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Abstract
Water pollution and the energy demand are calling for sustainable technologies such as photocatalysis, yet actual methods 
are difficult to upscale due to the poor recovery and reusability of nanocatalysts. This issue could be solved by using 
photocatalytic sponges, which display high surface area and reusability. Here we review the applications of photocatalytic 
sponges for wastewater degradation, disinfection, carbon dioxide reduction, and hydrogen production. Photocatalytic 
sponges are fabricated by templating, dip coating, sol–gel, polymerization, electrospinning, and freeze drying. Remarkable 
results include the monolithic microreactor with Ag/AgCl coated on a polydopamine-modified melamine sponge, which 
exhibits a 100% methylene blue degradation in 15 min, with a reusability of five cycles. An hydrogen production rate of 
11.33 mmol  h−1  g−1 was obtained with the pyridazine-doped graphitic carbon nitride with nitrogen defects and a spongy 
structure.
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Introduction

In the current scenario, the world is facing several criti-
cal challenges due to the ever-increasing energy crisis and 
global environmental pollution (Liang et al. 2021b). As per 
the report of the United Nations International Children’s 
Emergency Fund, in developing countries, about 1.2 billion 
people do not have access to clean and safe drinking water 
(Usman et al. 2022). Innumerable reports have been made 
about the persistence and alleviation of organic pollutants 

including pharmaceuticals, pesticides, drugs, dyes, poly-
fluorinated compounds, heavy metals, and micro-plastics 
in different water bodies, including drinking water (Tijani 
et al. 2016; Picó et al. 2020; Balakrishnan et al. 2022b). The 
abundant presence of these organic pollutants is causing a 
major threat to the environment and humans (Scaria et al. 
2021). On the other hand, the continuous carbon dioxide 
emissions and excessive combustion of fossil fuels induce 
global warming (Anderson et al. 2016).

Among all the conventional water treatment technologies, 
photocatalysis has recently emerged as a versatile, environ-
mentally benign approach for the management of energy 
and environmental issues (Sarkar et al. 2020; He et al. 2021; 
Balakrishnan et al. 2023a). The potential applications of 
these technologies include wastewater treatment, disinfec-
tion, hydrogen generation, and carbon dioxide conversion to 
fuels or fine chemicals (Balakrishnan and Chinthala 2023; 
Wen et al. 2017). Over the years, plenty of photocatalysts 
have been developed based on titanium dioxide  (TiO2), gra-
phitic carbon nitride (g-C3N4), zinc oxide (ZnO), cadmium 
sulfide (CdS), and zinc sulfide (ZnS) that are employed in 
energy sectors as well as environmental remediation (Jbeli 
et al. 2018; Zhang et al. 2020; Liu et al. 2023b; Kong et al. 
2022; Balakrishnan and Chinthala 2023). Among these 
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catalysts, titanium dioxide  (TiO2) and graphitic carbon 
nitride (g-C3N4), along with other graphene-based carbon 
materials, have been prominently employed due to the higher 
photocatalytic activity in ultraviolet and visible regions (Bal-
akrishnan and Chinthala 2022). The difficulties of recov-
ery and reuse decreased photocatalytic stability, decreased 
adsorption of pollutants, and high cost of the nanopowder 
photocatalyst make them unsuitable for large-scale applica-
tions (Balakrishnan et al. 2022b, a). An effective strategy 
to overcome these problems is the development of three-
dimensional sponges for photocatalysis (Chen et al. 2022). 
The sponges are porous materials that are composed of a 
catalytic component with a sponge structure (Hossain et al. 
2020). The combination of foam and photocatalyst can be 
beneficial to overcome the common drawbacks of photocata-
lysts, including recovery, reusability, higher surface area, 
and porosity (Sun et al. 2022) (see Fig. 1). The unique prop-
erties make the photocatalytic sponges ideal for the reme-
diation of dyes, pharmaceuticals, phenolics, and pesticides. 
However, no comprehensive review has yet elaborated on the 
preparation, properties, and applications of photocatalytic 
sponges.

This review discusses the preparation, properties, 
and applications of photocatalytic sponges along with 
potent applications in areas of photocatalytic degradation 
of organic pollutants, including dyes, pesticides, 
pharmaceuticals, and phenolic compounds, disinfection, 
hydrogen evolution, and carbon dioxide conversion into 

fine chemicals. Firstly, the general characteristics and 
commonly employed supports of photocatalytic sponges 
are explained in detail. The succeeding section highlights 
the fabrication methods and properties of photocatalytic 
sponges. Finally, a comprehensive review is conducted 
on the versatile applications of sponges in energy and 
environmental applications. The advantages, disadvantages, 
and perspectives of the photocatalytic sponges are critically 
discussed in relation to the existing photocatalytic materials.

Photocatalytic sponges

Sponges are highly porous three-dimensional structures 
inspired by the aquatic animals of the Phylum Porifera, 
which is composed of porous surfaces (Zhu et al. 2017). 
These usually consist of fibrous materials arranged 
in complex porous structures in regular or irregular 
patterns (Zhao et al. 2022). The dense three-dimensional 
structure of sponges exhibits distinctive characteristics 
such as extraordinary surface area, porosity, simplicity in 
preparation, compressibility, good mechanical strength, 
low density, pore volume, and diverse preparation methods 
(Hossain et al. 2020; Wang et al. 2020b; Xu et al. 2021). 
Melamine and polydimethylsiloxane sponges have been 
employed along with biopolymeric sponges in diverse 
applications, including catalysis, water treatment, energy 
conversion, drug delivery, and tissue engineering (Zhu 

Fig. 1  Photocatalytic treatment of wastewater using sponge. Pho-
tocatalytic sponges offer a versatile and efficient solution for water 
treatment because they can use light to activate materials that are 
incorporated with photocatalysis. These sponges contribute to a 
thorough and long-lasting approach to environmental restoration by 

efficiently targeting and degrading a variety of pollutants, includ-
ing organic contaminants and even some pathogens. Furthermore, 
the sponges' porous structure increases their capacity for adsorption, 
which enables them to collect and eliminate contaminants from water 
sources effectively.
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et al. 2017; Lei et al. 2017; Sukul et al. 2021). The sponges 
are affordable, flexible, elastic, and have a facile design 
(Peçenek et al. 2022), which makes them easily adoptable 
as suitable supports for photocatalysts due to the non-
toxicity and extremely safe, higher chemical stability, good 
photostability, flexibility, and lower weight, durability 
(Tu et al. 2019; Sosnin et al. 2021). Therefore, minuscule 
molecule mass transfer and diffusion have a special focus 
on the three-dimensional matrices.

Photocatalysis is a versatile treatment technology 
adopted for diverse applications. The efficacy of a photo-
catalytic process relies on the type of catalytic material, 
process parameter, light irradiation, and reactor design 
(Mudhoo et al. 2020; Balakrishnan et al. 2022b). As a 
result, the actual uses of these materials in industries are 
not well-established. Traditional photocatalysts, includ-
ing titanium dioxide  (TiO2), zinc oxide (ZnO), and zinc 
sulfide (ZnS), were initially employed as nanoparticles. 
Despite the photocatalytic efficiency, environmental con-
cerns grow as a result of nanoparticles seeping into aquatic 
matrices. These nanopowder catalysts were not economi-
cally feasible due to difficult recovery operations and poor 
reusability (Balakrishnan et al. 2023b, c, a). The notion 
of immobilized photocatalysts overcame these traditional 
limits of poor reusability and recoverability but possessed 
very low surface area and exhibited poor mass transfer. To 
address all these challenges, the concept of photocatalytic 
sponges was proposed. The high porosity and surface area 

on the structure of sponges ensure effective interaction 
between light source and catalytic particles.

The photocatalytic sponges demonstrate higher potential 
in terms of efficacy, stability, reusability, and suitability 
for large-scale applications. Greater adsorption rate and 
exceptional mechanical stability are further benefits. These 
materials have different levels of macro- and micro-porosity. 
The photocatalytic sponges’ larger surface areas provided 
a lot more active sites, which speed up the generation of 
reactive oxygen species and photocatalysis. Various methods 
can be used to develop the sponges into a wide range of 
shapes and forms. Researchers have already proved that the 
sponges are predominant over nanoparticles; however, in 
major cases, the nanocatalysts are coated onto commercially 
available sponges such as polydimethylsiloxane, 
polyurethane, polyvinyl alcohol, and melamine sponges 
(Sam et  al. 2021). The characteristics of different 
commercially available sponges are discussed in Table 1. 
Alginate, cellulose, and chitosan-based sponges have also 
been produced in recent years due to high availability, 
abundance, and safety (Balakrishnan et al. 2022a).

