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Abstract
Microplastics have been recently detected in many environmental media and living organisms, yet their transfer and toxicity 
to humans are poorly known. Here, we review microplastic transfer in the food chain with focus on microplastic pollution 
sources, methods to analyze microplastics in food, health impact of food-related microplastic exposure, and remediation of 
microplastic pollution. Microplastic pollution sources include seafood, food additives, packaging materials, and agricultural 
and industrial products. Remediation techniques comprise the use of microbial enzymes and biofilms. Microplastic detection 
methods in food rely on separation and quantification by optical detection, scanning electron micrography, and Fourier-
transform infrared spectroscopy. Human health impact following microplastic ingestion include cancers, organ and respiration 
damage, and reproductive impairments. Overall, microplastic toxicity is mainly due to their ability to enter the metabolism, 
adsorption into the circulatory system for translocation, and difficulty, if not impossibility, of excretion.

Keywords  Plastic pollution · Food chain · Global food security · Plant contamination · Human health risk · Microplastics 
migration pathways

Introduction

The plastic industries have recorded enormous growth in the 
last few decades, with global production of plastic above 367 
million tons as of 2021. Consequently, plastic waste released 
into various environmental compartments has increased due 
to usage, and disposal (Huang et al. 2022; Anand et al. 2023; 
Osman et al. 2023; Ali et al. 2023; Sharma et al. 2023; Chia 
et al. 2023). Microplastics are generated when discarded 
plastic materials are exposed to external factors such as 
physical and chemical changes, mechanical force, and bio-
logical transformations (Novotna et al. 2019). Microplastics 
are plastic fragments less than 5 mm in size (Osman et al. 
2023). Secondary microplastics are produced when raw plas-
tic particles are degraded by chemical, biological, and physi-
cal processes in the environment, while primary microplas-
tics are basic materials utilized in household and personal 
care goods (Padervand 2017; Padervand et al. 2020). Micro-
plastics are of great concern and a challenge to environ-
mentalists due to their long-term durability, their polymeric 
structure and ease of transfer between different environments 
(Chia et al. 2021). Microplastics are quite prevalent as a 
result of poor plastic waste management (Akan et al. 2021; 
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Enechi et al. 2021; Deme et al. 2022; Okeke et al. , 2022a, 
b, 2023a; Okoye et al. 2022a). Microplastics' degradative 
mechanisms are not completely understood (Othman et al. 
2021; Huang et al. 2022). For 3 years, under simulated real-
istic weather circumstances, the deteriorating changes of the 
chemical structure of two types of microplastics, including 
polypropylene and polyethylene, were evaluated (Brandon 
et al. 2016). They discovered some minor nonlinear varia-
tions in time in moieties like carbonyl, hydroxyl, and car-
bon–oxygen bonds using Fourier-transform infrared (FTIR) 
spectroscopy analysis (Huang et al. 2022; Chia et al. 2023), 
which suggests that microplastics degrade slowly (Brandon 
et al. 2016). Several methods have been employed in the 
removal of microplastics from different media including 
sorption and filtration methods (Adsorption on green algae, 
removal using membrane technology), advanced filtration 
technologies, chemical methods, biological removal and 
ingestion (using marine organisms, using bacteria, via inges-
tion (Padervand et al. 2020)).

A plethora of evidence from previous studies 
has demonstrated the retention of microplastics in 
various  ecosystems, including those of the ocean, 
soil,  freshwater, and  the atmosphere (Akan et al. 2021; 
Deme et al. 2022; Okeke et al. 2022a, b, c, 2023a, b; Okoye, 
et al. 2022a, b). As a result, it is reasonable to assume that 
Microplastics will find their way into and accumulate in the 
food chain, which is based on above-ground ecosystems, 
before being consumed by man via diet. There are numerous 
studies on inner aquatic products at the moment because 
the majority of Microplastics detection and identification 
assessments are conducted on aquatic ecosystems (Zhao 
et  al. 2022). However, foodborne Microplastics are not 
just found in aquatic foods; they are also found in some 
commonly ingested processed foods and terrestrial 
crops (Piyawardhana et  al. 2022). Additional sources 
of Microplastics include fast food deliveries, foodstuffs 
packed and stored in plastic containers (Li et al. 2020b) 
and even indoor air (Zhang et al. 2022). Therefore, more 
effort is needed by researchers into both quantitative and 
qualitative research on different categories of food items, as 
this will serve as the foundation for determining the health 
risks associated with microplastics in humans. There are 
numerous documented detrimental consequences resulting 
from microplastics including reproductive toxicity (Liu et al. 
2022b), inhibition of growth (Vickers 2017), impairment 
of nutrient absorption in plants as well as nervous system 
disorders (Lee et al. 2022). Results from previous study show 
that microplastics ingested through diet resulted in intestinal 
disorder in humans (Lu et al. 2019). The altered intestinal 
integrity could result to a concomitant anomaly in digestion 
and absorption of nutrients as well as altered mammalian 
homeostasis (Luissint et al. 2016), with resultants immune 
system dysfunction, metabolic disorders and pathogenesis 

of various diseases (Ganal-Vonarburg et  al. 2020). In 
summary, it can be seen from these previous studies that 
microplastics have detrimental impacts on human health 
and the environment and could get into the human body via 
contaminated food or food packaging materials. Here, we 
review microplastics in food, effects on food security, and 
potential health risks.

Sources of microplastics in the food chain

Increasing incidence and consequent health risks of micro-
plastics continue to raise concerns over entry into humans, 
by inhalation, ingestion and dermal contact (Asif et  al. 
2017). Microplastics incidence in the food chain is from 
the aquatic (Panel and Chain 2016; Du et al. 2020; Benson 
et al. 2022) and terrestrial (He et al. 2021a) environments 
(Fig. 1). Thus, both the aquatic and terrestrial ecosystems 
act as microplastics reservoirs. Extensive exposure via the 
food web involves seafood, drinking water, salt, honey, milk, 
sugar and meat (Panel and Chain 2016; He et al. 2021a; 
Jadhav et al. 2021; Benson et al. 2022; Alberghini et al. 
2022; Vitali et al. 2023). We summarize some entry routes 
of microplastics to humans via the food web in the follow-
ing sections and in Fig. 1 below. Overall, water sources 
and packing materials constitute the highest microplastics 
entrance route to the human food chain. For instance, salt 
retains and transmits microplastics through intake but terres-
trial foods like cattle have a method for their elimination. We 
discuss below several pathways through which microplastics 
may migrate into food samples.

Water

Polyamide, polyethylene, polyester, polyvinyl chloride, 
polytetraf luoroethylene, etc. from food packaging, 
toys, personal care products and sewage have been 
reported in water (Muhib et  al. 2023; Sewwandi et  al. 
2023). Microplastics including acrylonitrile, butadiene, 
polyethylene terephthalate, poly(ester amide) and styrene 
have been traced to production water sources including 
underground water, public water sources, surface water 
and rainwater (Schymanski et al. 2018; Makhdoumi et al. 
2021; Samandra et al. 2022; Muhib et al. 2023; Sewwandi 
et al. 2023) with eventual incidence in the human food 
chain. For example, a study on comprehensive water chain 
reported epoxy resin, polyethylene, polyamide, polystyrene, 
and polyvinyl chloride at an average concentration of 700 
particles/L (Pironti et al. 2021). Enormous microplastics are 
available to humans via treated water, with the World Health 
Organization reporting a concentration of 5 particles/L of 
tap water and worse for individuals drinking only bottled 
water (Pironti et al. 2021). Introduction of microplastics 
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from water and drinks represents about the most important 
entry route considering the integral place of water in human 
nutrition (Miller and Young 2023) and the place of water 
as an important reservoir of microplastics (Sewwandi et al. 
2023). In summary, water is critical to human nutrition and 
an important route of microplastics entry into humans.

Seafood

Seafood represents a preferred protein source in human diets 
(De-la-torre and De-la-torre 2020), but an important route 
of microplastics entry into the human food chain (Table 1) 
(Schymanski et al. 2018; Cverenkárová et al. 2021; Benson 
et al. 2022; Alberghini et al. 2022; Sewwandi et al. 2023). 
Microplastics incidence in fish is either direct via ingestion 
or passive via gill respiration and ingesting of contaminated 
prey (De-la-torre and De-la-torre 2020). Studies report the 
presence of microplastics in seafood including shellfish and 
fish (Cverenkárová et al. 2021; Alberghini et al. 2022; Sew-
wandi et al. 2023). The localization of microplastics in the 
usually discarded seafood gastrointestinal tract (Alberghini 
et al. 2022; Sewwandi et al. 2023) offers some respite, but 
they have been reported in some edible parts (Sridhar et al. 
2022). Further, the presence of microplastics on the external 
intestinal linings of lower marine species suggests bioavail-
ability to humans (Pironti et al. 2021; Benson et al. 2022). 
Similarly, shell fishes are sometimes eaten with the gastro-
intestinal tract, increasing entry to the food chain (De-la-
torre and De-la-torre 2020; Cverenkárová et al. 2021). For 
example, Teng et al. (2019) reported microplastics present in 

84% of the oyster samples studied in China (Table 1) (Teng 
et al. 2019).

