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Abstract In vocal communication, the mechanisms of

sound production are well understood. The length of

the vocal folds determines the minimum fundamental

frequency, while the size and the shape of the vocal

tract affect its filtering characteristics and hence, the

resonant frequencies. Both measures—vocal fold

length and vocal tract length—are related to body size

and therefore, acoustic features are expected to vary

with body size. Because direct measures of body size

are difficult to obtain from free-ranging animals, age

and sex have often been used as proxies. We surveyed

studies which included direct measures of size or

weight, and also studies in which only age and/or sex

differences were examined. The main purpose was to

examine whether age- and sex-related variations in

acoustic features meet the predictions generated from

our knowledge about sound production. Our survey

revealed that compared to smaller animals, larger

animals utter longer calls, with a lower fundamental

frequency, with smaller formant dispersion, and with

the energy concentrated in lower frequencies. Age and

sex reliably reflect the influence of body size on

acoustic features when gross size differences are

examined. However, within age- and sex classes, this

relationship may break down. In addition to body size,

other factors such as internal state or social context

may also influence the structure of vocal signals and

highlight the richness of information in calls that is

potentially available to listeners.

Keywords Primates � Sound production � Body size �
Age � Sex

Introduction

One of the key goals for scholars in acoustic commu-

nication is to clarify the information content of vocal

signals. Vocal signals vary with the context in which

they are given (Seyfarth et al. 1980; Zuberbühler 2000;

Fischer et al. 2001; Fichtel and Kappeler 2002), they

reveal information about the individual identity of the

caller (e.g. Hammerschmidt and Todt 1995; Rendall

2003), and they may vary with fighting ability (Fischer

et al. 2004) or hormonal state (Boulet and Oddens

1996; Abitol et al. 1999; Amir and Kishon-Rabin 2002,

2004). In addition, vocal signals may provide listeners

with information about signaller characteristics such as

size. Body size should be of particular importance in

signals used during intra-sexual competition or terri-

tory defence, but also for other social interactions, such

as intra-group aggression. However, in free-ranging

animals, data about body size are difficult to obtain,

and therefore, age and sex are often used as proxies for

evaluating the influence of body size on acoustic fea-

tures of vocalizations.

Among the various modalities of communication,

signal production in the vocal domain is one of the best

understood. Thanks to studies based on human speech

(Fant 1960; Liebermann and Blumstein 1988) and

musical acoustics (Sundberg 1987, 1991; Benade 1990),

the mechanisms of sound production for terrestrial

mammals, including nonhuman primates are well

known (Fitch and Hauser 1995; Owren and Linker

1995; Fitch 2003). To briefly summarise, most vocal
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signals are produced by an outward flowing air stream

generated in the lungs (Fitch and Hauser 1995; Ball

and Rahilly 1999; Reetz 1999). The lung capacity and

the control of the emptying speed allow variations in

duration of the air flow, and therefore of the produced

sound. The speed of the air stream also determines the

amplitude of the produced sound. The signal then

passes the laryngeal system, which includes the larynx

and vocal folds. The tension and the size of the vocal

folds determine the characteristics of the fundamental

frequency (i.e. the lowest frequency at which the vocal

folds are oscillating). The tenser the vocal folds, the

higher their oscillation rate, and hence the fundamen-

tal frequency, and vice versa: the longer and thicker the

vocal folds, the slower they oscillate and the lower the

fundamental frequency. Oscillations at the fundamen-

tal frequency are accompanied by oscillations at the

multiple integers of the fundamental frequency (i.e. the

harmonics) (Fig. 1a).

The source signal then passes the supralaryngeal

system, made up of the oral and nasal cavity as well as

the hard and soft palate and becomes modified

depending on the length, shape and boundary condi-

tions of this system. The vocal tract acts as a filter

allowing only a narrow range of frequencies (i.e. the

formant frequencies, which are emphasized frequen-

cies among the harmonics) to pass (Riede and Fitch

1999). The filter characteristics are related to the size

of the vocal tract. An increase in the length of the vocal

tract will lead to a decrease in the average spacing

between successive formants, that is, a decrease in

formant dispersion (Fant 1960; Lieberman and Blum-

stein 1988). Movement of tongue, lips, velum and/or

epiglottis (articulators) can also alter the sound. In

human speech, the filter characteristics determine the

formation of the different vowels, for instance. Finally,

the sound radiates from the mouth or in fewer cases

from the nose (for a more detailed review on vocal

production, see Fitch and Hauser 1995; the neural

circuitry underlying vocal production is discussed

elsewhere, e.g. in Hammerschmidt and Fischer 2006).