Fabrication routes

To alter the hydrophilic surface to a hydrophobic surface, 
it is imperative to establish practical, simple, and effec-
tive methods. The commonly employed strategies are dip 
coating, the in situ method, freeze drying, carbonization, 

Table 1  Most of the commercially available sponges as photocatalytic supports include polymers with exceptional properties. All the sponges 
are porous with high surface area and good elasticity

Sponge Description Properties References

Polyurethane Polyurethane is composed of organic units 
connected via urethane links

• Higher porosity and surface area
• Good elasticity
• Easy to recover and reuse
• Good adsorption ability

Sam et al. (2021)

Melamine Melamine sponges resemble a dense solid 
and are an air-filled lattice framework 
of the material called formaldehyde-
melamine-sodium bi-sulfite copolymer

• Lower cost
• High flexibility and density
• Easy to surface modification
• Resistant to high temperature
• Non-toxic to environment

Liang et al. (2015), Sam et al. (2021)

Polyvinyl alcohol Polyvinyl alcohol sponge is a synthetic 
sponge composed of a vinyl polymer 
connected via carbon–carbon linkages

• Expandable
• High tensile strength
• Resistant to chemicals
• Highly porous

Gao et al. (2022c)

Polydimethylsiloxane Polydimethylsiloxane is composed of 
methylated siloxane polymers with 
repeating units and trimethylsiloxy end-
blocking units

• Chemically inert
• Good thermal stability
• Easy to tune the properties
• High porosity
• High reusability

Sosnin et al. (2021)

Biopolymers The biopolymers including cellulose, 
chitosan, and sodium alginate, are 
employed

• Non-toxic and safe
• Higher reusability
• Lower cost and ease of availability

Balakrishnan et al. (2022a)
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chemical vapor deposition, polymerization, and thermal 
methods, which are elucidated in detail.

Templating methods

The templating methods are the commonly adopted sponge 
preparation strategy with the help of a suitable solid or 
emulsion. Templating methods are broadly divided into 
direct templates and emulsion templates. The direct template 
approach, which uses solid templates as porogen and can be 
entirely removed to produce sponges with well-connected 
cavities, is the simplest way to create sponges. Direct 
template methods can be split into two categories depending 
on the application of a template. Sacrificial templates made 
of polymer particles, nickel foam, salt crystals, and sugar 
cubes can be used as templates (Zhu et al. 2017). It is more 
practical to use the leaching of salt or sugar cubes due to (i) 
no requirement of sophisticated types of equipment and (ii) 
minimum usage of solvents.

Sugar cubes can be selected as the sacrificial template 
that can be placed in an appropriate reactor for the molding 
of a suitable elastomer (Lee et al. 2019). Followed by the 
addition of a mixture of pre-polymer and curing agents 
(dimethicone) into the bath to submerge the sugar cubes, 
the yielded solution can be degassed in a vacuum chamber 
to help infiltration of the liquid pre-polymer to sugar cube 
voids, which is to be kept in an oven. The cubes of cured 
polymer sugar are chopped into pieces to expose the sugar 
template, and then the sugar is leached out to create a three-
dimensional porous sponge (Lee et al. 2020). The particle 
size and mixing ratio with the prepolymer solution in the 
particle leaching process make it simple to modify the 
sponges’ pore size and porosity. A higher concentration 
of particles in the prepolymer solution during the mixing 
of both substances would lead to the formation of 
interconnected pores (Zhu et al. 2017).

The gold (Au) nanoparticles supported the floating porous 
polydimethylsiloxane sponge, which was developed using 
the simple sugar template method and has demonstrated 
significant stability (Lee et al. 2020). The direct templating 
method is also used for the fabrication of sponges with 
micron-sized pores. The key advantages of the templating 
technique are tunable pore size and porosity, high 
affordability, reliability, and well-arranged pore structures 
with well-attached pore interconnection. However, the 
utilization of hazardous solvents is the main drawback of 
a templating method for the preparation of sponges using 
sacrificial templates, including inorganic and polymeric 
materials.

In the emulsion template method, sponges are prepared 
through the polymerization of an emulsion, where 
emulsion droplets resemble a template for the formation 
of pores (Timusk et  al. 2022). Controlling the stability 

of the liquid emulsion template for the process of aging 
equivalent to the coalescence of droplets is always desirable 
for the achievement of the required pore structure. The 
interconnected and separated pores can both develop via the 
templating method possessing narrow size distribution (Zhu 
et al. 2017). The major advantages of emulsion templating 
are highly tunable porosity, pore size, and the ability to 
develop open and closed pore structures. The persistence 
of surfactant inside the polymer may affect the properties of 
the sponges during the preparation stage. The elimination of 
the surfactant is often considered a difficult task and requires 
more time. Researchers adopted the emulsion templating 
method for the development of sponges for environmental 
remediation.

Dip coating

Dip coating is the common and simplest preparation strategy 
adopted to yield sponges, as highlighted in Fig. 2a. Here, 
sponges are immersed in a solution composed of modified 
materials and lifted vertically from the solution (Elshof et al. 
2015). The photocatalytic sponges are then obtained by dry-
ing the immersed sponges. For example, Fang et al. (2018) 
fabricated molybdenum sulfide  (MoS2) nanoflowers through 
the hydrothermal method and grafted them on melamine 
formaldehyde sponge through a dip-coating strategy to yield 
molybdenum sulfide  (MoS2) nanoflower sponges. Here, the 
melamine sponge was cleaned with acetone, ethanol, and 
water and dried before dipping into a molybdenum sulfide 
 (MoS2) solution. It was dried at 60 °C for two hours. The 
process of dipping and drying was continued three times to 
attain uniformity on the photocatalytic sponges. The mer-
its of dip coating are lower cost, and the thickness can be 
altered. However, the process is relatively slower and pos-
sesses the ability to block the screen, which poses an adverse 
effect on the final sponge (Kakaei et al. 2019).

Sol–gel

The sol–gel process is one of the most used strategies 
adopted for the preparation of sponges (Peng et  al. 
2015). The sol–gel process involves three major steps, 
namely: sol–gel process, aging, and drying. Initially, 
the hydrolysis and partial condensation of the alkoxide 
yields a sol commonly known as a colloidal suspension. 
In the presence of a catalyst, the gel is created through 
polycondensation (Reddy et al. 2020). Fine solid particles 
scattered in the gel during gel formation take on a three-
dimensional structure. The rate of condensation and 
hydrolysis affects the gel's structure, while the ratio of 
water to alkoxide and the choice of solvent affects the other 
variables. In the second step, sufficient time is provided 
to ensure complete polycondensation and re-precipitation 
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of the interconnected network gels (Jiang et al. 2017). 
The gels are finally dried to create a three-dimensional 
structure, where the gel's solvents have been replaced 
with air (Sirajudheen et al. 2021; Jiang et al. 2017). The 
merits of sol–gel methods include (i) easy fabrication, (ii) 
production of high-quality material with uniformity and 
higher purity, and (iii) higher surface area (Kumar et al. 
2020). The higher time requirements and the consumption 
of organic solvents during the preparation of sponges are 
undesirable characteristics of the sol–gel method (Jiang 
et al. 2017).

Polymerization

A polymer is cross-linked in the polymerization process to 
create polymer chains (Paszkiewicz et al. 2019). As shown 
in Fig. 2b, the polymer also acts as a cross-linking agent, 
joining materials with sponge surfaces to create hydrophobic 
sponges. Most commonly, dopamine is selected as a cross-
linking agent due to its self-polymerization capability and 
stability with covalent and non-covalent bonding forces 
(Peng et al. 2019). For instance, Gao et al. (2022a, b, c) 
prepared a carbon nitride/polyvinyl alcohol sponge by 
dissolving polyvinyl alcohol in water, followed by keeping 

Fig. 2  The commonly employed preparation routes of photocatalytic 
sponges: a Dip coating is a simple procedure in which the sponges 
are dipped into photocatalytic nanoparticle solution multiple times 
and dried; b polymerization involves the cross-linking of nanoparti-
cles with the polymer to form the polymer chains; c electrospinning is 

the efficient strategy to produce the ultrafine fibers through charging 
and ejecting a polymer melt under high voltage, and d freeze drying 
is a process in which water is easily sublimated via the direct transi-
tion of water from solid to vapor. PDMS stands for polydimethylsi-
loxane
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it in an oil bath at 95  °C. Followed by the addition of 
formaldehyde solution and 2-(2-[4-(1,1,3,3-tetramethylb-
utyl)phenoxy]ethoxy) ethanol into hot polyvinyl alcohol 
solution yields a foam. The foam solution was then dried 
to produce the sponges, and then sonicated carbon nitride-
treated sulfuric acid was added (Gao et al. 2022c). The use of 
surfactants or stabilizers is not needed for the polymerization 
process in order to tune the shape or size of the catalyst. 
However, higher time requirements and larger solvent 
consumption are the major drawbacks of polymerization 
(Sirajudheen et al. 2021).

