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Abstract Phytopathogenic fungi, causal agents of some of

the world’s most serious plant diseases, can significantly

reduce yields during large-scale agricultural production.

Among the numerous hydrolytic enzymes they produce for

nutritional and/or pathogenicity purposes, hydrolases and

proteases are required for their growth and survival. The

present review focuses on extracellular and/or secretory

proteases from phytopathogenic fungi. Several extracellu-

lar proteases have been identified that contribute to fungal

growth, infection structure formation, cell wall degrada-

tion, proteolytic processing of pathogenesis-related pro-

teins and that act as elicitors of defense responses. In this

review, the positive correlation between protease secretion

and disease aggressiveness and/or necrosis is highlighted.

The involvement of various fungal proteases in pathogenic

mechanisms makes them potential targets for designing

protease inhibitors that may provide an improved way to

combat plant diseases, which in turn will reduce depen-

dence on fungicides.
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Introduction

Phytopathogenic fungi are a serious threat to plant health,

causing a plethora of diseases that contribute substantially

to overall losses in agricultural yield. In addition, *10 %

of all known fungal species can cause plant disease,

affecting more than 10,000 plant species (Horbach et al.

2011; Kubicek et al. 2014). Cell-wall-degrading enzymes

are important for determining the ability of a pathogen to

colonize a host plant (Annis and Goodwin 1997; Juge

2006; Lebeda et al. 2001; Nakajima and Akutsu 2014).

There is also considerable evidence implicating pectinases

(Annis and Goodwin 1997; Nakajima and Akutsu 2014)

and to a lesser extent cellulases (Doi and Kosugi 2004) and

xylanases as virulence factors (Annis and Goodwin 1997;

Nakajima and Akutsu 2014). Initially, when pathogenic

fungi encounter a host, they produce various cell-wall-de-

grading enzymes such as glycanases and proteases to

fragment the plant cell wall polymers, thus facilitating

penetration into the host cells (Chu et al. 2015; Doi and

Kosugi 2004; Kubicek et al. 2014; Jashni et al. 2015a).

Apart from their role in cell wall degradation, proteases

synthesized by plant pathogenic fungi have also been

proposed as possible virulence factors in plant–pathogen

interactions (Jashni et al. 2015a; Slavokhotova et al. 2014)

(Table 1). Moreover, plant cell walls possess several pro-

teins, glycoproteins, and structural proteins. Therefore,

proteolytic enzymes play an important role in pathogenesis

(Jashni et al. 2015b; Saitoh et al. 2009). However, most

saprophytic fungi produce proteolytic enzymes for their

nutritional requirements. Thus, the type and level of pro-

tease production determine the saprophytic or pathogenic

characteristics of fungi. The role of these enzymes in the

process of pathogenesis has been the subject of intensive

research. This review aims to discuss the various features
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Table 1 Proteases from plant pathogenic fungi

Pathogen Host Disease name Proteolytic enzyme References

Alternaria solani Potato and

tomato

Early blight Serine protease

Metalloprotease

Chandrasekaran et al. (2014,

2016)

Alternaria alternata Buckwheat Buckwheat

seed

diseases

Subtilisin and Trypsin-

like serine proteases

Dunaevsky et al. (2006)

Aspergillus flavus Cotton Cotton boll

infection

Extracellular protease Brown et al. (2001)

Bipolaris zeicola Maize Ear rot Trypsin-like serine

protease

Murphy and Walton (1996)

Botrytis cinerea Carrot Carrot

disease

Aspartic protease Movahedi and Heale (1990), Rolland et al.