The anatomy of the vocal apparatus appears to

determine the acoustic features of vocal signals. Such a

relationship allows researchers to predict some acous-

tic features in vocal signals according to the body size

of the emitter. For instance, since larger animals pos-

sess larger lungs and therefore have a greater air vol-

ume available for calling, they should emit longer calls

than smaller animals. Additionally, since they also

have longer (and possibly thicker) vocal folds, it can be

predicted that they utter calls with a lower funda-

mental frequency. Moreover, because large animals

have a longer vocal tract than small ones, they should

also give signals in which formants are less dispersed

and with energy concentrated in lower frequencies.

Consequently, measures that reflect the distribution of

the amplitude in the spectrum should have lower val-

ues in larger animals than in smaller ones. Examples

are the peak frequency (i.e. the frequency with the

highest amplitude), the general distribution of fre-

quency amplitude in the spectrum (‘‘DFA’’, Fig. 1b),

and the location of the dominant frequency band (i.e.

the frequency that exceeds a certain energy threshold).

Only a few studies have examined these predictions

by using direct measurements of body size in human

and non-human primates (e.g. Hauser 1993; Fitch 1997;

Hammerschmidt et al. 2000; González 2004; Pfefferle

and Fischer 2006). Most other studies have used age

and sex as proxies for body size (Table 1) because di-

rect measures of body size are difficult to obtain in the

wild, where most studies of vocal behaviour have been

conducted.

Body size increases with increasing age until the

animals reach adulthood (e.g. in Japanese macaques,
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Macaca fuscata: Inoue 1988; in squirrel monkeys, Sai-

miri sciureus: Hammerschmidt et al. 2001; in Chacma

baboons, Papio hamadryas ursinus: Johnson 2003).

Sexually dimorphic species also present test cases for

the influence of body size on acoustics. In Old World

monkeys, males are usually larger and heavier than

females. Except for one New World monkey species

(Ateles paniscus), most species are sexually mono-

morphic in terms of body size and weight (Ford and

Davis 1992).

In this review, we examine age- and sex-related

variations in non-human primate vocalizations, using

both studies in which direct measures of body size were

available and studies in which such differences were

inferred from differences in age and/or sex. The goal of

this study was to assess whether the observed acoustic

variation meets the predictions generated from our

knowledge about sound production. We aim to com-

plement the work of Hauser (1993), who examined the

relationship between frequencies of vocalizations and

body size among taxa, and of Fitch and Hauser (1995),

who reviewed the physical constraint of body size on

vocal production.

Evidence

We did an exhaustive research of the available litera-

ture using the Web of Knowledge and the Science

Direct databases. Despite extra effort, we could not

find studies on prosimians that examined the effects

of age or sex on the structure of their vocalizations.

For size- and age-related analyses, we indicate the age

classes if they were not conducted with continuous

measures of age from birth to adulthood, and we note

the sex if they do not concern both males and females.

For sex-related analyses, we state the age classes used

in the studies which do not focus only on adults.

Duration of the vocalization

Our predictions are supported by one study that

examined the relationship between body size and call

duration: large (in terms of body weight) infant rhesus

macaques (Macaca mulatta) utter longer vocalizations

than smaller ones (coo calls: Hammerschmidt et al.

2000). In another study however, the positive correla-

tions between the duration of grunts of Hamadryas

baboons (Papio hamadryas hamadryas) and the vocal

tract length or a compound measure of various body

measures were not significant (vocal tract length: n

= 12, r = 0.264, P = 0.408; compound measure: n = 13,

r = 0.113, P = 0.714; Pfefferle 2003).