Electrospinning

Electrospinning is a prominent technique for the generation 
of various micro- or nanofibrous structures with diverse 
uses in the domain of catalysis, drug delivery, and water 
treatment (Wang et al. 2020a). The threads are produced 
from the polymer solution using electric forces in the 
electrospinning procedure shown in Fig. 2c (Bazrafshan 
et al. 2019; Balakrishnan et al. 2022a). For instance, Mi 
et al. (2018) reported the self-assembly electrospinning route 
for the preparation of silica sponges. Initially, a thin layer 
of flat fibers was produced and slowly grown. Further, the 
height of the stack reached ten cm after spinning, followed 
by calcination at 800 °C. The produced silica sponges were 
light in weight and easily formed into any desired shapes by 
compressing or twisting (Mi et al. 2018). The electrospinning 
method produces a high surface area hierarchical nano- 
or micro-three-dimensional porous structure. The main 
drawback is the consumption of solvents, which may affect 
the porous structure of the sponges (Sirajudheen et al. 2021).

Freeze drying

Freeze drying is removing the solvent by sublimation 
of frozen solution under a high vacuum environment 
(Rostamabadi et  al. 2021). Freeze drying involves two 
major steps, namely, thermally stimulated phase separation 
followed by solvent sublimation at very low pressure, as seen 
in Figs. 2d. The phase separation yields lean polymer and 
polymer-rich phases that are formed at a definite temperature 
in an unstable polymer solution. The freeze drying causes the 
sublimation of solvent to yield a sponge. For instance, Chen 
et al. (2022) described the fabrication of cellulose nanofibril/
rectorite composite sponge through directional freeze drying 
of cellulose nanofibril/rectorite dispersion. The advantages 
of freeze drying are the low-temperature process, easily 
molded into the desired shape without being interfered with 
by the elimination of solvent molecules, and the hierarchical 
porous structure is crucial in ensuring efficient mass transfer 
(Ma et al. 2019). Freeze drying is a simple, easy, versatile, 
and scalable method but is a little expensive compared to 
spray drying (Rostamabadi et al. 2021). Table 2 summarizes 
the advantages and disadvantages of different fabrication 
methods.

Properties of sponges

Photocatalytic sponges are widely studied porous crystalline 
materials due to their unique hitherto properties. A variety of 
photocatalytic sponges are developed using polymeric and 
biopolymeric materials, and the applications of sponges are 
based on the structural, morphological properties, surface 
area, stability, durability, and crystallinity.

Table 2  Fabrication routes of photocatalytic sponges with their advantages and disadvantages

Preparation route Advantage Disadvantage References

Direct templating • Well-interconnected pore structure
• Facile and affordable preparation route
• Easy to alter pore size and porosity

The requirement for hazardous solvents Zhu et al. (2017)

Emulsion templating • Pore size is down to microns
• Easy to tune porosity
• Able to yield both open and closed pore 

structure
• Monodisperse pore size can be achieved

The secondary pollution caused by 
surfactants and organic solvents

Zhang et al. (2019b)

Dip-coating • Low-cost preparation method
• Easy to tune the thickness

High time requirements Sahoo et al. (2018)

Sol–gel • Good purity
• Low processing temperature
• Good adhesion
• Ability to coat the complex substrate

• Longer time requirements
• Not able to attach a dense layer of 

catalyst particles on the substrate
• Higher cost for fabrication

Balakrishnan et al. (2022b, a)

Electrospinning Able to control the size of the fibers • Requires the use of toxic solvent
• Not applicable for larger scaffolds

Sirajudheen et al. (2021)
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Photocatalytic sponges possess a three-dimensional struc-
ture with highly interconnected pores and predominantly 
larger pore volume. The porosity and surface area are the 
desirable advantages of the photocatalytic sponges, making 
the sponges ideal for different applications in environmental 
remediation. The porous structure always acts as a platform 
for effective interaction between the host and guest chemis-
try on the interior or exterior of the host. The cellulose chi-
tosan sponge exhibited a high surface area of 178.9  m2  g−1, 
which is ascribed to the formation of thick walls inside the 
sponge (Zhang et al. 2019a).

Islam et al. (2019) reported that cobalt sponge (17.3 
 m2  g−1) exhibited a higher surface area than nickel sponge 
(8.8  m2  g−1) and copper sponge (2.7  m2  g−1). Figures 3a 
shows the morphology of zinc sulfide (ZnS)/cellulose chi-
tosan sponges exhibited a cylindrical shape with an intact 
structure. The cross-sectional view affirms the presence of 
macropores (see Fig. 3b and c) with a size of 200 µm to 
300 µm and a porosity of 83% (You et al. 2022). Figure 3d 
and e shows the honeycomb structure with a dense porous 

structure of cellulose nanofibril/rectorite composite sponge 
in the transverse direction. The presence of pore channels 
identified in Figs. 3h in the longitudinal direction affirms 
structural anisotropy. The characteristic peaks of silicon 
(Si) and aluminum (Al) are shown in Fig. 3f and g. The 
uniform distribution of these elements on the pore walls is 
shown in Fig. 3i and j, which show the agglomeration at 
1:1 ratio of nanofiber and rectorite (Chen et al. 2022). The 
sponges can be formed into any desired shapes and found to 
be light weight. The three-dimensional hierarchical highly 
porous structure supplies an abundant number of catalytic 
active sites toward the photocatalytic reaction, improves the 
separation efficiency, and reduces the diffusion path of elec-
tron–hole species (Yao et al. 2022).

The photocatalytic sponges also demonstrate the chemical 
and thermal stability. The three-dimensional macro-/
mesoporous titanium dioxide  (TiO2) sponge prepared 
through the gelation of lotus root starch capable to withstand 
up to 550 °C is ascribed to the inclusion of the titanium 
dioxide (Wang et al. 2014). The graphitic carbon nitride 

Fig. 3  a Photograph of zinc sulfide (ZnS)/cellulose chitosan sponge 
indicated a three-dimensional porous structure. Scanning electron 
microscopy image of b sponge skeleton and c zinc sulfide (ZnS)/
sponge. Reprinted with permission of Elsevier from reference (You 
et  al. 2022). Scanning electron microscopy images of the sponges’ 
cellulose nanofibril/rectorite composite sponge, d top view, e cor-

responding higher magnification, f-g elemental mapping, h inside 
view, i corresponding higher magnification, and j scanning electron 
microscopy image cellulose nanofibril/rectorite composite sponge. 
Reprinted with permission of Elsevier from reference (Chen et  al. 
2022). Si is silicon, and Al is aluminum
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(g-C3N4)-polydimethylsiloxane sponge displayed good 
thermal stability by retaining 82% of the initial weight at 
550 °C. The sponge was able to survive the extremely harsh 
corrosive environment for over forty-five hours compared 
to the bare polydimethylsiloxane sponge (Abdelhafeez et al. 
2020). The enhanced thermal stability and chemical stability 
are ascribed to the inclusion of effective catalytic materials 
into the sponge.

The photocatalytic sponges displayed outstanding 
mechanical properties, eventually increasing their usage. 
The pristine sponge exhibits greater flexibility, elasticity, and 
durability, making it an ideal template for the preparation 
of sponges. For instance, in graphitic carbon nitride 
(g-C3N4)/polyvinyl alcohol composite sponge, the tensile 
strain increases with an increase in the tensile stress. At 
300% strain, the graphitic carbon nitride(g-C3N4)/polyvinyl 
alcohol composite sponge is about to break. The prepared 
graphitic carbon nitride (g-C3N4)/polyvinyl alcohol sponge 
possessed high elastic deformation ability. The composite 
sponges were easily bent, compressed, and easily returned 
to the actual structure without affecting the structure of 
the sponge (Gao et  al. 2022c). The zinc sulfide (ZnS)-
supported cellulose/chitosan sponge exhibited very high 
structural stability through the fatigue hysteresis test of the 
compression cycle. The zinc sulfide (ZnS)-cellulose/chitosan 
sponge could easily be recovered after being compressed by 
80%, and the maximum stress of the sponge was reduced 
by 10% after twenty compression cycles (You et al. 2022).

Similarly, a three-dimensional lignosulfonate composited 
sponge impregnated with bismuth vanadate/polyaniline/
silver ternary photocatalytic sponge can be compressed into 
thin sheets and recovered back to normal shape after soaking 
with water. The compressive strength of the sponge is 
increased from 0.052 to 0.105 MPa after the incorporation of 
a photocatalyst into the sponge (Gao et al. 2022b). Similarly, 
the compressive strength of the three-dimensional sponge 
complexed molybdenum sulfide  (MoS2)/bismuth sulfide 
 (Bi2S3)/bismuth vanadate  (BiVO4) is increased from 0.049 to 
0.148 MPa after the incorporation of ternary photocatalysts 
into the sponge (Gao et al. 2022a). Almost all the researchers 
reported an increment in mechanical properties and retained 
it back to its normal structure. The phenomenal mechanical 
properties are responsible for the reusability of sponges.