(2009) and ten Have et al. (2010)

Colletotrichum coccodes Tomato Brown root

rot

Serine protease Redman and Rodriguez (2002)

Fusarium oxysporum Tomato Vascular wilt Serine, cysteine and

metallo protease

Jashni et al. (2015b)

Fusarium solani Potato Dry rot Serine protease Olivieri et al. (2002, 2004)

Fusarium solani f. sp. eumartii Potato Dry rot Extracellular protease Olivieri et al. (2004)

Fusarium sporotrichioides Rye Ear fusariosis Trypsin-like serine

protease

Dunaevsky et al. (2008)

Fusarium verticillioides Maize Stalk and ear

rot

Metalloprotease Slavokhotova et al. (2014)

Gibberella gordonii Wheat Root rot in

wheat

Trypsin-like serine

protease

Dunaevsky et al. (2008)

Glomerella acutata Apple Soft rot in

fruits

Aspartic, cysteine and

serine protease

Gregori et al. (2010)

Magnaporthiopsis poae Kentucky

bluegrass

Root rot Subtilisin-like serine

protease

Sreedhar et al. (1999)

Neocosmospora haematococca Pea Root rot Trypsin-like serine

protease

St. Leger et al. (1997)

Penicillium chrysogenum

Penicillium glabrum

Strawberry Fruit rot Subtilisin-like serine

protease

Dunaevsky et al. (2006)

Peronospora hyoscyami f. sp. tabacina,

Phytophthora nicotianae

Tobacco Black shank Serine protease Silva et al. (2013)

Pleurotus pulmonarius Wood Wood rot Subtilisin-like serine

protease

Kudryavtseva et al. (2008)

Pleurotus ostreatus Wood Wood rot Trypsin-like serine

protease

Inácio et al. (2015)

Phytophthora infestans Potato Late blight Serine protease Feldman et al. (2014)

Phytophthora infestans, Thanatephorus

cucumeris, Fusarium culmorum

Potato Potato

disease

Serine protease Kudryavtseva et al. (2013), Pekkarinen et al.

(2002) and Valueva et al. (2011)

Pyrenopeziza brassicae Oil seed

rape

Leaf spot Cysteine protease Ball et al. (1991)

Pyricularia grisea, Nakataea oryzae Rice Rice blast Metallo protease and

subtilisin-like protease

Jia et al. (2000) and Saitoh et al. (2009)

Sarocladium strictum Strawberry Fruit rot and

Wilt

Subtilisin-like serine

protease

Chalfoun et al. (2013)

Sclerotinia sclerotiorum Common

Bean

White mold Non-aspartyl acid

protease

Poussereau et al. (2001)

Sphacelotheca reiliana Corn Head smut Aspartyl acid protease Mandujano-González et al. (2013)

Ustilago maydis Corn Smut Non-aspartyl acid

protease

Mercado-Flores et al. (2003)

Verticillium alboatrum, Verticillium

dahliae

Tomato Tomato wilt Serine protease St. Leger et al. (1997)

Verticillium dahliae Cotton Vascular wilt Serine protease He et al. (2015)
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of proteases secreted by phytopathogenic fungi and their

role in virulence.

Classifications of proteases

Proteases are one of the most important industrial

enzymes, accounting for nearly 65 % of the total world-

wide enzyme sales (Kasana et al. 2011; Souza et al.

2015). The protease (E.C. 3.4) group of enzymes hydro-

lyzes peptide bonds [Nomenclature Committee of the

International Union of Biochemistry and Molecular

Biology (NC-IUBMB)]. Proteases are classified based on

their hydrolytic process (endopeptidases and exopepti-

dases), pH (acidic, alkaline and neutral proteases), or

functional group at the active site (aspartic, cysteine,

glutamic, metallo, serine, threonine, and unknown (NC-

IUBMB). According to the MEROPS peptide database,

proteolytic enzymes are grouped into 12 clans and 35

families based on amino acid sequence similarity and

catalytic mechanism (Rawlings et al. 2012). Most of the

fungal proteolytic enzymes are represented largely by

serine proteases, named for the nucleophilic Ser residue at

the active site (Asp-His-Ser). Based on their substrate

specificity, they were divided into two major families of

serine-like proteases such as trypsin-like (TLPs) and

subtilisin-like proteases (SLPs) (Rawlings et al. 2012).