When age is considered, duration appears to be

positively correlated with age, that is, vocal signals of

older animals are longer than those of young ones

(isolation peeps of squirrel monkeys between 1 day

and 2 years of age: Lieblich et al. 1980; trills and J-calls

of pygmy marmosets, Cebuella pygmaea: reviewed

in Snowdon 1988, 1989; Elowson et al. 1992; chirps

of cotton-top tamarins, Saguinus oedipus: Castro and

Snowdon 2000; coo calls of rhesus macaques, from

birth until 5 months of age: Hammerschmidt et al.

2000; twitters of squirrel monkeys between birth and

20 months of age: Hammerschmidt et al. 2001; contact

barks of male Chacma baboons, in adolescents, sub-

adults and adults: Fischer et al. 2002; loud calls of male

Thomas langurs, Presbytis thomasi, in juveniles, sub-

adults, young adults, and old adults: Wich et al. 2003;

phees, trillphees, trills and twitters of infant and juve-

nile common marmosets, Callithrix jacchus: Pistorio

et al. 2006). To our knowledge, in only three studies

was duration found to be either negatively correlated

with age (grunts of vervet monkeys, Chlorocebus

aethiops: Seyfarth and Cheney 1986; trillphees of

common marmosets, between infants and adults: Pis-

torio et al. 2006) or uncorrelated (grunts of Hamadryas

baboons: Pfefferle 2003; trills of common marmosets,

between infants and adults: Pistorio et al. 2006).

In addition, as predicted, the duration of the call, or

of parts of the call, appears to be longer in the vocal-

izations of the sex having the bigger size. The first part

of the male Chacma baboon alarm wahoo (the equiv-

alent of the female alarm bark) is of longer duration

than the female alarm bark (Fischer et al. 2002; Fig. 2).

A similar result is also found when data of Fischer

et al. (2001, 2002) are compared: the first syllable of

adult male contact barks is longer than the barks of

adult females. The temporal parameters of the phees

0.5 1.0 1.5 2.0
time [s]

1

2
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Fig. 2 Spectrograms of an adult female (left) and an adult male
(right) Chacma baboon contact call
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of juvenile common marmosets (about 20 weeks of

age) also have higher values in males than in females,

though there are no sexual differences in calls of in-

fants of 5 weeks of age (Pistorio et al. 2006). In con-

trast, in cotton-top tamarins, the whistle duration of

the combination long call appears to be significantly

shorter in males than in females (Miller et al. 2004);

this is also the case in the trillphees of juvenile com-

mon marmosets (Pistorio et al. 2006). It might be

interesting to note that this reversal appears to happen

in New World monkey species in which sexual size

dimorphism is often weak. For instance, the cotton-top

tamarin and the common marmoset are sexually

monomorphic (Ford and Davis 1992; Rowe 1996). We

might therefore expect no differences between sexes in

these species, but this is apparently not the case. Fur-

thermore, it appears from these previous statements

that the influence of sex varies also according to the

type of call considered, for instance in juvenile com-

mon marmosets, between phees and trillphees (Pisto-

rio et al. 2006).

Fundamental frequency of the vocalization

Fundamental frequency was held to be unreliable for

assessing body size in some species; this was assumed

but not explicitly tested by Fitch (1997). For instance,

Rendall et al. (2005) found no relation between body

weight, length, and neck circumference and funda-

mental frequency in adult humans. However, a num-

ber of studies showed that large animals utter

vocalizations with a lower fundamental frequency

than smaller ones in many other species [body weight

in Japanese macaques: Inoue 1988; adult body weight

across species and taxa with control for phylogeny:

Hauser 1993; Fitch and Hauser 1995; adult body

weight across species and taxa, but no control for the

influence of phylogeny: Mitani and Stuht 1998; body

weight in infant rhesus macaques: Hammerschmidt

et al. 2000; body component (i.e. a compound mea-

sure of body weight, body length, other various body

measures, vocal tract length) and all these individual

body measurements in Hamadryas baboons: Pfefferle

and Fischer 2006].

The fundamental frequency of a call also decreases

with increasing age in many species. As scientists ob-

served in various species and in various types of calls,

young individuals generally utter calls with a higher

fundamental frequency than older animals (e.g. grunts

of vervet monkeys: Seyfarth and Cheney 1986; food

call of Japanese macaques: Inoue 1988; trills of pygmy

marmosets: reviewed in Snowdon 1988; screams of pig-

tailed macaques, Macaca nemestrina: Gouzoules and

Gouzoules 1989; inter-group wrrs of vervet monkeys,

infant and juvenile males and females, adult females:

Hauser 1989; various call types in Barbary macaques,

Macaca sylvanus: Hammerschmidt et al. 1994; Ham-

merschmidt and Fischer 1998; coos of rhesus maca-

ques, from birth to 5 months: Hammerschmidt et al.