The photocatalytic sponges are highly reusable for 
several cycles due to their outstanding deforming capability, 
which makes them suitable for practical applications. After 
the photocatalytic study, the sponges are recovered and 
washed with water multiple times, squeezed, and dried 
before the next degradation study. For example, Hossain 
et al. (2020) reported the reusability of ten cycles against 
Methylene Blue. The polydopamine-functionalized 
sponge also exhibited a reusability of ten cycles toward the 
degradation of Methylene Blue by using an ethanol–water 

mixture for cleaning the sponge fiber each cycle in the 
ratio of 1:1 (Zhang et al. 2019c). These results proved that 
the photocatalytic sponges are highly reusable and easily 
recovered without any losses in the catalyst. The versatile 
properties of the hybrid sponges make them suitable for 
environmental remediation.

Applications

The inherent qualities of photocatalytic sponges led to a 
variety of applications. We discuss the applications of photo-
catalytic sponges in the areas of environmental remediation, 
and energy conversion is elucidated. The catalytic activity 
of the sponges is ascribed to the porous structure with high 
surface area, chemical and thermal stability, affordability 
and environmental friendliness. Figure 4 showcases differ-
ent applications of photocatalytic sponges in water treat-
ment, disinfection, hydrogen evolution and carbon dioxide 
reduction.

Photocatalytic degradation of organic pollutants

The increased contamination of aquatic systems with 
pharmaceuticals, pesticides, dyes, and phenols alarms the 
livelihood of our ecosystem (Shi et al. 2020; Balakrishnan 
et al. 2023b). Researchers were drawn to photocatalytic 

Fig. 4  Applications of photocatalytic sponges in energy and envi-
ronmental remediation. The potent applications of photocatalytic 
sponges include wastewater remediation, disinfection, hydrogen pro-
duction, and carbon dioxide sequestration. Among them, the majority 
of the studies are explored toward the photocatalytic degradation of 
dyes
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water treatment technology over adsorption because this 
technology is more environmentally friendly (Rajagopal 
et  al. 2020; Chinthala et  al. 2021). The fundamental 
mechanism is to oxidize the sponge photocatalyst to degrade 
the organic pollutants with the assistance of ultraviolet or 
visible light. The sponge-based photocatalysts exhibit 
great catalytic activity due to their highly porous three-
dimensional structure, abundant active sites, and enhanced 
adsorption.

The majority of researchers have conducted the removal 
of dyes rather than other organic contaminants due to the 
higher accessibility and ease of analysis. For instance, Gao 
et al. (2022c) developed stable and highly elastic graphitic 
carbon nitride (g-C3N4)/polyvinyl alcohol sponges via the 
co-polymerization method. The prepared sponge composites 
exhibited predominant porosity, and elastic deformation 
property makes them adaptable to attain different shapes. 
The photocatalytic degradation studies reported a 79% 
elimination of tetracycline within 80 min. The total organic 
carbon removal studies stated a maximum removal of 58% 
and 76% for Rhodamine B and tetracycline, respectively. The 
sponges exhibited a recyclability of ten cycles toward the 
Rhodamine B. The elastic graphitic carbon nitride/polyvinyl 
alcohol sponges can be easily tailored to a larger scale due 
to durability and outstanding stability. The predominant 
catalyst efficiency is ascribed to improved optical properties 
and porosity.

You et al. (2022) developed zinc sulfide (ZnS)-supported 
cellulose/chitosan sponges through an in situ method for 
the removal of Congo Red. Here, zinc sulfide-supported 
cellulose/chitosan sponges were developed through the 
hydrothermal decomposition of xanthates and the in situ 
preparation of zinc sulfide. The structural studies proved 
the porous (83% porosity) skeleton structure composed 
of different flexible transport routes with phenomenal 
mechanical strength. The photocatalytic studies demonstrate 
a maximum efficiency of 96% under the illumination of 
ultraviolet irradiation. The superoxide and hydroxyl radicals 
played a vital role in the destruction of organic dyes. The 
sponges also demonstrated a maximum reusability of eight 
cycles with an efficiency of 85%.

Hickman et al. (2018) emphasized that titanium dioxide 
 (TiO2)-polydimethylsiloxane hybrid sponges, a hydrophobic 
sponge for the destruction of Rhodamine B, were fabricated 
by using sugar as a template. Scanning electron microscopy 
images proved the three-dimensional framework of polydi-
methylsiloxane with a successful amalgamation of titanium 
dioxide  (TiO2) with greater porosity. The solar-light-assisted 
photocatalytic degradation was able to remove Rhodamine B 
effectively due to the synergistic action of titanium dioxide 
present in the sponge. The greater activity is indicated by the 
synergistic effect of greater adsorption, followed by photo-
catalytic studies. The titanium dioxide-polydimethylsiloxane 

exhibited a lower reusability of three cycles in comparison 
with other catalytic sponges.

The silver bromide-silver chloride/silver melamine 
sponges were developed via immobilization of silver nanow-
ires on the melamine sponge network, shifts silver into silver 
bromide-silver chloride, and the metallic silver is yielded by 
reduction reaction. The photocatalytic studies proved that 
the developed system is capable of removing Methyl Orange, 
Acid Orange 7, Malachite Green, Fuchsin Basic, Rhoda-
mine B, and antibiotic sulfadiazine effectively. The improved 
separation of electron–hole pairs and visible light activity is 
ascribed to the enhanced catalytic activity of sponges (Kong 
et al. 2019). Zhang et al. (2023) discussed the superior role 
of reduced graphene oxide/carbon nitride composite sponge 
toward the effective removal of Methylene Blue (99%) and 
Rhodamine B (91%) in 180 min of visible light irradiation. 
The composite sponge also displayed a maximum reusability 
of five cycles. Figure 5 discusses the photocatalytic degrada-
tion mechanism of reduced graphene oxide/carbon nitride 
composite sponge toward dye removal. The superoxide and 
hydroxyl radicals are found to be the dominant radical spe-
cies that aided the dye degradation.

Liang et  al. (2021a) developed a porous ternary 
graphitic carbon nitride (g-C3N4)/bismuth tungstate 
 (Bi2WO6)/molybdenum sulfide  (MoS2) heterojunction 
through a facile strategy for the removal of antibiotics. The 
combination of bismuth tungstate with graphitic carbon 
nitride was beneficial in the tuning of the morphology. 
The unique morphology prevented the heterojunction 
from the agglomeration and exhibited phenomenal light 
absorption with a large number of active sites. The ternary 
heterojunction exhibited a maximum surface area of 3794 
 m2  g−1. The photocatalytic degradation studies claimed a 
99% removal of sulfamethoxazole within one hour under 
visible light illumination with a reusability of six cycles. 
The superoxide radicals and holes were responsible 
for sulfamethoxazole redemption. The formation of 
heterojunction also prevented the recombination of charge 
carriers and enhanced the separation efficiency.

Lee et  al. (2020) prepared a f loating porous 
polydimethylsiloxane-titanium dioxide  (TiO2)-gold 
composite sponge for the elimination of dye. The titanium 
dioxide and gold nanoparticles are immobilized on the 
surface of interconnected pores of polydimethylsiloxane to 
yield a three-dimensional structure. The preparation was 
achieved using the sugar template method with titanium 
dioxide and in situ reduction of gold particles. The location 
of gold particles on the pores enhances the intimate 
contact between the titanium and boosts up the plasmonic 
photocatalysis. Under the illumination of ultraviolet light, 
the composite sponge exhibited a 1.8 times greater removal 
rate than the titanium dioxide sponge with a reusability of 
four cycles. However, because of the Schottky effect and 
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plasmonic effect, visible light is reported to have a better 
removal efficiency than ultraviolet light. The synergistic 
interaction between gold and titanium dioxide also played a 
vital role in the photocatalytic degradation of Rhodamine B.

Zhou et al. (2023) prepared the photocatalytic bismuth 
oxybromide (BiOBr)/sodium alginate/cellulose-based 
sponges for the removal of dye. The prepared hybrid 
photocatalytic sponges demonstrated 96% Rhodamine B 
removal in 90 min under the illumination of a 300-W xenon 
lamp. The presence of bismuth oxybromide (BiOBr) on 
the sponge surface improved photocatalytic properties and 
enhanced the flotation properties of sponges, resulting in 
enhanced reusability of five cycles. Later, the deposition 
of silver/silver chloride (AgCl) photocatalysts on the 
surface of a polydopamine-modified melamine sponge-
assisted photocatalytic microreactor was developed against 
the removal of Methylene Blue. The Methylene Blue 
was completely degraded in 10 min under visible light 
irradiation. The main advantages of the microreactor are 
higher surface area, quick mass transfer, ease of operation, 
and low safety concerns (Duan et al. 2023).