The specificity of TLPs is restricted to the C-terminal side

positively charged residues (Lys and Arg) because of the

Asp 189 residue located in the binding pocket. SLPs

cleave peptide bonds located on the C-terminal side of

large hydrophobic residues (Phe, Trp, Met, Tyr and Leu)

as a result of the hydrophobic makeup of the pocket

(Rawlings et al. 2012). Moreover, enzyme activity has

been determined using synthetic substrates. It is evident

that Phytophthora infestans exoproteinases most effec-

tively hydrolyze N-a-benzoyl-L-Arg-pNa (BAPNA) (a

substrate for TLPs) and to a lesser extent N-carbobenzy-

loxy-L-Ala-L-Ala-L-Leu-pNa (Z-AALPNA) (a substrate

for SLPs). At the same time, exoproteinases did not act

on the substrates for chymotrypsin-and elastase-like pro-

teinases (N-succinyl-glycyl–glycyl-L-phenylalanine p-ni-

troanilide [Suc-GGFPNA] and N-acetyl-L-alanyl-L-alanyl-

L-alanyl p-nitroanilide [Ac-AAAPNA], respectively), nor

did aminopeptidases [L-leucine p-nitroanilide (LPNA)].

The enzymes secreted by Fusarium culmorum hydrolyze

Z-AALPNA very efficiently and to a lesser extent

BAPNA. They have low activity toward substrates for

chymotrypsin-like and elastase-like proteinases and for

aminopeptidases (Valueva et al. 2011, 2015). Thus, the

proteases from phytopathogenic fungi have unique prop-

erties and deserve further study.

Protease production and phytopathogenicity

Phytopathogenic fungal proteases can be produced in var-

ious conditions and ways. Depending on culture conditions,

different forms of the same protease can be expressed

(Inácio et al. 2015). Many species of phytopathogenic

fungi produce different proteases in a variety of culture

media and host tissues (Chandrasekaran et al. 2014; He

et al. 2015; Valueva et al. 2015). Casein is a traditional

substrate used to determine proteolytic activity, and

hemoglobin, rennin, azo-casein, serum albumin, gelatin,

yeast and other proteinaceous substrates have been used to

a lesser degree (Chandrasekaran et al. 2014; Valueva et al.

2011, 2015). According to Zaferanloo et al. (2014), the

optimum condition for protease production of Alternaria

alternata is 37 �C, pH 7.0 using soybean as substrate. The

optimum condition for protease production in Alternaria

solani is 27 �C, pH 8.5 with casein as the substrate

(Chandrasekaran and Sathiyabama 2014; Chandrasekaran

et al. 2014, 2016). The addition of heat-stable potato tuber

proteins to the culture medium is vital for secretion of

exoprotease from Thanatephorus cucumeris and F. cul-

morum (Valueva et al. 2011). Recently, Mandujano-Gon-

zález et al. (2013) identified the 41-kDa extracellular

aspartyl protease Eap1 from Sphacelotheca reiliana in both

solid and liquid culture media. Similarly, in Ustilago

maydis, non-aspartyl acid extracellular protease pumAe

was found under acidic conditions in the culture medium

(Mercado-Flores et al. 2003). According to Feldman et al.

(2014), the oomycete P. infestans secretes serine and

metalloproteases into culture media; metalloproteases are

more abundant. These studies suggest that different nutri-

tional sources are essential for the differential production

of various proteases.

Fungal proteases are thought to be important during

different aspects of the infection process, including adhe-

sion to host cells, initial penetration of the plant cell wall

and colonization (Brown et al. 2001; Movahedi and Heale

1990; Olivieri et al. 2004; Soberanes-Gutiérrez et al. 2015).

A correlation between proteolytic activity in the culture

medium and in the infected plant has been shown for

several phytopathogenic fungi to establish disease (Bind-

schedler et al. 2003; Pekkarinen et al. 2002). According to

Movahedi and Heale (1990), 38–39 kDa aspartyl acid

proteases were detected in the culture medium of Botrytis

cinerea and in carrot tissue infected by the fungus, but not

in uninfected carrot tissue. Further, cell death investiga-

tions by Movahedi and Heale (1990) for B. cinerea sug-

gested that aspartic protease might be the most important

factor contributing to the initial stage of infection. Signif-

icant extracellular proteolytic activity in Spunta potato

tubers during infection by Fusarium solani (Olivieri et al.
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2004) confirms proteases as a key regulator of infection

and immunity-priming factor in plant hosts. An investiga-

tion of the genetic basis of proteolytic activity in Sclero-

tinia sclerotiorum showed the expression of genes acp1

and asps responsible for the production of acid protease

and aspartyl protease, respectively (Poussereau et al. 2001).

