q-maximizing algorithm would group F1–F4 into subgroup 1

(circles), F5–F7 into subgroup 2 (squares), and M1 and M2 into

subgroup 3 (hexagons). In b, we assume that M1 intensifies grooming

with the two alpha-females of the matrilines, as might happen when

these females are in estrus, while the other grooming relations remain

unchanged. In this case the algorithm would group F2-F4 into

subgroup 1, M2, F6, and F7 into subgroup 2, and M1, F1, and F5 into

subgroup 3
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for 23 groups in over 90%, and for 16 groups in 100%.

Thus, in the majority of the cases this procedure is rela-

tively robust to random noise, but we recommend verifying

in every single case.

The group-level measure for community modularity

seems to be quite robust against random sampling noise,

with an average bootstrapped standard deviation of 0.02.

For our dataset the standard deviation for community

modularity seems to be independent of the mean [analysis

of variance (ANOVA), N = 70, P = 0.13, R2 = 0.02] and

the number of different assignments (ANOVA, N = 70,

P = 0.64, R2 = 0.003), which means that, even when

bootstrapping resulted in several different subgroup

assignments, this does not influence the estimate for the

community modularity measure in a significant way.

Clustering coefficient

The clustering coefficient characterizes the local group

cohesiveness by evaluating the extent to which vertices

adjacent to any vertex i are also adjacent to each other

(Watts and Strogatz 1998; Watts 1999). It is given by:

cci ¼ E Cvið Þj j
�

ki

2

� �
; ð9Þ

where the neighborhood Cv of a vertex v is the subgraph

that consists of the vertices directly connected to v. It can

be interpreted as a measure of individual sociality (Croft

et al. 2004). The average clustering coefficient over all

vertices, CC, measures the global density of connected

vertex triplets in the network and can be interpreted as an

indicator for the cohesiveness of the group. For weighted

networks Barrat et al. (2004) formulated the weighted

clustering coefficient as:

ccw
i ¼

1

siðki � 1Þ

X

j;l

ðwij þ wilÞ
2

aijailajl; ð10Þ

where ki is the degree of vertex i, given by ki ¼
PN

j¼1 aij:

CCw is then defined as the weighted clustering coefficient

averaged over all vertices of the graph. In a recent study

Lehmann and Boesch (2009) used the weighted clustering

coefficient to detect structural changes in a community of

female chimpanzees over a period of 10 years. We find

high variation in both the coefficients within groups with

an average range of 0.31 (0–0.66) and the average coeffi-

cients between groups (median 0.84, 0.57–1). Comparing

the weighted clustering coefficient with its topological

analog, CC, we gain global information on the correlation

between weights and topology (Fig. 7). In the case of a

fully connected graph it is easy to see that CCw = CC = 1.

In more heterogeneous weighted networks, however, we

can face two opposite cases. If the interconnected triads are

more likely to have high edge weights, then this is reflected

by CCw/CC [ 1. On the other hand, CCw/CC \ 1 indicates

a group in which the topological clustering is generated by

edges with low weight.

By calculating clustering coefficient and community

modularity we are asking for the existence of cohesive

subgroups within a group. Such a concept is useful when

the network is based on affiliative interactions or proximity

data. However, it seems to make little sense when the data

stem from agonistic interactions. Grouping together all

those individuals that regularly fight with each other will

usually not comply with the general conception of a

subgroup.

Both the clustering coefficient and the community

modularity are local measures. This means that they can be

calculated without knowledge of the whole network; the

vertices in question and their direct surroundings are suf-

ficient. This is a very useful property when it comes to very

large networks containing several thousands to millions of

participants, where the researcher can only observe a small

sample of the whole population. While all the groups that

we used for the present analyses were regarded as small

closed social units that would not require such a measure,

local measures would also allow to analyze data sets where

researchers focused just on a part of the whole network,

e.g., a single matriline in a large band of baboons or

macaques.

Network flow and resilience

A metric that is related to the above-mentioned between-

ness measures is network flow. It is useful to describe

information or disease transmission between individuals in

affiliative or proximity networks. The advantages of net-

work flow are that it takes into account edge weights and
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that it is conceptually easier to grasp. We think of a net-

work as a system of pipes where edges are pipes and the

edge weight gives the diameter of the pipes. Along these

pipes a certain amount of liquid can pass according to their

diameter. The maximum flow between any two vertices is

the amount of liquid that can flow from one to the other.

The liquid is not constrained to take the shortest path

between the two vertices but can be sent through all pipes.

As one might guess, this measure was originally developed

for technical problems to calculate the capacity of power

grids or data networks such as the Internet. However, it was

suggested that it is useful to model information flow in

many kind of networks, including social networks (Ahuja

et al. 1993). The network flow can be evaluated for two

specific vertices or averaged over all possible pairs of

vertices, giving measure for the connectivity of the group

(Newman 2004).

The max-flow/min-cut theorem (Ford and Fulkerson

1956) allows an additional interpretation of network flow.