Different from dyes, pharmaceuticals are emerging 
contaminants in water bodies that potentially cause severe 
hazards, including bioaccumulation and severe health 
problems (Balakrishnan et al. 2023c). Liu et al. (2021) 
emphasized the highly stable polyurethane sponges 
supported by tin-zinc oxide for the visible light degradation 

of the tetracycline. The sponge photocatalyst was fabricated 
via in situ growth of tin-doped zinc oxide on the surface 
matrix of polydopamine-modified polyurethane through a 
double template-assisted bionic mineralization strategy. The 
degradation studied reported 96% elimination of tetracycline 
in 120 min with a total organic carbon removal of 42%. The 
effective contact between the photocatalyst and polymer 
matrix leads to the abundant availability of active sites and 
promotes light absorption from the ultraviolet region to 
the visible region. Further, the unique structure promoted 
the transfer of charge species, minimized the defects, and 
protected the catalyst from corrosion. The sponges also 
retained 91% removal efficiency even after five cycles, 
indicating good photo-stability of polyurethane sponges 
supported tin-zinc oxide sponges.

The melamine sponge@covalent framework composites 
were proposed by a team of researchers led by Lin et al. 
(2022a) for the removal of tetracycline using visible 
irradiation. The one-pot preparation method via reactive 
seeding strategy was adopted for the preparation of effective 
sponges. The one-pot preparation pathway ensures uniform 
and regular growth of covalent organic frameworks on the 
melamine sponges. About 97% of tetracycline removal 
efficiency is reported under visible light. The melamine 
sponge@covalent organic framework retained 94% removal 
efficiency after the 10th cycle. The phenomenal activity is 
ascribed to the reduction in the band gap of the sponges from 

Fig. 5  Photocatalytic reclamation mechanism of dyes using reduced 
graphene oxide/carbon nitride (g-C3N4) composite sponge under vis-
ible light irradiation. Upon the illumination of visible light, the elec-
trons move from the valence band of the carbon nitride (g-C3N4) to 
the conduction band. The free electrons will reduce oxygen to super-
oxide radicals, which effectively decompose the pollutants into car-

bon dioxide and water. Reprinted with permission of Elsevier from 
reference (Zhang et al. 2023). g-C3N4 is graphitic carbon nitride, PU 
is polyurethane, GO is reduced graphene oxide, CB is the conduction 
band, VB is the valence band,  e− is electrons,  h+ is holes, Eg is band 
gap,  O2 is oxygen, and  O2

− is superoxide radicals
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4.41 eV for melamine sponge to 2.76 eV for hybrid sponges, 
which enabled effective utilization of visible light. The 
highly porous and well-connected structure also enhanced 
the absorption of sunlight and minimized the scattering 
of light effectively. The hydroxyl radicals and superoxide 
radicals are prominent groups that play a vital role in the 
elimination of tetracycline.

Gao et al. (2022b) reported the three-dimensional ligno-
sulfonate-based sponges impregnated with bismuth vanadate 
 (BiVO4)/polyaniline/silver photocatalyst for the effective 
removal of fluoroquinolones from water. Experimental 
studies reported 90% removal in batch mode (two hours) and 
80% in continuous mode within thirty hours. The process 
of adsorption followed by photocatalysis is dependent 
on the surface degradation connected with effective 
adsorption because of plenty of acidic functional groups. 
The mechanistic studies proved that the sponge is a type-II 
heterojunction, enhancing the utilization of visible light and 
separation efficiency. The holes were found to be the highly 
active species that took part in photocatalytic degradation. 
Composite sponges are an effective self-purification system 
that is environmentally viable, has a lower price, and is 
highly efficient (Gao et al. 2022b). A highly elastic blocky 
catalyst was developed via proper growth and distribution 
of cobalt-manganese bimetallic oxide inside sponges 
 (CoMnOx@sponge) for the activation of peroxymonosulfate. 
The catalytic system completely removed the sulfonamide 
antibiotics within five minutes and followed a pseudo-first-
order reaction. The blocky catalyst exhibited the phenomenal 
reusability of twenty cycles and could retain 90% efficiency 
(Jiang et al. 2022).

Table 3 summarizes different photocatalytic sponges used 
in the removal of noxious pollutants present in wastewater. 
Overall, photocatalytic sponges are highly versatile materials 
for the elimination of noxious compounds due to (i) highly 
porous three-dimensional interconnected structure, (ii) 
tuned band gap of the photocatalyst, (iii) easiness in the 
recovery of the photocatalyst with no mass loss, (iv) higher 
reusability, (v) elasticity, durability, and ability to form any 
shapes, (vi) easy to scale up and commercialize. However, 
the reactors must be constructed with the intention of scaling 
up for industry or any other practical uses in order to develop 
an appropriate photocatalytic reactor for photocatalytic 
sponges. Special focus must be given to the preparation 
of Z-scheme sponges to decrease the problems of the 
recombination of electron–hole pairs.

Disinfection

Microbial contamination has always posed a serious health 
risk to humans. The bacteria, fungi, algae, and viruses 
potentially cause eco-toxicity and different diseases to both 
man and animals (Yu et al. 2019; Balakrishnan et al. 2023a). 

Thus, the photocatalytic disinfection strategy gathered 
research importance because of the higher disinfection 
efficiency and energy conversion of sponges (Wang et al. 
2021). The photocatalytic bacterial and algal degradation is 
achieved via a strong radicals-assisted oxidation process. The 
illumination of a suitable light source on the photocatalyst 
surface tends to move the electrons from the valence band 
to the conduction band with the simultaneous formation of 
holes. These holes will directly attack the radical species 
on the surface of microorganisms and hinder the growth of 
organisms (Chinthala et al. 2021). The heat produced by 
photocatalytic degradation can also contribute toward the 
denaturation of proteins and kill the germs.

Recently, Li et  al. (2022b) used melamine sponge-
functionalized carbon nitride for the inactivation of 
Staphylococcus aureus and Salmonella typhimurium. The 
photo-studies proved that the carbon doping and nitrogen 
vacancies improved light absorption and increased the 
production of holes in photocatalysis. The photocatalytic 
performance of the melamine-functionalized carbon nitride 
sponge ensured the inactivation of Staphylococcus aureus 
and Salmonella typhimurium, respectively. The illumination 
of visible light and holes is generated in the valence band. 
These holes acted on the bacteria's surface and restricted the 
growth. The photocatalyst also produced heat under visible 
light, which increased the temperature of the water. The high 
temperature of the water is capable of destroying the proteins 
and destroying the germs.

Tu et  al. (2021) emphasized self-supported reduced 
graphene oxide/bismuth oxybromide (BiOBr) composite on 
loofah sponge as a floating monolithic photocatalyst for the 
inactivation of microcystis aeruginosa seen in wastewater. 
The reduced graphene oxide acted as a binder to strengthen 
the interaction between the loofah and active catalytic 
material to speed up the charge transfer. Experimental 
studies reported more than 90% removal of microcystis 
aeruginosa, and the total organic carbon removal was 74% 
at the end of three hours. The good photocatalytic activity is 
ascribed to the formation of heterojunction between reduced 
graphene oxide and bismuth oxybromide. The catalytic 
sponge exhibited a reusability of five cycles with any decay, 
indicating the structural stability of the sponge.

The visible light-induced silver molybdate/terephthalic 
acid-functionalized carbon nitride loofah floating photocata-
lyst composites were developed to destroy the Microcystis 
aeruginosa through an oscillatory impregnation route. The 
composite sponge completely removed chlorophyll within 
four hours of visible light exposure. The silver molybdate/
terephthalic acid-functionalized carbon nitride loofah float-
ing photocatalyst exhibiting a reusability of five cycles with 
a decline of 8% is ascribed to the occupation of remain-
ing algae or organic matter into the floating surface. Stud-
ies show that the algal cells became shriveled, and the 
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Table 3  Photocatalytic efficiency and cycles of reuse of the different photocatalytic sponges employed for wastewater remediation

Photocatalyst Pollutant Light source Efficiency Cycles of reuse References

Titanium dioxide sponge 
composites

2,4,6-Trichlorophenol 
(20 mg  L−1)

Light-emitting diode 
lamp

81% in 240 min Not reported Zhao et al. (2020)

Zeolitic Imidazole 
Framework-8-derived 
Zinc oxide/reduced 
graphene oxide/carbon 
sponge

Rhodamine B (10 mg 
 L−1)

300-W Xenon lamp 99% in 120 min 3 Su et al. (2018)

Titanium dioxide with 
surface phase junction

Rhodamine B Not reported 53% total organic 
carbon removal

5 Jiang et al. (2021)

Gold/zinc oxide/ 
polyurethane

Rhodamine B (5 mg 
 L−1)

300-W Xenon lamp 96% in 90 min 5 She et al. (2018)

Zinc oxide/
polydimethylsiloxane

Methylene Blue (5 mg 
 L−1)

4-W ultraviolet lamp 93% 10 Hossain et al. (2020)

Molybdenum oxide-
octadecylamine-
ferrous oxide 
polyurethane sponge

Methylene Blue (40 mg 
 L−1)