In a similar study, Rolland et al. (2009) identified BcACP1,

a member of the G1 family of protease, produced by B.

cinerea during infection. An array of proteases such as

aspartic proteases, cysteine proteases, and serine proteases

were produced by Glomerella acutata (a causal agent of

soft rot in fruits) (Gregori et al. 2010), showing the

involvement of several proteases in disease development.

Recently, ten Have et al. (2010) demonstrated that aspartic

proteases are the key factors of pathogenicity in B. cinerea.

It is clear from recent studies of several phytopathogenic

fungi that the importance of proteases in the disease pro-

cess may depend upon the specific plant–pathogen inter-

action (Figueiredo et al. 2014; Jashni et al. 2015a;

Soberanes-Gutiérrez et al. 2015; ten Have et al. 2010).

Furthermore, the necessity of extracellular proteases in

phytopathogenicity was confirmed by mutational studies in

several fungal species such as Pyrenopeziza brassicae,

Verticillium dahliae, Nakataea oryzae, U. maydis and F.

oxysporum (Ball et al. 1991; Dobinson et al. 2004; Saitoh

et al. 2009; Jashni et al. 2015a; Soberanes-Gutiérrez et al.

2015). An extracellular protease was reported to be a sig-

nificant pathogenicity factor of Colletotrichum coccodes,

and its removal by mutagenesis converts a virulent patho-

gen into a nonpathogenic endophyte (Redman and Rodri-

guez 2002), while in Bipolaris zeicola disruption of the

ALP1 gene, which encodes a TLP, had no distinct effect on

virulence (Murphy and Walton 1996). Saitoh et al. (2009)

confirmed that that the SPM1-encoded SLP is a major

protease for autophagy that might affect endocytosis during

pathogenesis of the rice blast fungus N. oryzae.

The secretion of protease inhibitors (PI) during plant–

pathogen interactions implies the existence of protein tar-

gets in the fungal pathogens. The lack of protease activity

in phytopathogenic fungus correlates with the lack of

proteases in most fungi. Transient expression of serine

protease inhibitor gene NmIMSP in susceptible tobacco

leads to enhanced resistance to the oomycetes Peronospora

hyoscyami f. sp. tabacina and the Phytophthora nicotianae

(Silva et al. 2013). A PI mixture obtained from potato

sprouts is strongly inhibitory to proteases, spore germina-

tion, hyphal elongation and necrotic activity of B. cinerea

(Turra 2006). Moreover, PLPKI (potato serine protease

inhibitor I family) inhibited the activity of proteases

secreted by two pathogens of potato, the oomycete P.

infestans and the fungus Thanatephorus cucumeris, but not

of the proteases of nonpathogenic Thanatephorus N2.

Furthermore, a clear correlation between PLPKI activity

and the degree of horizontal resistance against P. infestans

was corroborated on potato clones at varying degrees of

resistance to this oomycete. The fact that plants have

developed ways to sense proteases (either directly or

through the products of their actions) highlights their

importance in pathogenesis. In response to perception, a

series of signalling events takes place (involving protease

inhibitors, antimicrobial peptides, PR proteins, mitogen-

activated protein kinase [MAPK] signaling, and interac-

tions between the products of plant resistance [R] and

pathogen avirulence [avr] genes), that is shared among

various elicitors and eventually leads to the deployment of

defence mechanisms, again implicating proteases in

pathogenicity (Cheng et al. 2015; Ryan 1990; Slavokho-

tova et al. 2014).

Role of proteases in plant–fungi interactions

Table 1 lists phytopathogenic fungi that secrete a broad

spectrum of proteolytic enzymes during penetration and

colonization of host tissues. Proteolysis, a vital process for

cell life, plays an important role in different physiological

functions such as post-secretion protein processing, ger-

mination, sporulation, aerial mycelium and appressorium

formation, nutrition, and adaptation to different environ-

mental conditions (Chandrasekaran and Sathiyabama 2014;

Tucker and Talbot 2001). In plants, fungal proteolytic

mechanisms are responsible for removal of abnormal or

nonfunctional proteins, activation/inactivation of specific

proteins and autolytic processes. In addition, proteases

increase the permeability of the plant plasma membrane,

suggesting that they may have a critical role in phy-

topathogenesis (Soberanes-Gutiérrez et al. 2015).