Food packaging

With 40% of the total plastic production, food packaging 
(cans, bottles, wrappings, cups) uses the highest volume of 
plastics (Sridhar et al. 2022; Muhib et al. 2023), accounting 
for appreciable levels of microplastics migration into the 
human food chain (Al Mamun et al. 2023). In fact, food 
packaging and water may represent the most important route 
of microplastics in food explained by atmospheric fallout, 
surface leaching due to loose/rough structure, mechanical 
degradation and stress (opening methods) (Mason et al. 
2018; Winkler et al. 2019; Du et al. 2020; Sobhani et al. 
2020; Muhib et al. 2023). These mechanisms account for 
ingestion of about 2.98 × 103 microplastics person−1 year−1 
and may increase based on ingestion frequency. For 
example, bottled water and drinks are severally reported 
with high incidence of microplastics that end up in human 
food (Table 2) (Panel and Chain 2016; Jadhav et al. 2021; 
Cverenkárová et al. 2021; Sridhar et al. 2022; Sewwandi 
et  al. 2023; Vitali et  al. 2023). The global bottle water 
consumption is above 22 billion liters annually (Luo et al. 
2018), with microplastics in approximately 93% of bottle 
water samples studied in different countries (Pironti et al. 
2021). Microplastics in bottled water are about twice the 
quantity reported in tap water (Table 2) (Mason et al. 2018; 
Jadhav et al. 2021). Other studies also report the presence 
of microplastics in bottled water examining, single use, 
beverage cartons (Table 2) (Schymanski et al. 2018; Muhib 
et al. 2023).

Fig. 1   Microplastics can 
enter different environmental 
compartments and human food 
chain through various pathways. 
These include industrial opera-
tions, wastewater discharge, 
and the decomposition of 
larger plastic trash. Once in the 
environment, microplastics can 
spread through air, water, and 
soil, accumulating in different 
ecosystems, both aquatic and 
terrestrial. Animals residing 
in these habitats, such as fish, 
plankton, and bivalves, can 
ingest microplastics. Microplas-
tics can enter the human body 
through the intake of tainted 
seafood, meat, or vegetables. 
They can also enter the body 
through drinking water and 
airborne particles
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Further, the replacement of traditional paper wrapper 
to plastic materials for teabags also presents an important 
route of microplastics entry into human food chain. Irre-
spective of quality, plastic materials degrade from 40 °C 
over time. Therefore, tea bags that may be brewed almost 
100 ° release billions of microplastics in a single teacup 
(Jadhav et al. 2021; Carr Kinnear et al. 2021; Sewwandi 
et al. 2023), with high toxicity index. Further disposable 
paper cups with hydrophobic inner linings release substan-
tial microplastics when used to serve hot drinks (Liu et al. 
2022a). This presents another synergy for high microplastics 
contamination from water and packing material, in addition 
to the high microplastics contaminations present in water 
sources, including treated tap water.

Microplastics incidence in milk and dairy products due 
to hygiene and corrosion from the milk processing and 
packaging materials have been reported. Thermoplastic 
sulfone polymers used in the ultrafiltration of milk have 
been reported due to high pressure-induced peel-off and 
chemical stress on the membranes (Benson et al. 2022; 
Vitali et al. 2023). Further, about 16 million microplastics/L 
are released due to shaking and preparation temperature in 
feeding bottles, representing a worrisome position as milk 
is mostly consumed by infants (Li et al. 2021b; Sewwandi 
et al. 2023). Microplastic intake from feeding bottles is 3000 
times adults exposure from air, food and water at 1,580,000 
per child (Li et al. 2020c; Jadhav et al. 2021). Obviously, the 
recent preference of plastic materials for food package is a 
critical route of entry for microplastics into the human food 
chain, form plastic tea bags, to feeding bottles and plastic 
bottles for water and other drinks, all account for appreciable 
levels of microplastics in human food.

Agricultural products

Soil is an important sink for microplastics, with 4–23 
times the volume of microplastics in water, distributed in 
agricultural soils, industrial and remote areas (He et al. 
2021a). Agriculture uses 38% of all global land (Zabel 
et al. 2019) and soil microplastics contamination results 
from anthropogenic activities and degradation (He et al. 
2021a). The soil–plant pathway contributes 99% of human 
calories but represents an important microplastics entry 
route to the human food chain (Abbasi et al. 2020). Studies 
have shown the size-dependent root intake of microplastics 
from contaminated soils related to a crack-entry route in the 
root and subsequent translocation to the stem and then to 
other edible plant parts (He et al. 2021a; Wen et al. 2022). 
Also, another study has described the vertical migration of 
microplastics entry into plants aided by infiltration, fauna 
activities and root growth (Li et al. 2021b).

Important food plants and vegetable including apple, 
broccoli, carrot, corn, cucumber, lettuce, onions, pears, 

wheat crops are able to take up microplastics of between 50 
and 700 nm from the soil via the root (Table 3) (Sewwandi 
et al. 2023; Wen et al. 2022; Li et al. 2021a, b, c; Oliveri 
Conti et  al. 2020). These contaminants are incident in 
livestock (cow, pig and poultry), but don’t have a direct 
entry into the food chain, due to an elimination mechanism 
in animals (Wu et  al. 2021; Wen et  al. 2022). Ingested 
microplastics do not get absorbed from the gastrointestinal 
tract and are not present in edible parts (Wen et al. 2022). 
However, consumption of the animal intestine is a relished 
cuisine in parts of Africa, such as eastern Nigeria. Further, 
chopping boards and packaging materials such as trays 
and films have been implicated for microplastics in meat 
products (Wu et al. 2021; Habib et al. 2022). Seafood is also 
a source of introduction of microplastics into the poultry and 
livestock industry with eventual transfer to human food chain 
explained by trophic level food transfer mechanism (Panel 
and Chain 2016). Incidence of microplastics in poultry has 
been demonstrated to pose significant risk of introduction 
to the human food web (Pironti et al. 2021; Sewwandi et al. 
2023). Studies showed route of entry into chicken and 
increasing concentration traced from soil to chicken feces 
to gizzard (Habib et al. 2022) and more recently polyvinyl 
chloride and polystyrene have been reported in chicken 
flesh (Pironti et al. 2021). Agriculture is at the very bottom 
of human food chain, supplying all needed nutrients from 
both plant and animal produce. As expected, agriculture is 
an important source of microplastics in human food, worse 
from plants but also from animal sources.

Food additives

Salt is a carrier of microplastics, with a maximum human 
exposure of 6110 microplastic/year, presenting an important 
ingestion route based on the World Health Organization 
recommended daily consumption of 5 g daily (Pironti et al. 
2021; Benson et al. 2022; Sewwandi et al. 2023). Global 
incidence of microplastics has been reported in edible salt, 
with least contamination in China and highest in Croatia 
at 2000 particles/kg of salt (Pironti et al. 2021; Kuttykattil 
et  al. 2023). Mostly, the plastic particles found in salt 
consist of cellophane, cellulose, paraffin wax, polyvinyl 
chloride, etc. The highest Microplastics contamination 
is reported in sea salt, suggesting industrial effluents 
or the degradation of larger plastics as main sources of 
microplastics (Kim et  al. 2018). Specifically, Kim and 
others reported microplastic contents of 0–1674 n/kg in 
sea salt, 0–148 n/kg in rock salt and 28–462 n/kg in lake 
salt showing salt as an important source of microplastics in 
food. The high incidence of microplastics in salt indicates 
that evaporation is unable to remove contaminant, exposure 
humans to microplastics. Further, the primary source of 
salt contributes to microplastics load in salt such that sea 
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salt was most contaminated, explain by the disposal of 
contaminated industrial wastes into the sea. Microplastics 
are present in other food additives (Table 3) (Sewwandi et al. 
2023). For example, the presence of microplastics in honey 
is traced beekeepers and atmospheric contamination during 
production (Sewwandi et al. 2023). Similarly, microplastics 
contamination has been reported in sugar, though likely 
below acceptable safe limits (Vitali et al. 2023). Appreciable 
levels of microplastics end up in food from salt, honey, sugar 
and other additives traced to production sources and staff.

Industrial products

Many industries are implicated for the incidence of 
microplastics in food and eventual entry into the food 
chain. Earlier in this section, we highlighted the routes 
of microplastics incidence to include air, water and soil 
environments and here, we elucidate the role of industries 
in the introduction of microplastics. Globally, personal care 
products from wastewater treatment plants contribute about 
1500 tons/year of microplastics to the aquatic environment 
alone with a global emission of 1.2 × 104  tons/year and 
an average microplastics of 2162 particles/g (Sun et al. 
2020a). These microplastics in the aquatic environment 
could contaminate seafood and public water sources and 
end up in the human food chain as already discussed in 
this review. Further, the textile industry is reputed for the 
release of fiber from industries into the aquatic environment 
(Periyasamy and Tehrani-Bagha 2022). These fiber materials 
have been traced to seafood and eventually the human food 
chain (Table 3). Research has demonstrated the incidence 
of Microplastics resulting from industrial emissions via 
ingestion, inhalation and dermal absorption with enormous 
health implication (Auguet et al. 2022). Industrial release of 
microplastics into the atmosphere with subsequent settling 
on plants, soils and food materials is also implicated for the 
incidence of microplastics in the human food chain (Pironti 
et al. 2021). These industrial releases actually represent a 
primary source of microplastics for the various routes of 
entry into the human food chain.

Analysis of microplastics in food

The process of microplastic analysis in food generally 
involves sample digestion (food matrix destruction), sample 
extraction/separation, and  sample identification, 
measurement, and characterization. The pretreatment of the 
sample is essential for a successful spectroscopic analysis 
of microplastics in food because it maximizes extraction 
efficiency, protects polymers, and yields reliable results. The 
kind of food matrices and targeted microplastics determines 
the suitable sample pretreatment to use. Because there 

are many different types of microplastics in samples, it is 
frequently challenging to recover all of them using a single 
technique. Understanding the advantages and disadvantages 
of each sample pretreatment technique are crucial.

Separation techniques

Physical treatments

Membrane‑based filtration  One of the effective tech-
niques  for isolating microplastics  from food matrices is 
membrane-based separation. To recover microplastics and 
conduct additional analysis, various liquids, such as drink-
ing water samples and certain beverages, can be filtered onto 
filter membranes. To retain the microplastics in other liquid 
or solid samples, filtering digestants are typically used after 
chemical or enzymatic digestion. The simple method uses 
a pressure difference to cause the liquid to pass through the 
membrane and does not require a complicated setup. Apply-
ing pressure enables the solution to keep the microplas-
tics on the surface of various membrane filters with a dis-
tinct size separation. The membrane filtration technique for 
microplastic separation after treatment is depicted in Fig. 2. 
The potential to replace traditional methods that are energy-
intensive and need sophisticated maintenance and operation 
has attracted interest in the technology (Sridhar et al. 2021). 
The size of the filtered particles can also be used to cat-
egorize the separation process; these include nanofiltration, 
ultrafiltration, reverse osmosis, and microfiltration.