Not reported About 90% in 25 min Not reported Sui et al. (2021)

Titanium dioxide carbon 
nanotube sponge

Rhodamine B 
(1 ×  10–5 mol  L−1)

350-W Xenon lamp About 80% Not reported Peng et al. (2015)

Wood-derived fiber 
bismuth oxybromide/ 
silver bromide sponges

Rhodamine B (5 mg 
 L−1)

Xenon lamp 99% 5 Xu et al. (2019)

Zinc oxide tetrapod 
sponges

Methylene Blue (5 mg 
 L−1)

100-W ultraviolet lamp 96% in 130 min Not reported Lee et al. (2023)

Methyl
Orange (30 mg  L−1)

61% in 130 min Not reported

Red phosphorous/silver 
sponge monolith

Rhodamine 6G (20 mg 
 L−1)

300-W Xenon lamp 82% in 180 min 5 Wang et al. (2018b)

Gadolinium-doped 
vanadium oxide/
Mxene

Methylene blue
(5 mg  L−1)

Sunlight 92% in 120 min 5 Tahir et al. (2022)

Polyvinyl alcohol 
sponge-loaded bismuth 
tungstate

Tetracycline (70 mg 
 L−1)

500-W Xenon lamp 94% in 120 min 4 Zhang et al. (2016a)

3D bombax-structured 
carbon nanotube 
sponge coupled with 
silver phosphate

Tetracycline (10 mg 
 L−1)

300-W Xenon lamp 90% in 60 min 5 Jin et al. (2019)

Collagen-titanium 
dioxide nanobio-
sponge

Rhodamine B (0.03 M) 200-W medium pressure 
mercury lamp

95% in 130 min 3 Nagaraj et al. (2021)

Three-dimensional 
sponge-silver 
tetrasilicate 
microblock

Methylene Blue (20 mg 
 L−1)

300-W Xenon lamp 98% in 30 min 4 Li et al. (2022a)

Sponge-loaded Bismuth 
tungstate/zinc ferrite

Tetracycline (5 mg  L−1) 500-W Xenon lamp 98% in 90 min 4 Zhang et al. (2017a)

Monolithic microreactor 
with silver/silver 
chloride coated 
on polydopamine-
modified melamine 
sponge

Methylene Blue (10 mg 
 L−1)

300-W Xenon lamp 99% in 15 min 5 Cardil et al. (2021)

Reduced graphene 
oxide/carbon nitride 
composite sponge

Methylene Blue (10 mg 
 L−1)

Rhodamine B (10 mg 
 L−1)

Sun irradiation 99% in 180 min
91% in 180 min

5 Zhang et al. (2023)
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Table 3  (continued)

Photocatalyst Pollutant Light source Efficiency Cycles of reuse References

Zinc oxide tetrapod 
sponges

Methylene blue (5 mg 
 L−1)

100-W ultraviolet lamp 96% in 130 min Not reported Lee et al. (2023)

Sodium bismuth sulfide 
chitosan cellulose 
sponges

Methylene blue (30 mg 
 L−1)

300-W Xenon lamp 98% in 60 min 5 Liu et al. (2023a) 

Fig. 6  Photocatalytic inactivation of Microcystis aeruginosa using 
silver molybdate  (Ag2MoO4)/terephthalic acid-functionalized carbon 
nitride@loofah sponge photocatalyst. The reactive oxygen species, 
zero-valent silver ions, and triplet excited state of carbon nitride are 
generated under the illumination of visible light. The proper con-
tact between the generated species and the algal cells degraded the 
cell wall and cell membrane of algae. The destruction of cell wells 
destroyed membrane permeability and antioxidant systems. At last, 

the micro-organisms are inactivated. Reprinted with permission of 
Elsevier from reference (Fan et al. 2023).  Ag2MoO4 is silver molyb-
date, TACN is terephthalic acid-functionalized carbon nitride, ROS 
is reactive oxygen species, NHE is normal hydrogen electrode,  h+ 
is hole,  e− is electron,  Ag+ is silver ions,  Ag0 is zero-valent silver, 
3  g-C3N4

* is triplet excited state of carbon nitride, and  Eg is band 
gap,  O2

*− is superoxide radicals,  OH*− is hydroxyl radicals,  OH− is 
hydroxyl ions,  O2 is oxygen, and  H2O is water

Table 4  Photocatalytic sponges employed for disinfection of micro-organisms present in wastewater

Photocatalyst Organism Light source Efficiency References

Black melamine-based sponge Salmonella 300-W xenon lamp 98% in 40 min Li et al. (2020)
Encapsulated zinc/cobalt nanocrystals 

into sponge porous carbon
Escherichia Coli Visible light 72% adenosine triphosphate of E.Coli 

is reduced
Bai et al. (2022)

Silver carbonate-Nitrogen/graphene 
oxide/polyurethane sponge

Microcystis aeruginosa Visible light 100% of chlorophyll removal in 
300 min

Fan et al. (2020)

Graphitic carbon nitride- bismuth 
molybdate/silver iodide floating 
sponge

Microcystis aeruginosa Visible light 100% removal of algae cells in 
360 min

Sun et al. (2022)

Nitrogen, sulfur-carbon quantum dots/
Bismuth molybdate/titanium dioxide

Bacillus Subtilis
Escherichia Coli

Visible light Not reported Qu et al. (2020)
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cell boundaries became more irregular after 90 min. The 
destruction of cell walls and membranes affirms the disrup-
tion of algal cells via the rupture of internal structure. The 
photocatalytic inactivation of Microcystis aeruginosa using 
the floating photocatalyst under visible light is reported in 
Fig. 6. The hybrid sponge could easily produce reactive oxy-
gen species, zero-valent silver, and carbon nitride under the 
influence of visible light, which will interact with algal cells 
via floating properties. Later, the cell wall is destroyed, fol-
lowed by the complete damage of membrane permeability, 
photosynthetic systems, anti-oxidation systems, and algae, 
which are inactivated (Fan et al. 2023).

Photocatalytic sterilization is an effective tool in the 
elimination of viruses, pathogens, and algae seen in 
water sources, as given in Table 4. The three-dimensional 
sponges exhibited phenomenal performance due to easi-
ness in recovery and reusability. However, further stud-
ies are pre-requisite to assess the maximum life of the 
sponges. The photo-stability of the sponges must be con-
firmed using scanning electron microscopy, X-ray diffrac-
tion, and Fourier transform infrared analysis. Detailed 
studies are necessary on the fundamental interaction 
between sponge and bacteria, including the photo-gener-
ated reactive oxygen species' antibacterial behavior and 
the interface reactions that must be elucidated. The inte-
gration of photocatalysis with other advanced oxidation 
processes (ozonation and Fenton’s) helps to enhance the 
removal efficiency by improving visible light utilization.

Photocatalytic reaction

The photocatalytic sponge is also used as an efficient 
catalyst for the smooth conduction of chemical reactions. 
Zhang et  al. (2017b)  fabricated highly bi-functional 
organic sponges as a photocatalyst for the coupling 
of tertiary amines with ketones in water under the 
illumination of visible light. Polydimethylsiloxane is 
elected as an efficient aid for sponges due to stability 
and transparency. The sponges are efficiently developed 
via polymer surface modification and solid-phase 
peptide synthesis. The scanning electron microscopy 
studies showed that the prepared material is a three-
dimensional porous structure. The catalytic activity was 
tested using the cross-dehydrogenative coupling reaction 
among N-phenyltetrahydroisoquinoline and acetone. 
Studies proved that the sponges were able to catalyze the 
asymmetric transformations with phenomenal enantio-
selectivity (highest yield = 93%). The sponges also 
exhibited a yield of 87% after the tenth consecutive cycle. 
The study provides insights into easy catalyst preparation, 
separation, easy recyclability, and ability to scale up.

Yao et al. (2022) prepared a three-dimensional hier-
archical porous ultrathin loofah-carbon nitride  (C3N4) 
sponge through supramolecular pre-organization cou-
pling assisted with an oxidation etching process, where 
oxygen and nitrogen atom vacancies are developed. 
Brunauer–Emmett–Teller surface area of the loofah-carbon 

Fig. 7  Schematic representation of the photocatalytic transfer hydro-
genation and hydrogen evolution using loofah-carbon nitride sponge. 
The three-dimensional sponge morphology and the oxygen doped 
enhanced the surface area, visible light utilization, and hydrophilic-
ity. The loofah-carbon nitride sponge acted as a reliable light and 
water absorber. Further, platinum nanoclusters behaved as an efficient 
medium for the transfer of electrons. These characteristic properties 
helped in the conversion of nitrophenol to 4-aminophenol through a 
reaction between the absorbed water. The photo-induced electrons 

undergo a reaction with water molecules to yield photo-generated 
hydrogen species and 4-aminophenols. In the absence of nitrophe-
nols, the photo-induced electrons directly reduce water to photo-
generated hydrogen species and hydrogen. Reprinted with permis-
sion from Elsevier from reference (Yao et al. 2022). C is carbon, N is 
nitrogen, O is oxygen, H is hydrogen, Pt is platinum,  H2 is hydrogen, 
 H0, is photo-generated hydrogen species, 4-NP is 4-nitrophenol, 4-AP 
is 4-aminophenol,  e− is electrons, and  h+ is holes
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nitride sponge is 208  m2  g−1, which is almost 61 times 
greater than bulk carbon nitride. The increased surface 
area is beneficial in efficient light harvesting. The experi-
mental studies reported a 96% hydrogenation of 4-nitro-
phenol. From Fig.  7, it is evident that nitrophenol is 
converted to aminophenol through the effective reaction 
between the water and absorbed water. The loofah-carbon 
nitride sponge is an effective material, but no studies have 
reported on its recyclability and stability.