2000; grunts of Hamadryas baboons: Pfefferle 2003;

phees and twitters of common marmosets: Pistorio

et al. 2006). Moreover, the fundamental frequency can

be more variable within a call in young animals than in

older ones, and so young animals produce more mod-

ulated calls compared to adults (e.g. grunts of vervet

monkeys: Seyfarth and Cheney 1986; inter-group wrrs

in vervet monkeys, in infant and juvenile males and

females, adult females: Hauser 1989; various call types

in Barbary macaques: Hammerschmidt and Fischer

1998).

Variations between the sexes also seem to reflect the

variations due to body size in fundamental frequency.

For instance, Chacma baboon male and female grunts

are similar, but the fundamental frequency is 50%

lower in male grunts than in female grunts (Rendall

et al. 2004). In some other species and call types, male

calls also present lower frequency characteristics than

those of females (screams of bonobos, Pan paniscus,

and chimpanzees, Pan troglodytes: Mitani and Gros-

louis 1995; alarm barks of Chacma baboons: Fischer

et al. 2002). The expectation is that this tendency might

be very weak in New World monkey species, in which

sexual dimorphism in body size and mass is not as

pronounced as in Old World monkeys. However, in

common marmosets, phee-call frequency characteris-

tics are higher in males than in females (peri- and

postpubertal animals: Norcross and Newman 1993;

Norcross et al. 1999; trillphees, trills and twitters of

juveniles: Pistorio et al. 2006).

Peak frequency of the vocalization

The mechanisms of sound production allow us to pre-

dict that the peak frequency (i.e. the frequency with

the highest amplitude) should decrease with increasing

body size. We found only two studies examining the

direct influence of body size on the peak frequency. In

coo calls of infant rhesus macaques, Hammerschmidt

et al. (2000) found that the mean peak frequency de-

creased when body weight increased. Pfefferle (2003)

found the same trend in grunts of Hamadryas baboons

when she examined the correlation of the peak fre-

quency and a compound measure of various body

measures. Likewise, the peak frequency should de-

crease with increasing age and should be lower in

males than in females.
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Indeed, the mean peak frequency decreases with

increasing age in agonistic screams of pig-tailed ma-

caques (Gouzoules and Gouzoules 1989), in various

call types of Barbary macaques (Hammerschmidt et al.

1994) where it appears to be a well-suited parameter

for determining age, in contact barks of male Chacma

baboons (Fischer et al. 2002), and in grunts of Hama-

dryas baboons (Pfefferle 2003). However, changes in

peak frequency can be inversed, as they are in squirrel

monkey ‘‘yap’’ mobbing calls and ‘‘chuck’’ calls uttered

in relaxed situations: peak frequency increases with

increasing age between birth and 5 months of age

(Hammerschmidt et al. 2001).

The prediction is also verified when sex is consid-

ered. Peak frequency appears to be higher in females

than in males in alarm barks of Chacma baboons

(Fischer et al. 2002), and in screams of bonobos and

chimpanzees (Mitani and Groslouis 1995). This means

that females concentrate energy in higher frequencies

than males. Nevertheless, in phee calls of peri- and

postpubertal common marmosets, a monomorphic

New World monkey species, the peak frequency ap-

pears to be lower in females than in males (Norcross

and Newman 1993; Norcross et al. 1999).

Formant dispersion within the vocalization

Bigger animals have a longer vocal tract (Fig. 3). This

is reflected in at least three studies by a smaller for-

mant dispersion (i.e. the average difference between

successive formant frequencies) in large animals than

in small ones (vocal tract length, body length and

weight in threat vocalizations of rhesus macaques:

Fitch 1997; vocal tract length and a compound measure

in grunts of Hamadryas baboons: Pfefferle 2003; body

weight in roars of adult male black and white colobus,

Colobus guereza: Harris et al. 2006). However, this is

not the case in adult humans (body height and weight:

González 2004; body height and weight, neck circum-

ference, length of third digit: Rendall et al. 2005).