Microplastics on filters could either be transferred 
to slides or used directly for spectroscopic analysis. 
Mesh, glass fiber, cellulose acetate membranes, cellulose 
nitrate, and metal-coated filters are a few of the frequently 
recommended filtering materials. Aluminum/gold-coated 
filters typically have a clear background, simplifying 
spectroscopic identification (Oßmann et al. 2018). Metal 
surfaces are more expensive than other filters, and they are 
also more prone to distortion. Concentrating microplastics 
within a particular size range is possible by using a number 
of filters with various pore sizes. In addition, the chemical 
compatibility of various filters varies. As a result, another 
crucial factor to take into account is the compatibility of 
filter materials with digesting solvents. The potential of 
membrane separation technology in the water sector has 
been thoroughly investigated. For instance, a study done 
in drinking water treatment plants to separate soluble 
microbial products (a mixture containing proteins, fulvic 
acids, polymers, organic matter, and polysaccharides) using 
ultrafiltration revealed a 20% enhancement  in removal 
efficiency after biodegradation (Wu et al. 2019). The method 
has been explored for the separation of microplastics as 
a result of these encouraging results in the removal of 
particles, suspended solids and particular ions. A South 



1902	 Environmental Chemistry Letters (2024) 22:1889–1927

Korean-based study  examined the use of a membrane 
disk filter in conjunction with sand filtration and ozone 
treatment to separate microplastics (Hidayaturrahman and 
Lee 2019). Filtration technique was used for the isolation of 
microplastics from organic matter in tap water samples (Li 
et al. 2022). According to the results, wastewater removal 
effectiveness ranged from 75 to 91.9%. Another independent 
study carried out in the United States of America examined 
the impact of sewage released into the San Francisco Bay 
and other broad geographic regions (Mason et al. 2016). 
According to the study, 0.05 to 0.024 particles/L  of 
wastewater were discovered in the 90 samples taken 
from 17 different facilities using a mix of chemical and 
microfiltration techniques with a mesh size of 125 m. When 
compared to industrial effluents, the microplastic observed in 
these WWTPs was lower between 50 thousand to 15 million 
particles/L (Mason et al. 2016). Conclusively, these studies 
using filtration based on membrane technology recorded 
promising results in separation of microplastics.

Recently, microplastics  in food have also been 
detected using membrane separation technology. One 
intriguing study, for instance, looked at the presence of 
microplastics  in  branded milk (23 samples)  from both 
foreign and local brands (Kutralam-Muniasamy et  al. 
2020). The samples were handled at 0.5  bar pressure 
and slightly warmed before filtering because casein and 
fat  could clog the filters. Microfilters with pore 
diameters of 0.22, 0.45, 11, and 5 μm were selected, with 
11 μm being the ideal size for separation. The findings 
revealed a total of 2.5% granules  and 97.5% fibers, 
with polyethersulfone and polysulfone polymers making up 
the majority. The lowest concentration was 32 particles/L 
while the highest was recorded as 11 ± 3.54 particles/L. 

The average microplastic count was 6.5 ± 2.3 particles/L. 
One of the intriguing conclusions was that none of the 
milk samples included any of the typical polymers like 
polyester, polypropylene, polyethylene, or PET. Furthermore, 
it was found that thermoplastic sulfone polymers could be 
readily extracted from milk samples using membrane filters. 
Similar investigations were carried out to find microplastic in 
takeaway food packages. The microplastics were extracted 
using membrane filters with a 5 μm pore size. According 
to the findings, microplastics ranged from 3 to 29 particles 
per container across all of the containers, with polystyrene 
flakes making up roughly 77% of those particles. Further 
analysis revealed that those who order meals 4–7 times 
per week may consume 12–203 microplastics  via food 
packaging material (Du et al. 2020). Based on the positive 
results recorded in the above studies, it can be concluded 
that membrane technology is a technique for separating 
microplastics from foods samples. Outlined below are other 
examples of studies where membrane technology was used 
for isolation of microplastics from various food samples 
(Table 4). The primary drawback of filtration techniques 
is that if the pore size is too small, the filter can become 
easily clogged; hence, great care should be taken to use the 
appropriate equipment to retain all target particles.

Flotation  In order to extract microplastics  from materi-
als with nearly full separation, floatation is a widely used, 
quick, and easy approach (Nguyen et al. 2019). Compared 
to higher-density  plastics like styrene,  polyvinyl chlo-
ride, plasticizers and additives with a density of 1.40 g/cm3, 
microplastics  like polyethylene and  polypropylene  have 
lower densities of 1.10 g/cm3. Although there are various 
varieties of the floatation technique, each has advantages 

Fig. 2    Microplastic separa-
tion using membrane filtration 
for liquid and solid foods. 
The microplastic in solid food 
samples undergoes chemical 
digestion using the appropriate 
chemical, and the solvent is sub-
sequently extracted. Similarly, 
microplastic-contaminated 
liquid food samples undergo 
microfiltration to extract the 
media containing microplastics. 
The solvent extracts are then 
passed through the membrane 
filtration apparatus with the 
appropriate membrane filters. 
The extracted microplastics 
are then characterized, and the 
digestion media is removed
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and disadvantages of its own. To optimize the extraction 
of plastics, the sample matrix is first pre-digested typically 
using an H2O2 solution. To create a homogenized solution, 
the solution is then combined with the floatation medium 
(Wang et al. 2018). The floating medium is selected based 
on the plastic's density. For instance, sodium iodide (NaI) 
(1.6–1.8  g/cm3) can extract lesser-density  plastics,  while 
zinc chloride (ZnCl2), which has a greater density of 1.5–
1.7 g/cm3, is capable of extracting microplastics (Liebezeit 
and Dubaish 2012). After a short period of time during 
which phase separation takes place, the slurry is kept undis-
turbed, and the supernatant fraction is collected for further 
investigation (Van Cauwenberghe et al. 2015). For the pur-
pose of understanding floatation experiments in freshwater 
systems, several studies have been carried out. For example, 
an average of 66 particles were found per 100 g of the sam-
ple after conducting floatation studies in the river Thames, 
United Kingdom (UK). Plastic pieces made up 91% of these 
particles (Horton et  al. 2017). Similar studies were car-
ried out to determine whether microplastics were present 
in groundwater samples from 8 water treatment facilities 
in England, UK. According to the findings, potable water 
contained 0.00011 microplastic/L, and raw water contained 
4.9 microplastic/L (Johnson et  al. 2020). Numerous food 
items have also been the subject of research into the pos-
sibility of the flotation technique with diverse media. For 
instance, in a study conducted in East China, the flotation 
medium was a solution of potassium hydroxide (20% w/v), 
sodium iodide (4.4 M), and hydrogen peroxide (30% v/v) 
for the detection of microplastics in wild fish and crusta-
ceans. According to the findings, 57.5% of the fishes had 
average microplastic counts of 0.77 to 1.25 in the gills and 
0.52 to 0.90 in the digestive system (Zhang et al. 2019a). 
Similar investigations were made to assess the health of sar-
dines and mussels. With 1.7–2 items per mussel and 1.5–1.9 
items for fish using NaCl as floating media, microplastics 
occurred 47.2% of the time (Dekiff et  al. 2014). To com-
prehend the existence of polyethylene terephthalate (PET) 
in table sea salts, another study was examined (Zhang et al. 
2018). Further evidence of its effectiveness came from 
floatation investigations conducted after vacuum filtration, 
which revealed a concentration of 16–63 particles per 50 g 
of material. The overall process of floatation is often has a 
high recovery rate (up to 99%), is inexpensive, and is simple 
to regulate (Tirkey and Upadhyay 2021). The fundamental 
disadvantage of these materials is that the plastic particles 
must first be separated from the matrix materials.

Chemical treatment  Chemical treatments have been used to 
attain the goal of quicker sampling methods for better detec-
tion. Physical separation investigations have been benefi-
cial, but they take time and require more accurate detection. 
Chemical processing is one method for removing microplas-

tics from food systems in an efficient manner. Acid and alka-
line treatments can be broadly categorized into two groups 
when it comes to the chemical digestion of microplastics. 
Without damaging the plastics, both treatments were able to 
break down the organic material in foods and tissue samples 
(Lusher et al. 2020). However, concentration is important for 
digestion when using alkaline solutions. Other substances 
have also undergone testing in recent years to determine 
their benefits and drawbacks. For instance, microscopy was 
used to investigate the Nile Red dye's potential for quantify-
ing microplastics in bottled water. The results demonstrated 
Nile Red's ability to adsorb the microplastics from water 
selectively; propylene was found to be the most common 
type of polymer (54%) followed by copolymers and lubri-
cants. In addition, 95% of the microplastics ranged in size 
from 6.5 to 100 µm (Mason et al. 2018). Much research has 
been done on fish and seafood. A laboratory examination 
found microplastics in oyster and mussel tissues after 69% 
HNO3 treatment (mussels: 0.36 ± 0.07 particles/g, oysters: 
0.047 ± 0.16 particles/g) (Van Cauwenberghe and Janssen 
2014). Similar experiments used 1  M NaOH  35% HNO3 
to separate microplastics from mussel soft tissues (Cata-
rino et al. 2017). While the recovery rate was good (93%), 
extreme responses occurred during HNO3 treatment. Sam-
ple pretreatment with H2O2 caused froth and poor tissue 
digestion. It was found that alkaline digestion (10 M NaOH) 
resulted in a better efficiency of 91.3 ± 0.4% compared 
to acidic digestion with HCl (1  M: 82.6 ± 3.7% and 2  M: 
72.1 ± 9.2%) (Hidalgo-Ruz et  al. 2012). However, exces-
sive amounts may block plant cell walls. To remove plas-
tics from vegetal-rich samples (plant leaves, seagrasses, and 
seeds), a novel, efficient, and economical digesting process 
has been suggested six protocols were examined: four acid/
alkaline, one with H2O2, and another with ethanol (Herrera 
et al. 2018). Acid and alkaline treatment with NaOH, KOH, 
and HCl yielded 9–40% separation efficiency. H2O2 treat-
ment showed an average effectiveness of 64.6 ± 7.1%. The 
maximum efficiency was 97% with 100 ml of 96% ethanol 
mixture (Herrera et al. 2018). Alkaline and acid digestion 
are good for decomposing organic materials and recogniz-
ing microplastics, but microplastic  treatment needs a sys-
tematic approach. High concentrations of chemicals such 
as concentrated HNO3 (22.5 M) can damage pH-sensitive 
polystyrene polymers, making microplastic  counting and 
measurement difficult. Moreover, H2O2 treatment causes 
foaming. However, enzymatic digestion efficiency testing 
does not damage the  food matrix (Primpke et  al. 2020a). 
Conclusively, this technique is suitable for animal tissues 
and organs; however, it must be tailored to digest all organic 
debris and could damage or break down plastic particles.