Polypeptides released upon the action of proteases secreted

from phytopathogenic fungi may act as elicitors, (damage-

associated molecular patterns), which are subsequently

recognized by corresponding immune receptors and are

known to trigger MAPK signaling. A metalloprotease from

the rice blast fungus Pyricularia grisea (now P. oryzae)

was shown to act as an avirulence factor (AVR-Pita) by

directly binding to a plant resistance gene product (Pi-ta)

and stimulating a signaling cascade that leads to resistance

in a classic example of a gene-for-gene interaction (Jia

et al. 2000). Olivieri et al. (2002) demonstrated that the

fungus F. solani f. sp. eumartii secretes 30 kDa SLP with

the ability to degrade pathogenesis related (PR) proteins as

well as specific polypeptides of intercellular washing fluids

and cell wall proteins. A study on a novel extracellular

elicitor protein produced by the strawberry pathogen

Sarocladium strictum confirmed that the proteolytic activ-

ity of the AsES elicitor is required for the induction of

defense responses in plants (Chalfoun et al. 2013). Other
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reports suggest that pathogens might overcome the dele-

terious effects of plant chitinases by secreting proteases

that modify them. A recently discovered Zn-metallopro-

tease from Fusarium verticillioides, fungalysin Fv-cmp,

cleaves the Gly–Cys peptide bond between two domains of

corn class IV chitinases ChitA and ChitB (Slavokhotova

et al. 2014). Fungalysin-mediated proteolytic degradation

of class IV chitinases is also found in Arabidopsis (Nau-

mann and Price 2012).

Proteases as markers of phytopathogenicity

Positive correlations between certain protease activities

and disease aggressiveness have been reported in several

plant pathogenic fungi. A cerevisin (homologous to pro-

teinase B from S. cerevisiae) mutant of V. dahliae with

decreased secretion of low molecular weight proteins

known to be virulence factors was generated to assess the

effects on virulence. At 21 days after inoculation with the

cerevisin mutant, cotton seedlings did not have noticeable

symptoms. Even though the role of cerevisin in the pro-

duction and secretion of these polypeptides remains to be

elucidated, the experiments highlight the indirect involve-

ment of cerevisin in the virulence of V. dahliae (He et al.

2015). Soberanes-Gutiérrez et al. (2015) reported that the

knockout of the PEP4 gene in U. maydis reduced virulence

of U. maydis on maize. Nonpathogenic mutants of the

fungus Pyrenopeziza brassicae do not have the ability to

produce extracellular cysteine proteinase (Ball et al. 1991).

Staples and Mayer (1995) showed that an increase in the

level of aspartic protease activity in B. cinerea led to an

increase in virulence. Magnaporthiopsis poae expresses a

SLP (Mp1) in infected roots, and its level of expression is

positively correlated with the severity of symptoms

(Sreedhar et al. 1999). Olivieri et al. (2004) demonstrated a

correlation between proteolytic activity detected in inter-

cellular washings with the size of lesions caused by F.

eumartii in susceptible potato tubers, but not in the resis-

tant. Higher proteolytic activity in roots infected with F.

solani f. sp. phaseoli correlated with the processing of class

IV chitinase (Lange et al. 1996). Recently, Jashni et al.

(2015b) reported that both secreted metalloprotease and a

serine protease were responsible for reduced chitinase

activity in tomato. Because these chitinases have antifungal

properties, the deletion of both encoding genes (FoMep1

and FoSep1) rendered F. oxysporum f. sp. lycopersici

unable to cleave and inactivate specific chitinases and thus

less virulent on tomato.

Dunaevsky et al. (2001, 2006) reported that the pro-

duction of TLPs is characteristic of plant pathogens. Fur-

ther, the validity of TLPs as a marker in fungal

phytopathogenicity was proved to be due to conserved

motifs around the active site residues (Dubovenko et al.