Pfefferle and Fischer (2006) also found a weaker cor-

relation between formant dispersion and a compound

body measure than between fundamental frequency

and the compound body measure in grunts of Hama-

dryas baboons.

The results concerning the influence of age on for-

mant dispersion are also ambiguous. On the one hand,

the frequency difference between the first and the

second formants appears to decrease with increasing

age in male Chacma baboon contact barks both during

the whole lifespan (adolescents, sub-adults, and adults;

Fischer et al. 2002) and among adult males only (Fi-

scher et al. 2004). On the other hand, the correlation of

the difference between the first and the second for-

mants (as well as formant dispersion) with body size

may not hold within an age class (here adult females),

even if it is significant when all age classes are con-

sidered together (Hamadryas baboons: Pfefferle and

Fischer 2006). In this study, formant dispersion and the

frequency difference between the first and the second

formants were significantly correlated with body size

across age classes (from 1–28 years of age; Fig. 4) but

these relations did not hold among adult females, in

contrast to fundamental frequency where the relation

with body size held both across age classes and within

adult females (Pfefferle and Fischer 2006).

We failed to find any study that directly investigated

sexual differences in formant dispersion in non-human

primates. Therefore, we are not able to examine the

relationship between sex and this acoustic parameter

to see if it matches our predictions. In sum, though,

formant dispersion might not always be a better pre-

dictor of body size than fundamental frequency.

Whether or not formant dispersion can be considered

to be a useful measure appears to depend on the call

type under study.

Energy distribution within the vocalization

According to the mechanisms of sound production, we

predict that the energy should be concentrated in lower

frequencies in signals of animals with a large body size.

In grunts of Hamadryas baboons, the frequency at

which the first quartile of global energy is reached

(distribution of the amplitude in the frequency spec-
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Fig. 3 Bivariate plot illustrating the correlation between a body
component (i.e. a compound measure of body size, without the
vocal tract length) and the vocal tract length of Hamadryas
baboons of all age classes (n = 12, r = 0.897; P < 0.001)
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trum, dubbed ‘DFA’, see Fig. 1b) decreased with

increasing body size (Pfefferle 2003).

In contact barks of male Chacma baboons, variables

that are related to the distribution of energy in the

spectrum (DFA) at the beginning and across the call

also decrease with increasing age from adolescents to

sub-adults and adults (Fischer et al. 2002). In grunts of

Hamadryas baboons, the frequency at which the first

quartile of global energy is reached (DFA1) and the

first dominant frequency band (i.e. the first frequencies

that exceed a certain energy threshold) also decrease

with increasing age (Pfefferle 2003).

The sex of the caller also appears to influence the

energy distribution in the predicted direction. For in-

stance, in alarm and contact barks of Chacma baboons

(Fischer et al. 2001, 2002), the distribution of the fre-

quency amplitude is concentrated in lower frequencies

in males than in females. In addition, the mean value of

the first dominant frequency band and its value at the

beginning of the call have been found to be signifi-

cantly lower in males than in females in alarm barks of

Chacma baboons (Fischer et al. 2002).

Conclusion

In this review, we examined whether acoustic variables

vary in the same way with age and sex as with changes

in body size. Overall, variations directly linked to body

size confirmed the predictions based on the mechanics

of sound production. Larger animals, i.e. older animals

or animals of the sex with the larger size, utter longer

calls, with energy concentrated in lower frequencies, as

well as with a lower and a less modulated fundamental

frequency than smaller ones (Table 1). The homo-

geneity of age- and sex-related variations is quite

remarkable, even for the acoustic parameter funda-

mental frequency, which was recently discussed as

being generally unreliable because signallers can

modulate their fundamental frequency. Therefore, age

and sex (and age more reliably than sex) seem to

represent generally reliable proxies to evaluate the

influence of body size on acoustic features (at least

duration, fundamental frequency and energy distribu-

tion), if data on body size are not available. This con-

clusion, however, is valid only for large differences in

body size, such as in adults versus juveniles.

Age seemed to be a more reliable proxy than sex.