Enzymatic treatment  Enzymatic treatment uses biologi-
cally active enzymes to separate better than chemical treat-
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ment and is less harmful to the environment. Mild enzymatic 
digestions take longer and are less effective than chemical 
digestions. The plastic structure remains after digestion 
(De Boer et al. 2011). Cellulase, protease, lipase, and chi-
tinase  are commonly utilized  enzymes (Löder and Gerdts 
2015). Because of their selectivity, several enzymes are 
used to digest a food sample (e.g., proteinase only digests 
protein). A study recovered PP from marine invertebrates 
and fish using enzymes and H2O2. With 97% plastic parti-
cle recovery, plastic degradation was not observed (Karls-
son et  al. 2017). As ocean plastic waste increases, plasti-
cizers like bisphenol-A and chemical colors harm  aquatic 
biodiversity. These degraded plastics reach fish guts that 
humans eat. The growing issue of aquatic life contamina-
tion has prompted investigations on sea foods and marine 
ecosystems. Seawater biota-rich samples were used in early 
enzyme therapy research (Cole et  al. 2014). Proteinase-K 
was used to separate microplastics in acid, alkaline, and 
enzymatic methods. Enzymatic digestion achieved > 97% 
(by weight) digestion efficiency in 2 h at 50 °C for particles 
over 300  μm. Similar research was done with mussel tis-
sues using papain, collagenase, and trypsin. Trypsin was the 
most cost-effective and fastest, yielding 88% efficiency in 
30 min at 40 °C (Courtene-Jones et al. 2017). An intrigu-
ing plant-soil ecosystem study examined how polystyrene 
microplastics affected broad beans using two enzymes. 
Using biomass and catalase enzyme activity on plant roots 
resulted in smaller polystyrene particles (< 5 μm) compared 
to superoxide dismutase and peroxide enzyme mixture. 
Microplastics may also clog pores and cell walls during 
nutrient transport, causing toxicity (Jiang et al. 2019). Con-
clusively, enzymatic digestion causes less harm to polymers 
than alkaline or acidic treatments. Although suitable for 
various biological matrices, it is costly and unpredictable, 
as enzymatic activity is greatly dependent on the matrix.

Extraction techniques  3.1.1.5.1 Ultrasound extraction 
Extraction has also been investigated in addition to enzy-
matic, chemical, and floatation techniques for microplas-
tic  separation. For instance, pulse ultrasonic extraction 
was used in a novel  laboratory-scale extraction method to 
separate microplastics from the intestines of freshwater fish 
(Wagner et al. 2017). A bath sonicator was used to separate 
microplastics smaller than 50–100 m containing significant 
levels of polyethylene, styrene, plasticizers, and fibers from 
the gut sample for 15 min at 39–41 kHz. As they are less 
toxic to the sample and more effective, the same novel tech-
nique was later suggested for treating microplastics in dif-
ferent marine settings (Wagner et al. 2019). The ultrasound 
extraction method provides advantages over enzymatic and 
chemical treatment, such as cost-effectiveness and little sam-
ple loss without the need for intricate chemical processes. 
Improved solvent penetration is another benefit of the ultra-

sonic technique. In addition, investigations on the process-
ing of vegetables and the treatment of industrial wastewa-
ter using ultrasonic extraction techniques, were conducted 
(Simon et  al. 2018; Yu et  al. 2021). To comprehend the 
existence of microplastic pollutants, comparable tests were 
done with milk, beer, honey, and soft beverages (Diaz-Bas-
antes et al. 2020). The filtered drinks were given a one-hour 
treatment in an ultrasonic bath. According to the FTIR data, 
the average microplastic/L for craft honey, industrial honey, 
milk, industrial beer, and soft drinks, was 67, 54, 40, 47, 
and 32 microplastic/L, respectively. In summary, it can be 
observed that these techniques achieved appreciable success 
for extraction of microplastics based on the previous studies 
discussed above.

3.1.1.5.2 Solid phase microextraction The Solid-phase 
microextraction approach has also been investigated for the 
extraction of microplastics. The methodology has lately 
received interest for microplastic separation even though 
it is more frequently used for food product analysis since 
it combines four phases namely sampling, extraction, 
concentration, and sample introduction into a single solvent-
free step (Kusch and Knupp 2004). In addition to these 
benefits, the process reduces waste disposal expenses and 
time. Due to its effectiveness in degrading both polymers 
and monomers, microextraction in headspace mode 
has drawn interest as a sample approach. For instance, 
expanded polystyrene fibers, a polymer typically used for 
food packaging, were degraded at various temperatures 
using headspace solid-phase microextraction (Kusch and 
Knupp 2004). The results showed that when sonication at 
60 °C and 15 min of sample collection was coupled, there 
was strong repeatability with few mistakes (3.2–3.6%). The 
treatment and identification of polymers and volatile organic 
compounds from PS contained in soil mixtures comprising 
of alluvial soil, algae biomass, and organic compost were 
carried out utilizing HS-SPME in conjunction with gas 
chromatography-mass spectrometry (GC–MS). The findings 
demonstrated that the method is particularly effective for 
identifying both coarser fractions (0.1–1 mm) and larger 
particles (1–5 mm) (Šunta et al. 2021).

3.1.1.5.3 Magnetic extraction Microplastics in drinking 
water and environmental samples  have been subject to 
magnetic separation. The straightforward method uses iron 
nanoparticles, which bind to the plastic in the sample to 
produce a hydrophobic tail. With recoveries of 92%, the 
attached iron particles magnetize the polymers, attracting 
microplastics with particle sizes 10–20 m (Grbic et  al. 
2019). The isolation of microplastics from food matrices 
can be accomplished using similar techniques. Although 
the structural integrity of the sample is not affected by 
magnetic separation techniques, many gaps are seen 
when the sample is being separated. Therefore, rather 
than employing a single separation technique, the bulk 
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of researchers have concentrated on using this method of 
extraction as a pretreatment step (Zhu and Wang 2020). 
Furthermore, using extraction techniques like pulse 
ultrasound or ultrasound only promoted the breakdown of 
brittle plastic components into smaller microplastic pieces, 
making it difficult to estimate the total count (Simon et al. 
2018). Therefore, additional research is needed to assess 
microplastic separation.

Microplastics identification techniques

Following the separation using the proper procedure, 
microplastics in the target component of the food sample 
are identified and quantified. These identification methods 
are vital for risk evaluations and sample quality control. 
The techniques range from low-cost, simple techniques to 
expensive, complex-equipment procedures that yield reliable 
outcomes. We present some techniques available in literature 
in the following subsections.

Optical detection

Due to its simplicity and ease of usage, the naked eye 
approach has been widely employed to characterize 
microplastics. According to color,  size, and plastic-
type, including beads, granules, or  fragments,  visible-
to-the-unaided eye particle sizes (larger than 500  μm) 
are manually separated before being counted (Renner 
et al. 2018). Optically observing microplastics has also 
been done in recent years using microscopy. Although 
the procedure is cheap and straightforward, it cannot 
be advised as a routine identification method because 
microscopic or manual counting may lead to errors and 
incorrect calculations. Additionally, counting the split 
microplastics could be difficult because of potential debris 
in the microplastics.

Scanning electron microscopy

Scanning electron microscopy (SEM)  is a visual 
characterization technique frequently used in the field 
of study for detecting microplastics. The microplastics' 
morphology is examined using a scanning electron 
microscope. An electron beam is focused and utilized to scan 
the microplastics' surface. These electrons contact the atoms 
on the microplastics' surface and give the right signals, 
which, when paired with the beam's position, yield an image 
showing the sample's size and morphological details (Henini 
2000). Several research has been done on the use of SEM for 
microplastic identification. For instance, the search pattern 
was divided into five groups in a study to determine the 
microplastics in freshwater fish, with the primary categories 
being fragments, micro-pellets, fibers, films, and foams. The 

SEM results employed an elimination-based methodology 
and were able to distinguish 23% of the particles from plastic 
(Anderson et al. 2017).