Photocatalytic hydrogen evolution

The energy crisis is one of the most trending global issues 
that urges the research community to produce clean energy 
efficiently. The complete exploration of clean and renew-
able solar energy is necessary to minimize the impact of 
greenhouse gases and to secure the energy demand for the 
future (Reddy et al. 2018). Photocatalytic hydrogen evolu-
tion is a sustainable and economical pathway to developing 
a resilient hydrogen economy.

Zhan et  al. (2022) emphasized the pyridazine-doped 
graphitic carbon nitride (g-C3N4) with nitrogen defects 
and spongy structure for photocatalytic water splitting. The 
experimental studies reported a maximum hydrogen pro-
duction of 11 mmol  h−1  g−1, which is 94 times higher than 
bare carbon nitride. The higher efficiency of photocatalyst 
is indicated by the (i) formation of nitrogen defects between 
adjacent tri-s-triazine groups, (ii) effective migration of 
charge carriers and higher separation efficiency, and (iii) 
spongy structure offers several numbers of amino groups. 
The loofah-carbon nitride sponge exhibited a photocatalytic 
evolution of 4.8 mmol  h−1  g−1, which is 26 times greater 
than bulk carbon nitride by using platinum as a co-catalyst. 
The photocatalytic sponge also exhibited recyclability for 
twenty hours with a minor decline in activity. The results 
confirmed the stability of the loofah-carbon nitride sponge 
because of hierarchical porous, and the calculated quantum 
efficiency of the hydrogen evolution is found to be 10% at 
420 nm. The photo-induced electrons directly reduce water 
to photo-generated hydrogen species and hydrogen, as indi-
cated in Fig. 7 (Yao et al. 2022).

Wang et al. (2019) focused on a carbon nitride sponge 
developed via green and environmentally free methods using 
melamine and nucleobases as chief starting material. The 
prepared catalyst exhibited a higher hydrogen generation of 
5 mmol  h−1  g−1 using 10% triethanolamine as a sacrificial 
reagent under 300-W Xenon lamp. The prepared catalyst 
also exhibited a reusability of four cycles and showed no 
prominent change in X-ray diffraction spectra before and 
after the study. The steric hindrance and molecular activity 
of nucleobases possess potential influence on catalyst activ-
ity. The excellent catalytic activity is indicated by (i) the 
higher surface area of 127  m2  g−1, (ii) good biocompatibility 

and hydrogen bonding tendency of nucleobase provided 
multiple binding sites for the catalyst, (iii) reduced recombi-
nation of electron–hole pairs and improved light absorption 
(band gap = 2.65 eV).

The zeolitic imidazole framework-8 (ZIF-8)/zinc oxide 
(ZnO) nanocages/reduced graphene oxide/carbon sponge 
was developed by a team of researchers led by Su et al. 
(2018) toward hydrogen evolution reaction (Su et al. 2018). 
The photocatalytic studies claimed an improved hydrogen 
generation of 0.073 mmol   g−1 using 25% methanol as a 
sacrificial reagent under 300-W xenon lamp (catalyst load-
ing = 50 mg). The enhancement in hydrogen generation 
is seen upon the introduction of reduced graphene oxide, 
which minimized the recombination of electron–hole pairs 
(0.067 mmol  g−1) and exhibited a reusability of three cycles. 
The better catalytic activity is due to the porous structure 
and higher surface area (7.46  m2  g−1) of the sponge, which 
provides an effective place for the diffusion of reactants. The 
enhancement in the optical property (2.84 eV) of the catalyst 
improved visible light utilization.

Liang et al. (2015) developed three-dimensional gra-
phitic carbon nitride monoliths, which were capable of 
generating hydrogen under visible light irradiation. The 
prepared three-dimensional graphitic carbon nitride 
exhibited 2.84 times higher catalytic activity than pristine 
graphitic carbon nitride under visible light. The three-
dimensional porous networks, higher surface area, higher 
visible light utilization, and greater separation efficiency 
lead to phenomenal catalytic activity. Wang et al. (2018a) 
reported a maximum hydrogen evolution of 31.95 µmol for 
nitrogen-defect-carbon nitride (g-C3Nx(0.1))/nickel-selenide 
and 95.0 µmol for nitrogen-defect g-C3Nx(0.1)/platinum 
(Pt) under visible light. The presence of nitrogen defects 
enhanced visible light harvesting and improved the sepa-
ration of charge carriers, leading to phenomenal catalytic 
activity.

Zhang et al. (2016b) reported the facile preparation of 
graphene sponge from graphene oxide exhibited a maxi-
mum hydrogen evolution of 361 µmol, which is 28 times 
greater than that of pristine graphene oxide. The maximum 
apparent quantum yield of 75% is observed at a wavelength 
of 420 nm. Highly flexible porous melamine formaldehyde 
carbon sponge material coated with graphitic carbon nitride 
was developed using fast calcination of melamine–formalde-
hyde foam. The prepared affordable sponge is composed of a 
three-dimensional interconnected graphitic carbon network 
exhibiting a highly mesoporous structure and a mechanical 
strength of 26 MPa. The hybrid sponge exhibited the photo-
catalytic hydrogen evolution of 2.1 mmol  h−1  g−1, which is 
almost 15 times greater than that of pristine graphitic carbon 
nitride. The hybrid sponges also exhibited a reusability of 
four cycles (Kang et al. 2022).
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The limited number of studies indicates that photocat-
alytic hydrogen production using sponges is in the initial 
stages. Studies have proved that the higher flexibility, effi-
ciency, and reusability of photocatalysts in water splitting 
make them unique from powdered nanocatalysts. The three-
dimensional structure also contributed to the greater num-
ber of active sites and made the recovery and reuse easier. 
However, further research is necessary to overcome the 
following challenges: Firstly, understanding the kinetics of 
photocatalytic water splitting is pre-essential. The low-cost 
alternatives for deposition agents (gold and platinum) on 
sponges must be figured out without compromising quantum 
yield. Secondly, from the engineering point of view, highly 
expensive dopants and sacrificial agents are employed in 
deionized water to generate hydrogen gas. A standard proto-
col for the selection of the sacrificial agent and the respective 
concentration is necessary. Finally, in the modern world, the 
computational modeling of photocatalytic sponges will help 
in the development of efficient sponges with abundant active 
sites, surface area, porosity, and minimized recombination.

Carbon dioxide reduction

The continuous dependence and exploration of fossil fuels 
end up in the emission of tons of carbon dioxide into the 
atmosphere and are responsible for global warming. In 2017, 
about 32.8 billion tons of  CO2 was discharged into the envi-
ronment, and this will continue to increase in the near future. 
Studies also indicated a hike in global temperature by 2 °C 
by 2050 (Aggarwal et al. 2021). Thus, the emission of car-
bon dioxide into the environment must be reduced signifi-
cantly. From the point of sustainable energy, the conversion 
of carbon dioxide into fuels using visible light is a prominent 
solution to overcome the limited supply of fossil fuels (Wen 
et al. 2017). The photocatalytic conversion of carbon dioxide 
into fuels is an effective strategy for tackling environmental 
problems.

Lin et al. (2022b). developed amphiphilic cobalt oxide 
biochar for the photocatalytic reduction of carbon dioxide 
into other chemicals. The amphiphilic performance of the 
cobalt oxide-biochar is ascribed to micro- or nanostructure 
arising from the loofah sponge and cobalt oxide. The experi-
mental studies reported the production of carbon monoxide 
at the rate of 48.3 µmol  h−1 with a reusability of four cycles. 
The carbon monoxide production efficiency of the photo-
catalyst is also consistent with the absorption of the photo-
sensitizer, where performance declines with increment in 
wavelength. Studies claimed that the charge migration effi-
ciency between the catalyst and carbon dioxide enhanced the 
carbon dioxide conversion. The carbon dioxide mass transfer 
also exhibited a prominent role in carbon dioxide conver-
sion. Further, undulating folds derived from the sponges 

contained several microstructures responsible for the surface 
roughness of the photocatalyst (Lin et al. 2022b).