Sexual selection might have decoupled acoustic prop-

erties from body size. Indeed, in some call types used,

for instance, for mate recognition and advertisement of

territory, or in human speech, the variations in acoustic

features exceed those predicted by body size dimor-

phism (Rendall et al. 2005). These vocalizations might

have been shaped through evolutionary time by sexual

selection, which could have enhanced sexual differen-

tiation in the vocal folds for instance, independently of

body size (Rendall et al. 2005).

According to our evaluation of the published data,

sex-related variations do not reliably reflect variations

in body size in New World monkey vocalizations. The

finding that females produce calls that are different

from males in terms of duration, fundamental fre-

quency and peak frequency is puzzling, since the con-

sidered New World monkey species do not present any

obvious sexual dimorphism in body size or mass (Ford

and Davis 1992; Rowe 1996). Possibly other factors,

such as sexual selection, may have a stronger influence

on acoustic variables than body size. For instance,

sexual selection might affect vocalizations in another

way in New World monkey species than in Old World
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Fig. 4 Bivariate plot illustrating correlations between body
component (i.e. a compound measure of body size) and a
formant dispersion (r = –0.925; R2 = 0.855; P = 0.0001) and b
distance between the first and the second formants (r = –0.887;
R2 = 0.786; P = 0.0005). Vertical lines represent SD. Figure
redrawn from Pfefferle and Fischer (2006)
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monkeys, favouring the transfer of exaggerated infor-

mation about size in females, especially in calls used

for mate recognition, in New World monkey species.

However, the reversal of tendencies also appears in

vocalizations such as isolation calls, in which sexual

selection is not expected to play a determining role.

In these types of calls, sexual differences in arousal,

social context, or growth rate in juveniles might have

an influence. Remarkably, no sexual differences were

found in acoustic parameters belonging to all the

categories studied in various call types of Barbary

macaques, which are strongly sexually dimorphic in

body size and mass (Hammerschmidt and Fischer 1998).

Such particular cases may need further investigation.

Other results from our review highlight the com-

plexity of the relationship between body size and

acoustic features. This relationship is highly predict-

able when body size variations are large, but can

become unpredictable and less obvious when varia-

tions in body size are more subtle (e.g. within an age-

and sex-class). Indeed, Rendall et al. (2005) did not

find any relationship between fundamental frequency

or formant frequencies and body size in human adult

females, and only a weak relationship between body

length and formants in human adult males. González

(2004) found similar results in adult humans of both

sexes. Collins (2000) also highlighted the fact that,

in human adult males, fundamental frequency and

formants are not correlated with body size, height

and shoulder width, even though human females can

reliably estimate weight (but not height or age) with

these two acoustic variables. In non-human primates,

Fischer et al. (2004) also failed to find any relation-

ship in contest barks between fundamental frequency

and shoulder height or weight among adult male

Chacma baboons. When these subtle variations in

body size cannot explain variations in acoustic fea-

tures, variations in the social context or in the internal

state of the caller, such as hormones or arousal, might

play a role. Indeed, Fischer et al. (2004) found that

high ranking adult male Chacma baboons produce

contest barks with a higher fundamental frequency

(Fig. 5), which might be a by-product of a higher call

amplitude. Unfortunately, it was not possible to test

this assumption in the field. These other factors may

interact with or override the influence of body size,

and this interaction needs to be investigated in more

detail.

Another explanation for such a complication of the

relationship between body size and acoustic features

may be related to honest signalling and the advertise-

ment of quality through communicative signals. First,

the mechanisms of sound production impose global

physical limits on vocal production due to body size.

The physical constraint of body size on acoustic fea-

tures defines a basic range for each acoustic feature

within which the acoustic feature can vary without any

additional investment from the caller. This provides

reliable information about the caller’s intrinsic attri-

butes, such as its size, with relatively low cost for the

signallers, simply because of the mode of signal pro-

duction. Vocalizations in which acoustic features vary

only in relation to these cost-free signaller attributes

(i.e. without additional investment) are termed ‘‘in-

dex’’ signals (Vehrencamp 2000; Fitch and Hauser

2003). However, within the range imposed by the

anatomy of the caller, vocalizations may also vary with

the quality of the caller. Individuals of high quality can

afford some additional costs, such as longer calls with a

higher call amplitude, and they may therefore modify

their vocalizations in such a way that the acoustic

features are shifted to the extremes of the range de-

fined by the physical constraint of body size. If this shift

to the extreme bears some cost, such vocalizations fulfil

the criteria for ‘‘quality’’ signals (Vehrencamp 2000).