Another study examined the shape, size distribution, 
and polymer composition of marine ecosystems using a 
combination of SEM, infrared spectroscopy, and X-ray 
tomography. The analysis of the SEM data revealed small 
fractures 30–40  μm deep, few microplastics (mostly 
copolymers  and polyethylene) of approximately 2 mm, 
and flat cubical-shaped debris of around 2 mm (Ter Halle 
et al. 2016). Additionally, 92% of the microplastics were 
polyethylene, with detritus and polypropylene making up the 
other 8%. Similar tests were done on commercial Malaysian 
fish dinners, canned sardines, and sprats (Karbalaei et al. 
2020). The research used SEM and energy-dispersive X-ray 
Analysis (EDX) to combine higher picture resolutions with 
microplastic elemental compositions. SEM has recently 
been used  to identify microplastics  in liquids like milk. 
To determine the properties of the microplastics present, 
23 different milk samples were investigated using SEM 
(Kutralam-Muniasamy et  al. 2020). About 72%  of the 
microplastics (fragments and fibers) were blue in color, 
and 42% of them were small (< 0.5 mm). Micro-holes and 
cracks on the surface of microplastics were also noted to 
have a slight form variation. Similar research was done 
to comprehend the properties of polystyrene buildup and 
breakdown in honey (Wang et al. 2021b). However, SEM 
is always used in accordance with protocols to determine 
if the separated fragments and granules can be classified 
as microplastics (Renner et al. 2018). As a result, a more 
quantitative approach is needed to estimate the concentration 
of microplastics in food samples.

Fourier‑transform infrared spectroscopy

For many years, it has been standard practice to investigate 
the surface properties of materials using Fourier-transform 
infrared spectroscopy (FTIR) (Huang et  al. 2022). The 
sample absorbs infrared light at a certain wavelength, 
which causes a vibration (or disturbances) that can be used 
to analyze the molecular properties and makeup of the 
sample. The following stages can be used to describe how 
FTIR works briefly: The microplastic sample is first placed 
on a mechanically stable, water-resistant filter substrate. The 
sample is put in an FTIR setup after drying. The next step 
in the polymer identification process is to use the system 
database to quantitatively determine the highest composition 
of plastics and non-plastics. With spatial resolutions 
of 5 m, the system can detect samples with a minimum 
thickness of 150 nm (Nguyen et al. 2019). Transmission, 
reflection, and attenuated total reflectance (ATR) are the 
three operational modes of FTIR. ATR-FTIR is typically 
used to identify larger plastic samples, while micro-FTIR is 
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typically used to identify smaller plastic samples (Li et al. 
2018b). A sequential measurement of infrared spectra at 
various locations on the sample's surface is known as micro-
FTIR mapping. To create a chemical image of the sample, 
thousands of spectra are captured inside the measuring area 
(Levin and Bhargava 2004). This technique has been used 
to identify microplastics with success.

Numerous studies have been done recently to assess the 
microplastics in the food chain. For example, a study was 
done to assess the microplastics in samples of drinking water 
(Mintenig et al. 2019). Averaging 7 particles/m3 of water 
with diameters between 5 and 150 μm, the micro-FTIR 
analysis with a spectral resolution of 8 cm−1 and polymer 
determination range between 1430 and 1480 cm−1 came to 
this conclusion. The capability of FTIR has also been used 
to identify microplastics in a variety of foods and drinks, 
including milk, honey, soft drinks, and beer. According 
to recent study, there were 13.45–6742.48 μm fibers and 
2.48–247.54 μm fragments with an overall microplastics 
concentration of 12% (Diaz-Basantes et  al. 2020). The 
detection of microplastics in bottled drinking water has also 
been successfully accomplished in an intriguing work that 
combined FTIR with Nile Red stain (Mason et al. 2018). 
Nile Red binds to the microplastics' surface, creating a stain 
that emits fluorescence at a certain wavelength. Therefore, 
while taking into account things like results precision and 
time constraints, FTIR is a viable approach. Water in the 
sample, it should be emphasized, prevents the approach 
from being used because it can cover up the target spectrum 
(Primpke et al. 2020a).

Raman spectroscopy

Raman spectroscopy is a particularly popular technique for 
microplastic identification. The method uses a scattering 
method to excite  the target molecules with a laser of a 
specific wavelength. The sample's elemental makeup can 
be determined by measuring the frequency of scattered 
radiation from the sample. Due to the scattered frequencies 
produced by the sample, the analytical technique can analyze 
particles of much smaller sizes with spatial resolutions 
below 1 μm compared to other techniques like FTIR (Imhof 
et al. 2016). The possibility of Raman spectroscopy for 
identifying microplastics in food samples has been examined 
in a number of studies. For instance, a study was carried 
out using micro-Raman spectroscopy to comprehend the 
microplastic concentration in 17 distinct commercial table 
salts (Karami et  al. 2017b). Samples contained 41.6% 
polymers, 23.6% pigments, and 5.5% amorphous carbon 
with a laser wavelength of 785 nm and power below 3 mW. 
Using a combination of microscopic and micro-Raman 
techniques, similar studies were carried out on Turkish-
origin table salts (Gündoğdu 2018). According to the 

composition tests, polypropylene (19.2%) was followed by 
polyethylene (22.9%). With particle sizes ranging from 20 
to 5 mm (wavelength: 785 nm), the MP concentration in sea, 
lake, and rock salt was 16–84, 8–102, and 9–16 items/kg, 
respectively. Micro-Raman spectroscopy was used in another 
experiment with beach waters (Erni-Cassola et al. 2017). 
Raman spectroscopy has reportedly been used to analyze 
microplastics in drinks like wine (Prata et al. 2020). The 
micro-Raman spectroscopy used to identify polyethylene 
particles of various sizes (20 m) and colors in white wine 
had a wavelength of 633 nm and a resolution of 100 cm−1. 
Crystals of minerals, trash, and fragments of wood were also 
seen. One of the groundbreaking research was also shown 
to be true for soft drinks, cold tea, and energy drinks, which 
after Raman analysis revealed considerable levels of blue 
pigments and polyamide content (Shruti et al. 2020). Raman 
spectroscopy was not, however, used as the only approach for 
identification in the majority of these studies because of the 
high background fluorescence, sample photodegradation, and 
weathering-related spectral fluctuation. Many investigations 
have found success using a Raman and FTIR or Raman 
and electron microscopy combo. Additionally, only a very 
tiny number of studies have used Raman spectroscopy to 
identify microplastics with particle sizes of 1 µm visually. 
This is such that the scanning filters cannot be handled with 
tweezers directly (Xu et al. 2019a). Small filter regions are 
therefore checked, making the entire procedure labor- and 
time-intensive. The spectral interference that developed 
during the examination was another roadblock. For instance, 
it was observed the presence of several additives, colors, and 
compounds in bottled mineral water that produced higher 
background signals in opposition to the weak Raman signals 
(Oßmann et al. 2018). These components included calcium 
chloride, magnesium fluoride, and silica. Additionally, 
for encouraging outcomes during MP identification from 
samples, a more extensive library for polymer identification 
should be accessible (Xu et al. 2019a).

Thermo‑analytical technique

It has been discovered that the thermal degradation of 
microplastics is advantageous because it can serve the 
dual purposes of determining the kind of polymer and 
locating organic substances, gases, and  additives  in 
the intricate formulation. To eliminate the problem of 
background contamination, such approaches can be 
completed in a single run without the use of solvents 
like ethanol or water (La Nasa et al. 2020). The method 
typically makes use of pyrolysis byproducts at a specific 
temperature and oxygen-free environment. For molecular 
measurement of polymers, these products are combined 
with mass spectrometry (MS) and gas chromatography 
(GC) setups (Fries et al., 2013). GC–MS investigations 
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have proved crucial for examining non-polar components, 
fatty acids, lipids, and polymers. Due to its dependability, 
accuracy, and low cost, the technique has proved helpful 
in the food business in detecting adulteration, pesticides, 
or other contaminants (Fauzi et al. 2017). The method 
has been effectively used in a number of food matrices 
in recent years. As an illustration, a study on fish meal 
revealed the use of a pyrolysis GC–MS setup with a 
mass accuracy of 1 ppm and spiked levels of 2.7 g and 
2.5 g of polystyrene and polymethylmethacrylate in the 
sample, respectively (Logemann et al. 2018). The GC–MS 
equipment also produced a good linear response when 
recognizing 0.05 g to 50 g of plastic by weight. Another 
study used pyrolysis GC–MS and transmission electron 
microscopy (TEM) to show the presence of microplastics 
in soils grown with wheat (Watteau et  al. 2018). The 
results showed that after pyrolysis treatment at 650 °C 
with 30 s holding time, microplastics of sizes less than 
200 m combined with organic materials were present.

Other than polymers, organo-mineral particles such 
as titanium, barium, and others were also found. Similar 
research was done to investigate the possibility of pyrolysis 
GC–MS and the presence of polystyrene microparticles 
in mussel tissues at 500  °C (Fabbri et  al. 2020). The 
sensitivity examination revealed bioaccumulation of 
polystyrene particles in the digestive glands as well as 
traces of chitin and proteins. A combination of high-
performance liquid chromatography (HPLC) and MS 
has also been used to develop methods for evaluating 
microplastics in cat and dog food (Zhang et al. 2019b). 
The study aimed to comprehend the potential hazards of 
cats and dogs ingesting microplastics. The research found 
that the range of cat and dog food with the maximum PET 
detection was 1500 ng/g to 12,000 ng/g after examining 
58 pet food samples. According to conclusive correlations, 

other monomers such as bisphenol-A, polycarbonate, 
and terephthalic acid were successfully detected using 
HPLC–MS. The authors of the aforementioned research 
noted a significant difficulty in quantifying microplastics 
with regard to particle size, color, and shape. The 
detection is also in the millimeter range, which results 
in low efficiencies and resolutions (Primpke et  al. 
2020b). Although the method is affordable and capable 
of analyzing complicated matrices, it might be an 
alternative for quantifying microplastic fragments because 
it may react with complex sample tissues at a specific 
temperature, making microplastic identification difficult.