Yang et al. (2018) reported that the recyclable monolithic 
graphitic carbon nitride/melamine sponge used an ultrasonic 
coating strategy. The photocatalytic studies reported 
the carbon dioxide reduction into carbon monoxide 
(7.48  µmol   h−1   g−1) and methane (3.93  µmol   h−1   g−1), 
respectively. The predominant catalytic activity of the 
monolithic sponges is due to the inherent porous structure 
of melamine along with the greater surface area (7.6  m2  g−1) 
than the corresponding pristine form (0.9  m2   g−1). The 
higher surface area leads to abundant availability of active 
sites. The optical studies also proved higher visible light 
harvesting through the decline in the band gap of the hybrid 
sponge to 2.79 eV, which reduced the recombination of the 
electron–hole pairs. So, the graphitic carbon nitride (g-C3N4) 
melamine sponge is a versatile material for carbon dioxide 
reduction due to the high elasticity, firmness, mechanical 
strength, and photostability of sponges (Yang et al. 2018).

Zhang et al. (2018) reported graphitic carbon nitride 
(g-C3N4)/graphene oxide-wrapped sponge monoliths to 
produce carbon monoxide, methane, and hydrogen of 42.9, 
4.6, and 1.6 µmol  h−1  g−1, which is higher than graphitic 
carbon nitride/graphene oxide composites. The synergistic 
effect of graphene oxide and melamine sponge makes the 
hybrid composites possess a higher surface area. Upon the 
absorption of light sources, electrons and holes are excited, 
and the reactants are firstly adsorbed on the photocatalyst 
surface. The synergistic interaction between the graphene 
oxide and melamine sponge is observed during the initial 
period. The transfer of photogenerated electrons and holes 
toward the surface of the catalyst effectively reduces carbon 
dioxide. The higher conductivity of the graphene oxides 
supplies electrons abundantly to avoid the recombination 
of charge carriers. The visible light absorption is improved 
through the surface sensitization of graphene oxide. The 
photogenerated electrons and holes reduce the carbon 
dioxide to chemicals.

Wang et al. (2023) developed biomimetic porphyrin-mod-
ified three-dimensional porous material porphyrin-loaded 
ammonia-treated carbonized zinc-cobalt-zeolitic imidazole 
framework-carbon nitride. The experimental studies reported 
the superior catalytic activity leads to the conversion of car-
bon dioxide into methane (34.5 µmol  g−1) and carbon mon-
oxide (392.2 µmol  g−1) with a reusability of four cycles. 
The photoinduced electron–hole pairs followed the typical 
type-II pathways, the presence of porphyrin structure, and 
the higher conductivity of the zeolitic imidazole framework 
materials accelerated the rapid movement of photogenerated 
electrons and enhanced the carbon dioxide sequestration.

Later, Yang et  al. (2022) developed a hierarchically 
porous deficient nickel carbonate embedded sponge mag-
nesium calcite disclosed photocatalyst for the reduction of 
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carbon dioxide into carbon monoxide (10.5 µmol  h−1  g−1). 
The experimental studies proved that the carbonate vacancy 
created in the nickel carbonate improved the adsorption 
and followed by the activation of carbon dioxide than the 
O-vacant nickel carbonate. The carbon dioxide molecule is 
easily deformed on the surface of nickel carbonate and acti-
vated to the formation of an intermediate during the reac-
tions. The study showcases the role of defect materials in 
the photocatalytic reduction of carbon dioxide. Wang et al. 
(2014) developed a three-dimensional macro/mesoporous 
titanium dioxide  (TiO2) sponge via gelation of lotus root 
starch for the reduction of carbon dioxide. The experimental 
studies reported that titanium dioxide sponge exhibited 2.6 
times greater carbon dioxide conversion to methane than 
that of titanium dioxide. The phenomenal activity of the 
sponge photocatalyst is attributed to three reasons: (i) The 
macroporous structure supports the gas diffusion of reactants 
and products, (ii) the promotion of the multiple-reflection 
effect inside the microcavities enables the visible light har-
vesting for the higher duration and ensures efficient light 
absorption, (iii) the mesoporous structure improves the gas 
capture/adsorption of reactants and ensures the availability 
of more active sites.

The high porosity and surface area make the photocata-
lytic sponges suitable for the photocatalytic reduction of car-
bon dioxide. Continuing research is necessary to figure out 
the main drawbacks of sponges in carbon dioxide reduction. 
Studies reported a lower conversion rate of carbon dioxide 
into chemicals, which is ascribed to a lower utilization of 
visible light and a recombination of electron–hole pairs. Fur-
ther, studies are mandatory to understand the fundamental 
mechanism behind the conversion of carbon dioxide. The 
isotope labeling analysis using isotype carbon dioxide as a 
reactant is useful in affirming the obtained products from the 
photofixation of carbon dioxide.

Perspective

The applications of photocatalytic sponges must be further 
explored based on the optimization of photocatalytic activ-
ity and the compatibility of sponges. The following points 
must be considered to develop highly efficient photocatalytic 
sponges for environmental remediation.

• Current research on the structural tuning of the 
photocatalyst that is present on sponges is insufficient. 
For the effective interaction between the photocatalyst 
and sponge, special emphasis must be given to the 
functional group, and size distribution and porosity 
on the sponge performance must be explored. The 
modification of the photocatalysts using other functional 
materials (for example, metal–organic frameworks) can 

be used to enhance the adsorption, catalytic properties, 
and stability of the sponges. The design of photocatalytic 
sponge heterojunctions is beneficial in resolving the 
problems associated with the recombination of electron–
hole pairs, where the Z-scheme or S-scheme must be 
considered.

• The large-scale development of photocatalytic sponges 
is a major challenge that hinders practical applications. 
Researchers must focus on the development of a proper 
fabrication strategy for the enhancement of stability 
for prolonged operations in continuous mode. The 
preparation route must be affordable, environmentally 
friendly, and economically viable. The template-assisted 
methods using sugar or salt leaching methods are easy to 
scale up. Further, density functional theory calculations 
are beneficial in estimating the stability of the sponges.

• The complete mineralization of organic pollutants is very 
complex. So, a detailed understanding of intermediate 
products formed during the degradation process must 
be studied using mass spectroscopic techniques. 
Photocatalytic degradation studies are commonly 
conducted using distilled water, so the conduction 
of photostudies using real wastewater is necessary to 
understand the capability of photocatalytic sponges.

• Next, the photocatalytic degradation mechanism of 
photocatalytic sponges needs more clarity. Many debates 
have arisen as a result of these uncertainties in the 
explanation of the photocatalytic efficacy of the sponges 
in various composites. A detailed study on photocatalytic 
sponges’ mechanisms is mandatory, specifically for 
advanced in situ techniques.

• The total eradication of organic contaminants utilizing 
photocatalytic technology is difficult, just like other 
procedures. As a result, there is a bigger practical benefit 
when photocatalysis is combined with other cutting-edge 
oxidation processes, including photo-assisted Fenton's 
reaction, persulfate oxidation, and photoelectrocatalysis. 
The synergistic process generates radicals with high 
oxidation capacity and improves the photocatalytic 
degradation of organic pollutants. The kinetic matching 
between these techniques may attain greater research 
interest in the future.

• Most of the researchers have only conducted reusability 
studies up to five cycles. Detailed studies on the 
reusability of photocatalytic sponges are necessary 
to understand the saturation limit of sponges. The 
conduction of characterization using X-ray diffraction, 
Fourier transform infrared spectra, and scanning electron 
microscopy of used sponges is mandatory to predict 
the stability of sponges. Reusability is the prominent 
advantage of sponges, so that must be explored fully for 
different applications.
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• The density functional theory helps to predict key infor-
mation for hydrogen evolution and carbon dioxide reduc-
tion. For hydrogen generation applications, density func-
tional theory is beneficial in providing scientific aspects 
on the surface reaction and interface charge transfer. The 
density functional theory can be adopted to understand 
the activation state of carbon dioxide.

Conclusion

We introduce photocatalytic sponges as a very adaptable 
material even though they have recently demonstrated 
significant uses in the environment and energy, despite 
the fact that sponges have been known for a decade. The 
development of photocatalytic sponges for energy production 
and environmental clean-up is summarized in the article. 
Different preparation routes adopted for the preparation of 
photocatalytic sponges are outlined in detail. Among them, 
dip-coating, freeze-drying, and template-assisted preparation 
routes are widely explored for different applications. The 
efficacy of the photocatalytic sponges was assessed through 
photocatalytic performance in organic pollutant removal, 
disinfection, hydrogen production, and carbon dioxide 
reduction into chemicals or fuels. The higher surface area, 
porosity, three-dimensional well-interconnected structures, 
ease of recovery, and reusability make them suitable for 
photocatalytic technology. Finally, the perspectives of the 
three-dimensional photocatalytic sponges are elucidated.
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