They provide honest information about the quality of

the caller, for instance his competitive ability, because

only high quality individuals can afford the additional

costs (e.g. energy used for production, higher exposure

to predation, higher vulnerability to receiver’s attack)

of shifting to the extremes of the range determined by

physical constraints (Vehrencamp 2000; Zahavi 2003;

summarised in Fischer et al. 2004).

Studies on age-related variations in acoustic features

have traditionally been conducted without separation
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Fig. 5 Scatterplots showing the relationship between absolute
rank and the mean fundamental frequency (R2 = 0.594; F =
20.056; P = 0.001). Vertical lines represent SD. Figure redrawn
from Fischer et al. (2004)
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between sexes. The factor ‘‘age’’ is therefore often

confounded with the factor ‘‘sex’’. In addition, studies

concerning sex-related variations were most often

conducted only on adult animals. Therefore, few, if

any, studies have investigated at which particular

stateof development sexual differences emerge in non-

human primate vocalizations. This constitutes a gap

that remains to be filled.
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Appendix

Table 2 Definitions of some acoustic variables used in Table 1

Variable Description Study

Amplitude modulation The definition of this parameter was not
given precisely by Hauser (ms)

Hauser (1989)

Amplitude ratio Ratio between the mean relative
amplitude of the fundamental
frequency and of the second harmonic

Hammerschmidt et al. (2000)

Average frequency Average of the frequencies shown by
power spectrum analysis to contain the
most energy in the call (Hz)

Gouzoules and Gouzoules (1989)

End frequency Frequency at the end of the call (Hz) Norcross and Newman (1993) and
Mitani and Groslouis (1995)

Formant center frequency Frequency of the formant (Hz) González (2004)
Interpulse period Duration from the beginning of one pulse

to the beginning of the following one
(ms)

Hauser (1989)

Inter-unit interval duration Duration of the interval between two
units in a call (ms)

Seyfarth and Cheney (1986)

Maximum frequency range Maximum frequency range (highest
frequency - lowest frequency) over all
time segments (Hz)

Hammerschmidt et al. (1994),
Hammerschmidt and Fischer (1998)
and Hammerschmidt et al. (2001)

Maximum fundamental frequency Maximum fundamental frequency in all
time segments (Hz)

Inoue (1988)

Maximum peak frequency Maximum peak frequency in all time
segments (Hz)

Hammerschmidt et al. (2001)

Mean central frequency Mean over all time segments of the
frequency at which the second quartile
(50%) of global energy is reached (Hz)

Hammerschmidt et al. (1994) and
Hammerschmidt and Fischer (1998)

Mean fundamental frequency Mean value across all time segments of
the fundamental frequency (Hz)

Hammerschmidt et al. (2000)

Mean gap length Mean duration of the parts of the call
where the amplitude is less than 20% of
the mean maximum amplitude across
all time segments (ms)

Hammerschmidt et al. (2000)

Mean local modulation
of central frequency

Floating average describing how much the
central frequency differs from its linear
trend

Hammerschmidt et al. (1994) and
Hammerschmidt and Fischer (1998)

Mean local modulation of dfb Floating average describing how much the
first dominant frequency band differs
from its linear trend

Hammerschmidt et al. (1994) and
Hammerschmidt and Fischer (1998)

Mean peak frequency Mean value across all time segments of
the peak frequency (Hz)

Hammerschmidt et al. (2000)

Mean range Mean difference between the highest and
the lowest frequencies across all time
segments in the call (Hz)

Hammerschmidt et al. (2000) and
Hammerschmidt et al. (2001)

Mean repertoire frequency Mean over the whole repertoire of a
species of the first dominant frequency
band or fundamental frequency (Hz)

Hauser (1993)

Minimum fundamental frequency Minimum fundamental frequency in all
time segments (Hz)

Inoue (1988)

Modulation of the fundamental frequency Floating average describing how much the
fundamental frequency differs from its
linear trend

Hauser (1989)
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