Health impact of microplastic‑contaminated 
foods

The proliferation and adoption of plastics for various uses in 
daily human endeavors have resulted in a significant increase 
in microplasticss in the environment (Çıtar Dazıroğlu and 
Bilici 2023). As already discussed, these microplastics 
are highly incident and has entered the human food chain 
through various routes including food packaging, seafood, 
agricultural produce and food additives (Benson et al. 2022; 
Alberghini et al. 2022; Çıtar Dazıroğlu and Bilici 2023). 
The health implication of microplastics pollution may not 
be limited to food intake, but also from colonizing micro-
organisms and sorbed contaminants (Udovicki et al. 2022). 
Although the presence of microplastics in the human food 
chain has been established, the health implications is under-
studied, although health risks are enormous (He et al. 2021a, 
b). Studies show that the ubiquity of microplastics ensure 
steady inundation of food materials from source to the final 
consumption (Fig. 3) (He et al. 2021a, b); suggesting a 
steady increase in the microplastics content in food. This 

Fig. 3   Microplastic ingestion by 
humans induces severe health 
implications mainly due to bio-
availability and biopersistence. 
Metabolism is followed by 
adsorption into the circulatory 
system and subsequent translo-
cation to various parts. It is the 
properties of the microplastics 
that lead to persistence as they 
are not very degradable, leading 
to various health implications. 
Necessary steps need to be 
taken to remediate this occur-
rence
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continued contamination of food materials has resulted in 
variable microplastics content, thus different contributions 
to the microplastics burden in humans. For example, the 
microplastics content of salt and the average daily intake 
suggests a burden range between 0 and 7.3 × 104 MP/person/
year (Renzi and Blašković 2018; Wu et al. 2022).

Similarly, risk assessment on the microplastics load 
from seafood shows a global average intake ranging 
between 11 to 3.5 × 104 MP/year (Hantoro et  al. 2019) 
and about 11,000 microplastics/year in countries of low 
consumption (Van Cauwenberghe and Janssen 2014). The 
presence of microplastics in edible parts including muscles 
at concentrations higher than found in the gut (Karami et al. 
2017a; Hantoro et al. 2019) totally cancel this respite. This 
suggests high bioavailability of microplastics which is an 
underlying factor to contaminant toxicity (Wu et al. 2022; 
Okeke et al. 2023b). Further, upon entry into humans, by 
ingestion, dermal contact or inhalation, these contaminants 
enter the metabolic pathways, are distributed to other parts 
and are excreted via urine and stool. Microplastics was 
detected in the muscles of all sampled fish, with higher 
concentrations in the benthic compared to pelagic species, 
posing a serious health risk to consumers (Akhbarizadeh 
et al. 2018). Similarly, various microplastics have been 
detected in the gastrointestinal tracts of fish (Cyprinus 
carpio) with impact on scale morphology and genetics, 
presenting health implications to the fish and human 
consumers (Saad et  al. 2022). Microplastics have been 
detected in the liver, blood cells and brain of Oryzias latipes, 
with the detection in brain proving that microplastics can 
cross the tough, protective blood–brain barrier; posing 
significant danger. Overall, seafood including fish and 
shellfish from oceans has been identified as the most 
important microplastic source humans (Çıtar Dazıroğlu and 
Bilici 2023).

There is a lot of premium on increased water intake, 
drinking up to 2 L of water/day presents many health 
benefits (Nakamura et al. 2020). But juxtaposed with the 
health risks due to microplastic contamination, increased 
water intake may pose a greater health risk. With about 103 
microplastics/year available from tap water and more in 
bottle water, increase water intake appears to present severe 
health concerns (He et al. 2021b). An average human may 
drink up to 4.1 × 104 microplastics from drinking water 
yearly (Wu et al. 2022). Although these risk assessment 
figures offer an idea of the possible risk faced by humans due 
to consumption of food contaminated with microplastics, 
there is need for more reliable and detailed methods of 
analysis. These methods will go beyond estimation and could 
capture more microplastics to offer the true information of 
health impacts of microplastics. Further, information on the 
availability, metabolism and egestion of microplastics will 
enable the elucidation of the public health risks.

Obviously, microplastics are incident in food at 
appreciable levels and present respiratory, reproductive, 
neurotoxic diseases as well as cancer and disruptions to 
microbiota (Çıtar Dazıroğlu and Bilici 2023). (Kashiwada 
2006). The effects of microplastics on human health 
remain poorly elucidated, although the presence of this 
toxicant has been reported in liver, spleen, lungs, heart, 
kidneys and brain of lower animals with evidence of 
vector functions from lower animals into humans (Çıtar 
Dazıroğlu and Bilici 2023; Ziani et al. 2023). The toxic 
impacts of microplastics in humans have been linked to 
the translocation and accumulation of microplastics in 
humans (He et al. 2021b). Ecotoxicity studies on fish has 
shown that microplastics can enter the blood circulation 
following adsorption from the gut and can then be 
translocated to other sites of toxic actions (Guerrera et al. 
2021). This translocation made worse by biopersistence of 
microplastics, cause apoptosis, necrosis, oxidative stress, 
genotoxicity and inflammation, which could be made 
worse due to their surface area to volume ratio leading 
to carcinogenesis (Çıtar Dazıroğlu and Bilici 2023). The 
contributions of microplastics to immune disruption, 
neurotoxicity, neoplasm are due to inflammation, particle 
toxicity and oxidative stress (Prata et al. 2020).

Various mechanisms are involved in the impacts of 
microplastics to health. For example, the disruption 
of immune function and carcinogenicity could involve 
the upregulation of immunity related genes or reduced 
expression of immune factors (Çıtar Dazıroğlu and Bilici 
2023). Specifically, polyethylene toxicity has been linked 
to decreased levels of CD4-, T helper- and regulatory T- 
cells, worsened by intestinal inflammation (Li et al. 2020a). 
Further, Li and others (Li et al. 2020a) highlight that this 
PE-induced inflammation led to dysbiosis, with marked 
increase in abundance of Staphylococcus and decrease in 
Parabacteroides species plus a corresponding increase in 
interleukin. Immune cytokines, such as interleukin, was 
previously reported in response to inflammations even in 
humans (Nishimoto et al. 2008). In a study on the effect of 
polystyrene on the epithelial A549 epithelial cells of the 
human lungs, the easy internalization of microplastics was 
confirmed to influence apoptosis and cell cycle to eventually 
disrupt gene transcription and protein expression (Xu et al. 
2019b). Further, the consistent exposure to microplastics 
has been implicated for carcinogenesis due to the increased 
expression of oncogenes, like asialoglycoprotein receptor 
2 (Çıtar Dazıroğlu and Bilici 2023). Neurotoxicity due 
to exposure to microplastics is the result of their access 
to the systemic circulation and ability to cross the blood 
brain barrier to induce oxidative stress (Çıtar Dazıroğlu and 
Bilici 2023). As the brain is most sensitive to oxidative stress 
(Dutta and Bandopadhyay 2022), this affects inflammations 
and consequent diseases. Apart from inflammation 
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due to oxidative stress, microplastics may inhibit 
acetylcholinesterase expression and change neurotransmitter 
levels to cause behavioral changes (Prüst et al. 2020). In 
the long run, the proliferation of plastic materials needs 
to be downregulated considering the enormous public 
health consequences. Human exposure to microplastic 
may cause various diseases including inflammatory, liver, 
neuro, lung diseases and metabolic imbalance (Prata 2018; 
Prata et al. 2020; Yan et al. 2022). Further, microplastics 
release different harmful chemicals such as bisphenol-A, 
poly aromatic hydrocarbons, chlorinated pesticides, could 
lead to dysbiosis and other physiological alterations leading 
to mutation and cancer (De-la-Torre 2020). The need for 
more studies on these health impacts may need to be more 
accurate and human-based to provide details on the actual 
risk.

Impact of microplastic contamination 
on the global food security

Microplastics particles originating from different sources 
and having various chemical compositions, shapes and 
sizes (macro, meso, micro- and nanoparticles) are abundant 
in the environment (Duis and Coors 2016; Crossman et al. 
2020; Wahl et al. 2021; Kuttykattil et al. 2023; Métais et al. 
2023; Jiang et al. 2023; Myszka et al. 2023; Chandrakanthan 
et al. 2023; Rasmussen et al. 2023). In the year 2018, global 
plastic pollution reached around 380 million tons per year 
which is predicted to triple by 2050. Mostly these plastic 
particles originate from various inland sources including 
domestic and industrial sewage, storm sewers, and runoff 
from agricultural fields having plastic mulching or treated 
with sewage sludge and wastewater treatment effluents. The 
use of polystyrene and polyurethane compost to increase 
crop productivity and subsequently add to the Microplastics 
pollution was recently reviewed (Hurley and Nizzetto 2018). 
This rapidly increasing use of plastic along with paucity 
proper disposal strategies has resulted in huge waste 
generation in oceans and land. Microplastic particles are 
generated by the slow fragmentation of plastic waste as well 
as from beads and pellets present in personal care products 
(Wang et al. 2020). These minute particles easily diffuse into 
different food sources and enter the food chain.

Microplastics are reported to extensively widespread in 
seafood, fishes such as tuna, sardines, mackerel, haddock, 
and plaice as well as oysters, mussels, cockles, squids, 
clams, urchins, cockles, periwinkles, prawns, shrimps and 
crabs (Markic et al. 2018; Walkinshaw et al. 2020; Ma et al. 
2020; Neto et al. 2020; Wootton et al. 2021; Diaz-Basantes 
et al. 2022; Zitouni et al. 2022; Vitali et al. 2023). These 
mussels have an ability to thrive under diverse environmental 
parameters and being filter-feeding organisms, they can 

concentrate microplastic (Li et  al. 2019). Microplastic 
particles ranging from 200 to 1500 µm were detected from 
tissue samples of commercially cultivated mussels such 
as Mytilus galloprovincialis and Mytilus edulis obtained 
from Belgian supermarkets (De Witte et al. 2014) where 
the quantity of total microplastics varied from 0.26 to 0.51 
fibers/g of soft tissue. The existence of nearly 0.36 and 0.47 
microplastic particles/g from Mytilus edulis and Pacific 
oysters produced in Atlantic Ocean and North Sea was 
reported (Van Cauwenberghe and Janssen 2014). Similarly, 
oysters and clams before depuration have also been reported 
to accumulate a wide amount of microplastics. The presence 
of microplastic particles in shrimps and crabs was recently 
demonstrated, these food items which are widely consumed 
seafood (Daniel et al. 2021). Similar reports of existence of 
microplastics in the size range of 19.97 to 4976.22 μm from 
crabs were reported by (Zhang et al. 2021).