2010). Nevertheless, SLPs are the key virulence factors in

nematophagy (Zhao et al. 2005) and responsible for

pathogenesis in saprophytes such as A. solani (Valueva

et al. 2013). In the plant pathogens V. albo-atrum, V.

dahliae, and Neocosmospora haematococca, the protease

activities detected were trypsin-like, with only trace levels

of SLP (St. Leger et al. 1997). A comparative study of

extracellular proteases of six species of mycelial fungi,

including three phytopathogens (A. alternata, B. cinerea,

and Alternaria botrytis) and three saprophytes (Penicillium

chrysogenum, Penicillium glabrum and Trichoderma har-

zianum) showed that SLPs are likely present in all surveyed

fungal species (Dunaevsky et al. 2006). More virulent F.

sporotrichioides exhibited greater extracellular TLP

activity than the less virulent Gibberella gordonii (Du-

naevsky et al. 2008). Some fungi such as T. harzianum and

other saprotrophic fungi secrete solely SLPs. However, A.

alternata and other phytopathogens produce TLPs as well

(Valueva et al. 2015). Kudryavtseva et al. (2008, 2013)

found that Pleurotus pulmonarius, which grows on dead

timber, secretes subtilisin but not trypsin. Pleurotus

ostreatus, which grows in living hosts, secretes extracel-

lular trypsin throughout its development, suggesting that

successful colonization of living tissues requires TLP

(Inácio et al. 2015). By using SLPs, a pathogenic fungus

mainly affects the physiological integrity of host during

penetration and colonization (Chalfoun et al. 2013;

Dunaevsky et al. 2006; Figueiredo et al. 2014). There is

evidence of extensive gene duplication and loss within the

SLP family in fungal lineages, which has been correlated

with differences in fungal lifestyles. These data indicate

that the production of TLPs is a distinct feature of phy-

topathogenic fungi, whereas the production of SLPs is a

specific feature of saprotrophic fungi (Dubovenko et al.

2010; Kudryavtseva et al. 2008). In some fungi, SLPs

either can play a general nutritive role, or may play specific

roles in cell metabolism or as pathogenicity or virulence

factors. Thus, the presence of significant extracellular TLPs

and/or SLPs activity in phytopathogenic fungi may be

considered as an indicator of their phytopathogenicity.

Conclusion and future perspectives

In this review, the role in pathogenicity of proteases from

phytopathogenic fungi was discussed, including during host–

pathogen interactions and signaling involved in priming an

immune response and the fact that the energy requirements of

phytopathogens are met after the degradation of plant cell wall

proteins. Identification and characterization of fungal pro-

teases will be a key aspect in the generation of new molecular

markers for phytopathogenicity. Isolation and analysis of
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genes that encode proteases will promote further investigation

of their genetics, regulation, and evolution. In the case of

redundant gene families, studies on multiple protease mutants

will be needed to characterize their role in virulence.

Advanced transcriptome and proteome analyses will facilitate

identification of important proteases and their specific inhi-

bitors for further functional analysis. Progress in this research

area will allow plant pathologists to design more efficient

strategies to generate pathogen-resistant plants. Metabo-

lomics and expression profiling will help to identify specific

targets of fungal proteases important in pathogenesis, thus

opening new paths for the development of more resistant

crops and the progress of sustainable agricultural practices.
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Millet Y, Bush J, McConkey BJ, Sheen J, Ausubel FM (2015)

Pathogen-secreted proteases activate a novel plant immune

pathway. Nature 521:213–216

Chu J, Li WF, Cheng W, Lu M, Zhou KH, Zhou HQ, Li FG, Zhou CZ

(2015) Comparative analyses of secreted proteins from the

phytopathogenic fungus Verticillium dahliae in response to

nitrogen starvation. Biochim Biophys Acta 1854:437–448

de Souza PM, de Assis Bittencourt ML, Caprara CC, de Freitas M, de

Almeida RPC, Silveira D, Fonseca YM, Filho EXF, Junior AP,
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