This theorem states that for weighted networks the maxi-

mum flow between any two vertices equals the weight of

the minimum edge cut set that separates the same two

vertices (Newman 2004). Thus, a larger network flow

means that more or stronger connections have to be cut to

disconnect these vertices. Network flow is therefore also a

measure for the resilience of a network against being dis-

connected by the removal of connections between indi-

viduals. Figure 8 shows the network flow for the primate

groups. As we standardized the edge weights (so thatP
W ¼ 1), it is not surprising that the overall network flow

(and hence resilience) of a group decreases with group size.

This also makes sense intuitively, as in large groups

information is less likely to reach all members easily, and

larger groups seem more vulnerable to be split apart.

Besides that, we find reasonable variation in the network

flow between groups of the same size. These disparities

might be even more interesting, as they allow to compare

different groups and to ask whether this resilience metric

accords with differences in the social behavior of these

groups.

Another way to look at the resilience of a network is not

to ask how easily the removal of connections will discon-

nect the network, but how the system reacts to the removal

of specific individuals (Albert et al. 2000). There are two

main procedures to remove vertices that are commonly

applied in social network analysis. Vertices can either be

removed randomly or high-degree vertices can be attacked

selectively (Newman 2003a). The same network can show

different values of resilience towards these two forms of

vertex removal; for example, Lusseau (2003) found high

resilience to random vertex removal, but elevated vulner-

ability when it comes to targeted sabotage by removal of

high-degree vertices, in a dolphin network with a strongly

positive skewed degree distribution. In an inspiring study

Flack et al. (2006) inspected the resilience of macaque

networks against changes in mean degree, assortative

mixing, and clustering after the hypothetical knockout of

several vertices that represented individuals with high

status. They compared these changes with the results when

they experimentally removed animals from a captive

group, and thereby provided a wonderful example of how

predictions from social network analyses can be tested

empirically.

To demonstrate the effect of vertex removal we selected

an example group of intermediate size (N = 10, Fig. 4d)

and systematically removed each vertex separately, then

each combination of two vertices, three vertices, and so

forth up to N-2 vertices, calculating the remaining net-

work flow after each removal. The results of this procedure

are given in Fig. 9. Even for a group of only ten individuals

there are already 1,012 different combinations of vertices

to be removed from the network. For a group of 25 we

would already require over 33 million removal operations

and recalculations of the network flow. As this approach

would result in extremely long computation times it seems

only suitable for very small groups. For larger groups

repeated random vertex removal as described by Newman

(2003a) will be a more efficient way to determine the

robustness of the network.

Assortativity

Do individuals of certain classes interact preferentially

with individuals of the same class than with others? Or,

more general, do individuals with a certain characteristic

preferentially interact with others who are similar to them

with respect to this characteristic? If they do, then this is

referred to as assortative mixing (Newman 2003b). Fre-

quently considered classes include sex, age, social rank and

kin (e.g., Lusseau and Newman 2004) and interactions can
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be of any kind, spatial relationships, affinity or aggression;

for example, one can ask whether males direct more

interactions towards other males or females or whether

juveniles preferentially groom others of their own age

class. Such questions are usually approached using matrix

correlations (Hemelrijk 1990a, b; de Vries 1993). The

concept of assortativity is, however, not restricted to the

above-mentioned characteristics, but can be applied

equally well to network characteristics of the individuals.

That is, one might ask if animals which have a high number

of interaction partners preferentially interact with others

that also have many interaction partners. Pastor-Satorras

et al. (2001) introduced the average degree of nearest

neighbors knn(k), which indicates whether vertices with

high degree have a larger probability to be connected with

other high-degree vertices. Barrat et al. (2004) suggested

the weighted average nearest-neighbors degree as a mea-

sure of the effective affinity to connect with high- or low-

degree neighbors according to the magnitude of the actual

interactions. For this purpose they calculated a local

weighted average of the nearest-neighbor degree and nor-

malize by the weight of the connecting edges. For each

individual the weighted average nearest-neighbors degree

is given by

kw
nn;i ¼

1

si

XN

j¼1

aijwijkj: ð11Þ

If the nearest-neighbors degree knn,i is smaller than the

weighted version kw
nn;i this indicates that edges with larger

weights are pointing to the neighbors with larger degree.

However, we think that for our purpose this measure

considers edge weights only half-heartedly. While it

accounts for the strength with which a vertex connects to

the other vertices it considers only the degree of these

vertices but not their strengths. As we emphasized the

importance of using weighted measures, we think that we

should consequently also reformulate our question: instead

of asking for the affinity to a vertex due to its degree we

should ask for its affinity due to its strength. Thus, we want to

introduce the relative strength assortativity as

bw
s;i ¼

1

si

XN

j¼1

aijwijsj: ð12Þ

For better comparability between groups we standardize

the edge weights by multiplying them by N=
P

W . With

this scaling ln bw
s;i [ 0 indicates strength assortativity of a

vertex (i.e., edges leading to strong vertices have high

weights), while ln bw
s;i\0 indicates strength disassortativity

(i.e., edges leading to strong vertices have low weights).