The presence of 73 microplastics (48 fibers and 25 
fragments) in 26 commercial fish species which consists of 
particle sizes ranging from 217 to 4810 µm from stomach 
contents of the commercial fishes available in Portugal 
(Neves et al. 2015). Another study by Phillips and Bonner 
(2015) showed the extensive presence of microplastic 
particles in fish from the Gulf of Mexico. The presence of 
microplastic particles, mostly polyethylene of size range 
around < 5 mm in both pelagic fish species such as mackerel, 
herring and also from demersal fish species such as cod, 
flounder and dab from Baltic and North Sea was studied 
(Rummel et al. 2017). In most cases, plastic contamination 
was more dominant in pelagic species than demersal species. 
Microplastics were reported in gastrointestinal tracks and 
dorsal muscles and gills of mackerel and seabass; these 
microplastics particle sizes ranged from 151 to 5000 μm 
(Barboza et al. 2020). Several experiments have also been 
conducted to focus on the transfer of microplastic from 
one trophic to another trophic level. A study conducted 
by Farrell and Nelson (2013) highlighted the transfer of 
microplastic between mussels and crabs. Moreover, fish 
meals are extensively used as poultry and pig feed which 
may result in the transfer of microplastic particles in 
non-marine food sources (Bouwmeester et al. 2015). The 
presence of microplastics is also reported in poultry products 
and eggs. In a study made by Huerta Lwanga et al. (2017), 
it was reported that chicken gizzards, intestinal mucosa 
and chicken-organs, digestive system showed presence of 
microplastics. The particle size was reported to vary from 
1.5 to 150 μm (EFSA Panel on Contaminants in the Food 
Chain 2016). Apart from the animal source, microplastic 
of varying sizes has also been reported in apples, pears, 
broccoli, lettuce, wax, honey, larvae, corn flour, and carrots 
(Oliveri Conti et al. 2020; Alma et al. 2023; Shi et al. 2023; 
Pham et al. 2023). Microplastic contamination in vegetables 
occurs due to irrigation, plastic items present in covers 
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which are degraded under ultraviolet light, polymers used 
in the microencapsulation of agrochemicals and the use of 
sewage as soil fertilizer (Milojevic and Cydzik-Kwiatkowska 
2021; Kallenbach et al. 2022; Lwanga et al. 2022). In most 
cases, the exact mechanism associated with absorption, 
transportation and accumulation of microplastics from the 
soil to the aerial part of crop plants is still considered crucial 
and needs further research.

According to the studies by Li et al. (2021a) and Azeem 
et al. (2021), it was reported that microplastic of less than 
100 nm was able to infiltrate roots and reach stems and 
leaves of crop plants; on the other hand, the bigger particles 
fail to penetrate cell wall and remains on the root’s surface. 
Microplastic of different surface charges and having a 
diameter of around 100 nm size can accumulate within the 
crop plants like lettuce and wheat mainly through cracks 
in the lateral roots (Sun et al. 2020b). In another study by 
Giorgetti et al. (2020), it was shown that microplastics of size 
50 nm were present in the root cells of Allium cepa. A similar 
accumulation of 100–700 nm polystyrene microplastics was 
also reported in the cucumber plant by Li et al. (2021c). 
These accumulations of microplastic and microplastic in 
plants significantly alter porosity, hydraulic conductivity, 
bulk density, field capacity, soil water repellency and 
rhizospheric bacterial communities of crop plants (Qi et al. 
2020). The presence of microplastic contamination in nori 
seaweed widely cultivated in ocean was reported (Li et al. 
2020c). A detailed account of microplastic in the food items 
is enlisted in Table 5.

Remediation of microplastic pollution

The issue of microplastic pollution has caused numerous 
environmental and human health hazards resulting to global 
threat to the society. A set of biobased and technologically 
driven ecofriendly strategies are necessary to address the 
possible effects of microplastics on global food security.

Microbial enzymes‑mediated bioremediation

The circular economy for plastic waste could be achieved 
via microbial enzyme technology. Because they can produce 
enzymes for using plastic as a source of energy, making 
microbes the most ideal for reducing environmental plastic 
pollution. Till date, potential microbial degraders of plastics 
have been reported in seven out of the twelve microbial 
phyla (Gambarini et al. 2022). Further, synthetic plastics 
can be degraded by microbial enzymes, including lipases, 
hydrolases, laccases, and peroxidases. Most fungal enzymes 
present a machinery integrated for depolymerizing and 
mineralizing plastic (Zhu et al. 2016). The use of microbial 
enzymes for plastic degradation is preferred for improve 

stability when compared to their equivalents from animals 
and plants. For example, Ideonella sakaiensis 201-F6 is a 
well-known illustration of a bacterial strain that can degrade 
polyethylene terephthalate (PET). The most widely produced 
synthetic polymer, PET, is produced annually in excess of 
50 million tonnes worldwide (Bornscheuer 2016). Strain 
201-F6 produced the serine hydrolases known as IsPETase 
and IsMHETase, which resemble cutinases (da Costa et al. 
2021).

PET breakdown proceeds in two steps; in the first 
step, an IsPETase causes a nick to form in the PET 
polymer chain, producing PET chains with hydroxyethyl 
(HE)- and terephthalic acid (TPA) ends. Later, bis- and 
mono-(2-hydroxyethyl) terephthalic acid (BHET) and 
mono-(2-hydroxyethyl) terephthalic acid (MHET) are 
produced from the two PET chains with those termini (da 
Costa et al. 2021). Terephthalic acid (TPA) and ethylene 
glycol (EG) were produced as a result of the subsequent 
digestion of these compounds (Knott et al. 2020). EG and 
TPA are converted into water and carbon dioxide through 
absorption and mineralization, respectively (da Costa et al. 
2021). Further, modified/hydrolase fold with a hydrophobic 
active domain and a lid site was visible in the 3D structure 
of MGS0156. However, due to its exceptional enzymatic 
activity against PET, IsPETase has undergone structural 
changes using a number of biotechnological techniques. 
It has also been demonstrated that a number of cutinases 
degrade PET. Cutinases have been discovered in fungus like 
Fusarium solani pisi and bacteria like Thermobifida fusca 
(Stavila et al. 2013). Cutinases from both groups belong to 
the ß-hydrolase superfamily and have comparable spatial 
configurations. As PET degraders, Thermomonospora and 
Thermobifida genera have been identified (Ru et al. 2020). 
PET can be effectively broken down by the catalytic trio 
of MHETase, tannase, and PET hydrolase (Taniguchi et al. 
2019; Bhatt et al. 2021). According to structural studies, 
these enzymes feature disulfide linkages and/or folds that 
give them thermal stability. The fungi phyla Humicola 
and Fusarium have been studied for their cutinases, which 
degrade PET. The role of PET hydrolases in degradation 
was investigated in a bioinformatics-based work. The study 
reported over 800 PET hydrolases from bacteria and archaea 
from both marine and terrestrial habitats (Danso et al. 2018).

Specific enzymes from different strains have been 
reported to degrade PETs. For instance, cutinase from 
Pseudomonas pelagia (De Jesus and Alkendi 2022) and 
P. pertucinogena (Bollinger et al. 2020) degrades polyes-
ter. The genome-based esterases MGS0156 and GEN0105 
hydrolyzes polycaprolactone, bis(benzoyloxyethyl)-tereph-
thalate and polylactic acid (Bhatt et al. 2021). Some listed 
PET-degrading enzymes include TfH from Thermobifida 
fusca, HiC from Humicola insolens, lsPETase from Ideonell 
asakaiensis, Tfcut2 from Thermobifida fusca, Cut190 from 
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Saccharomonospora viridis, PsC from Pseudomonas men-
docina, PmC, and LC-cutinase from Fusarium solani (Wei 
et al. 2019). Polyisocyanates and polyols are condensed to 
produce polyurethane (PU), which is then linked to urethane 
linkages (Bhatt et al. 2021).

Recent research has shown that biotechnological 
methods improve the structural stability of enzymes. Protein 
engineering usually uses a structural-based modeling 
approach to create enzyme variations with improved enzyme 
performance and properties that are thermally stable. An 
IsPETaseS121E/D186H/S242T/N246D strain with improved 
thermostability and substrate binding efficiency (Son 
et al. 2020; Meng et al. 2021). When compared to wild-
type TfCut2, the mutant T. fusca thermally stable cutinase 
(TfCut2) had a hydrolyzing action that was 12.7 times better 
(Furukawa et  al. 2019). Therefore, MP bioremediation 
may be made more effective by the development of a 
better and more effective microbial strain by site-directed 
mutagenesis. To create biofuels from microalgae, significant 
biotechnological research is now being conducted. 
Additionally, the microalgae's potential for bioremediation 
has been mentioned in a number of studies. On a diatom 
and a green alga, numerous functional expression studies 
have been carried out (Moog et al. 2019; Furukawa et al. 
2019; Meng et al. 2021). The ability to clone and express 
intracellular lipases was discovered by Mohanan et al. in 
a study (Mohanan et al. 2022). These lipases effectively 
degraded short- and medium-chain polymers, suggesting 
a viable bioremediation approach for the biodegradation 
of microplastics. Nanotechnology and other cutting-edge 
techniques, such as enzyme immobilization, have begun to 
spark attention for potential uses to stop microplastics in 
the near future. The site-directed immobilization method of 
PETase on magnetic nanoparticles has suggested a potential 
method for decreasing microplastic (Schwaminger et al. 
2021). It is important to pay close attention to how various 
microbial networks produce enzymes and how microbial 
associations cooperate with one another. It is expected that 
further research in this area will quickly reveal useful 
techniques for biodegradation that can be employed on a 
bigger scale because microorganisms have almost endless 
potential and are continually adapting to their surroundings. 
A detailed account of a few microbes associated with 
Microplastics particle degradation is enlisted in Table 6. 
All these bacteria and associated enzymes can be used as 
a suitable biotechnological approach for the degrade of 
microplastics particles.

Biofilm‑mediated remediation

When microorganisms are introduced to an aqueous 
environment, they quickly colonize the surface to create a 
permanent biofilm (Okeke et al. 2022c). Certain bacteria 

in biofilms have the ability to degrade organic pollutants 
and promote the adhesion of pollutants by microplastics 
(Rummel et  al. 2017). The biological breakdown of 
the microplastics may be caused by the interaction of 
microplastics with biofilms, which may alter the chemical 
and physical properties of the polymer surface. The sorption 
of heavy metals onto plastic surfaces, the relationship 
between biofilms and toxins and the impact of biofilm 
establishment on microplastics were the main topics of 
early research into microplastics and biofilms (Wu et al. 
2021). Research on how biofilms affect the ecologically 
friendly biodegradation of microplastics has just recently 
started. On polyethylene (PE) surfaces, Rhodococcus ruber 
has been demonstrated to colonize and create biofilms 
(Hadad et  al. 2005). The usual molecular mass of the 
PE samples was reduced to 14% and 21%, respectively 
(Hadad et al. 2005). Thus, research into whether biofilms' 
development could alter the microplastics' physicochemical 
characteristics started (Ganesan et al. 2022) considerable 
surface degradation of microplastics treated with 
biofilms has also been observed in an environment with a 
considerable amount of methane gas; this can support the 
rise in bacterial aggregation (Faheem et al. 2020). The only 
byproducts of microplastic degradation that are still present 
are water and carbon dioxide, neither of which harm the 
ecosystem (Faheem et al. 2020). In an environment with high 
levels of methane gas, which may promote the establishment 
of bacterial aggregation, significant surface degradation of 
microplastics treated with biofilms has also been observed 
(Faheem et al. 2020).

Biofilms are abundant and easily accessible in the natural 
world (Faheem et al. 2020). Scientists have also predicted 
that biofilms, which act as transporters and may increase the 
adsorption of microplastics to pollutants in the ecosystem, 
will amplify the ecological danger posed by microplastics 
in the environment (Richard et al. 2019; Wang et al. 2021a; 
Stabnikova et al. 2022). Microplastics are discovered to 
break down more quickly than natural biofilms when glucose 
is employed as an external carbon source (Shabbir et al. 
2020). While acting as carriers and increasing the ecological 
risk of microplastics in the ecosystem, other studies have 
proposed that biofilms can promote the adsorption of 
microplastics to environmental pollutants (Wang et  al. 
2021a). In one study, it was discovered that as soon as 
microplastics are introduced to an aqueous environment, 
bacteria immediately colonize their surfaces and create 
biofilms that promote the adsorption of the microplastics to 
environmental pollutants (Chen et al. 2020). However, the 
issue can be largely resolved if the biofilm is produced and 
formed previously under controlled conditions before being 
treated with microplastics. It is possible to adsorb additional 
environmental pollutants in addition to breaking down 
microplastics in the aqueous environment by integrating 
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the technology of biofilm degradation of microplastics 
into the source treatment of microplastics or applying it 
to in situ cleanup of microplastics in freshwater sources. 
Using biofilms to break down microplastics could represent 
a comparatively environmentally friendly strategy (Faheem 
et al. 2020).

The two main types of biofilm culture methods used 
nowadays are laboratory cultivation and in situ cultivation. 
In situ cultures are frequently used when examining how 
microplastics behave in the environment after attaching 
to biofilms. Laboratory cultures have been employed in 
various research on environmental behavior and for the 
assessment of wastewater treatment systems for microplastic 
biofilm breakdown. By removing epiphytes from natural 
water sources and putting them in a lab, biofilms can be 
created artificially using these resources. After biofilms or 
cultures had formed, microplastics were added, and their 
breakdown was studied (Faheem et al. 2020). The biofilm's 
flora might not, however, be the same as the in situ culture. 
In order to control the amount and capacity of biofilm 
growth to reduce microplastic contamination, a laboratory 
culture can dramatically shorten the culture period and 
incorporate external variables. Cultivation in a laboratory 
is the term used to describe this process. External stimuli 
can be added to control the rate and precision of biofilm 
growth in a laboratory setting, but the culture time can 
also be drastically shortened. The type of plastic polymers 
and their physicochemical characteristics, such as pH, 
salinity, temperature, and UV light, are a few of the various 
factors influencing the growth of biofilm on microplastic 
surfaces (Faheem et  al. 2020). An earlier investigation 
discovered that a 20% maximum degradation was possible. 
The fundamental cause of this is that microorganisms 
require some time to alter the molecular weight, structural 
stability, surface area, and hydrophobicity of microplastics, 
all of which are intrinsic features. The biodegradation of 
microplastics also involves a number of steps, none of 
which may occur simultaneously. The hydrophobicity 
and roughness of microplastics' surfaces change as they 
age. This process initiates the destruction of microplastic 
biofilms, which is then followed by additional processes. 
During the following extremely slow biodegradation phase, 
organisms physically break down plastics by chopping, 
grinding, or digesting the trash (Faheem et al. 2020). As a 
result, the entire deterioration process is drawn out. The rate 
and kind of biofilm growth on the surfaces of microplastics 
is another factor that, in some ways, also determines how 
quickly such materials degrade. The level of degradation is 
still insufficient, despite the possibility of using biofilms to 
degrade microplastics.

In summary, microplastics contamination has the 
potential to negatively impact global food security. The 
accumulation of these particles in the environment can lead 

to contamination of food items, including crops, seafood, 
and meat, which can have negative impacts on human health. 
To address this issue, environmentally friendly and advanced 
biotechnological approaches and management strategies 
are needed. By developing innovative solutions for plastic 
waste management, filtration systems, and biodegradable 
packaging materials, we can reduce the accumulation of 
microplastics in the environment and ensure the safety and 
security of our food supply.

Perspective

Regular release of microplastics particles in the environment 
is causing huge pollution in water bodies and soil, and there 
is an urgent requirement for mitigation and management of 
the plastic waste. Both Physicochemical and microbiological 
methods can be employed to remove plastic and microplastic 
debris. However, the problem associated with biological 
treatment of microplastics particles is it requires specific 
nutrient source, temperature and pH. Usually combined 
remediation technologies, circular economy and waste 
management can be used to reduce Microplastics particles 
from the environment. Also, there is an urgent need for 
research on molecular bioremediation techniques which 
may mitigate microplastics from contaminated environment.

There are different detection, quantification and 
characterization techniques available which are classified 
into physical separation, enzymatic decomposition, and 
chemical both specific and non-specific methods such 
as chromatography/mass spectrometry, field emission 
scanning electron microscope, Raman spectrometer, 
FTIR spectroscopy, X-ray fluorescence, microbalance for 
Microplastics in the food packaging and stuff.

Researchers used enzymes such as proteinase-K, 
lipase, cellulase, and chitinase for decomposition. FTIR 
spectroscopy and Raman spectroscopy are the simplest 
methods for the characterization of Microplastics in different 
environmental samples. The SEM hyphenated with Energy-
dispersive Atomic X-ray technique gave the elemental 
composition of polyvinyl chloride particles in fish guts. 
AFM hyphenated with FTIR good techniques found in the 
literature for detection of Microplastics in mussel siphons 
and tap water samples. Micro-FTIR hyphenated with 
quantum cascade laser for detection of microplastics whose 
size has < 30 mm.

Based on the literature survey, GC with electron cap-
ture detector or GC–MS, X-ray fluorescence or SEM with 
energy-dispersive X-ray spectroscopy will have the more 
effective characteristic of microplastics in the food samples. 
Further, some of the metals accumulated on the microplas-
tics surface in the food samples can be quantified through 
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inductively coupled plasma-MS or atomic absorption 
spectroscopy.

Conclusion

The enormous increase in plastic production and use has 
occasion massive anthropogenic plastic pollution in water 
and soil. This is exacerbated by improper disposal, lack 
of infrastructure and proper management in most parts of 
the world. Here, we discuss the potential applications of 
biotechnological approaches for preventing microplastics 
contamination of food items, including the use of enzymes 
and microorganisms to degrade plastic particles. We 
also highlight the need for increased collaboration and 
coordination among researchers, policymakers, and industry 
stakeholders to effectively address the issue of microplastics 
contamination. In summary, the sources and pathways of 
microplastics contamination in the food chain are complex 
and multifaceted, and require further investigation in order 
to develop effective strategies for mitigating their effects. 
The subsequent degradation and weathering of larger 
plastics generate microplastic particles which can enter the 
food web. Various studies reviewed report the presence of 
microplastics particles in sea foods like mussels, oyster, 
fish shrimp, poultry products, vegetables, fruits, honey, 
salt and water. Overall, these studies implicate seafood 
and water, especially in plastic bottles for the highest 
incidence of microplastics in food. Interestingly, food 
additives such as salt and honey possess an appreciable 
level of these toxicants. Although the presence in honey 
needs further elucidation, the high incidence in salt was 
linked to the original seawater sources of salt, considering 
the irresponsible disposal of plastic wastes into the sea. Of 
great concern is the enormous potential health impacts of 
microplastics on public health, worsened by the near absence 
of studies to elucidate this aspect. However, ecotoxicity 
studies have shown that exposure to microplastics could 
result in many human diseases including reproductive, 
respiratory and circulatory disorders and even cancers. 
The presence of precise methods for the quantification of 
microplastics in food offers some starting points into further 
studies in this area. Further, ecofriendly methods to reduce 
the environmental pollution of microplastic are essential 
in nipping this menace at the bud while further research 
continues to suggest mitigations including introduction of 
alternative materials.
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