Only 16% of all vertices had negative logarithms of their

relative strength assortativity, and group medians were

positive in 68 out of 70 groups (Fig. 10), indicating

overall positive assortativity of vertices according to their

strength.

Phylogenetic independent contrasts

Our data set stems from 30 different primate species that

are phylogenetically related to each other to different

extents, hence the data cannot be considered as statisti-

cally independent. Felsenstein (1985) proposed to deal

with these dependencies by replacing the actual species

means by contrasts that are corrected for phylogenetic

distance. For a sample of 30 different species we can

estimate 29 phylogenetically independent contrasts.

We calculated independent contrasts for network flow,
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community modularity, vertex strength centrality, and

assortativity. We can see that independent contrasts

decrease with phylogenetic distance in all cases (Fig. 11).

Furthermore it becomes apparent that the variance in the

contrasts decreases with phylogenetic distance as well.

That means that contrasts between closely related species

or taxonomic groups can be both high and low, while

contrasts between more distant taxonomic groups are

generally low, indicating that all the investigated network

measures do not differ systematically between higher

taxonomic groups.

Discussion

In this paper we presented results of a general network

analysis from 70 primate interaction networks. We found

considerable variability in the network measures, reflect-

ing the high degree of diversity of primate social organi-

zation. The advantage of a network approach to social

groups is that it enables us to draw a much finer picture of

structural differences between groups. Instead of being

restricted to verbal descriptions such as ‘‘egalitarian’’ or

‘‘hierarchically structured’’ we can actually offer quanti-

tative measures for centrality, modularity or resilience.

This can be useful both for species comparison (Sundar-

esan et al. 2007, this study) or comparison between groups

of the same species. In long-term studies it can even be

used to detect structural changes within a group over time

(Henzi et al. 2009; Lehmann and Boesch 2009; Ramos-

Fernandez et al. 2009). Finally, McCowan et al. (2008)

demonstrated that, besides its heuristic value for the study

of primate behavior, social network analysis might also

have practical applications for management of captive

primate groups.

Primate social systems are difficult to characterize,

and attempts to do so have been criticized as being overly

simplifying, formulated only on a verbal level or simply

inconsistent (Thierry 2008). Classification schemes

where social organization forms are separated into dis-

tinct categories might run into trouble if real differences

are not as clear-cut as believed. And this problem cannot

be resolved by including more and more parameters in

the model because, if the parameters that shape the

overall social structure change on a continuous gradient

rather than being dichotic, any splitting into categories

might be mistaken or arbitrary at best. An alternative to

categorizing is to define group structure by one or more

network metrics that more adequately reflect its internal

structure.

In our analysis we focused on structural measures,

mostly on the group level. The list of measures that we

presented is by no means complete. Network analysis

allows for much more than we could demonstrate here, and

which measures are most useful will depend on the spe-

cifics of the research question. However, not all measures

are adequate for the analysis of primate groups, as many

were developed for much larger nets with specific under-

lying assumptions that might not be met in our case. As we

have already mentioned, purely topological measures that

do not consider quantitative differences in relationships

might be inadequate to capture important details; e.g.,

vertex strength distribution and edge weight distribu-

tion are much more informative than the mere degree

distribution, and eigenvector centrality might be more

telling than betweenness or closeness centrality (e.g.,

Ryder et al. 2008; Sueur and Petit 2008; Ramos-Fernandez

et al. 2009).

The network measures described herein are static: if a

vertex is removed, the system does not react to this oper-

ation in the sense that vertices would then connect to other

vertices instead. This does of course not correspond with

reality, where we would expect flexible behavior. Network

measures reflect the properties of a given fixed structure.

They are descriptors of the structure, not predictors of how

a group of reactive individuals will actually change over

time. Dynamic network models that allow for reactive

behavior of individuals do exist (e.g., Santos et al. 2006; Li

et al. 2007; Voelkl and Noë 2008; Voelkl and Kasper

2009), although their discussion would go beyond the

intent of this paper.

There are several excellent software packages available,

both stand-alone programs and routine libraries for R or
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MATLAB, that might serve those interested in social net-

work analysis well. A few of these programs capable of

analyzing weighted social network data can be found in

Appendix 1. For a more detailed overview of the currently

available programs we recommend Whitehead (2008) and

Huisman and van Duijn (2005). However, along with

Whitehead (2009) we would like to advise caution for the

use of ‘‘ready-to-go’’ software as it does not release the

user of considering thoroughly how the measures fit with

their dataset and questions. For example, in some programs

weights are attributed to edges to denote the distance of

two vertices rather than the attraction between them. The

validity of a network measure will very much depend on

the quality of the data. It is therefore important to estimate

the robustness of a measure against sampling errors or

natural variation in the raw data using bootstrap or jack-

knife resampling procedures (Lusseau et al. 2008).

Because this is, unfortunately, not possible with most

stand-alone programs we generally recommend programs

or routine libraries embedded in a programming environ-

ment such as R, MATLAB or Mathematica, which allows

the user to tailor a routine for its particular use.
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