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Abstract
Issues of climate change, energy demand, and natural resources depletion are calling for circular methods to produce value-
added products such as biomass, biofuel, biofertilizers, and nutraceuticals from waste. For instance, culturing photoauto-
trophic microalgae in wastewater and urine appears promising to recycle nutrients from waste. Here we review microalgal 
production with focus on wastewater treatment and urine utilization. We present photobioreactors, parameters influencing 
algal growth, economical aspects, and limitations from consumer acceptance.
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Introduction

Microalgae have been cultured to produce organic matter 
for an extensive range of applications, involving human and 
animal nutrition, as biofertilizers in the agriculture sector, 

in cosmetics, and the health departments. Microalgae have 
great potential for the manufacturing of many high-value 
bioactive composites, including intracellular and extracel-
lular, like lipids, amino acids, polysaccharides, phenols, anti-
oxidants, vitamins, minerals, and pigments that can assist 
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to compensate the cost of biofuel production in bio refinery 
setup (Mastropetros et al. 2022; Koutra et al. 2022). These 
organisms can grow well in wastewater and can be used to 
remove metal ions from the wastewater by combining them 
with biomass (Zagklis et al. 2021). In this context aquacul-
ture, municipal and industrial wastewater are recommended 
as good nutrient sources for microalgal growth (Sakarika 
et al. 2022).

Scientists are trying to find new sustainable energy 
sources and hence pushing boundaries to research urine. It 
was reported that human urine is a good source of agricul-
ture nutrients which can produce nitrogen (N), phosphorus 
(P), and potassium (K) as natural fertilizers (Sharma et al. 
2021). Urine has also been reported as a good fertilizer that 
improves crop production and subsequently minimizes waste 
production (Ranasinghe et al. 2016). In addition, urine com-
prises less than 1% of the whole volume of domestic waste-
water containing 80% of the N and 40–50% of the P, making 
it a promising source for the recovery of nutrients. Urine can 
be applied to agricultural areas in its original form for ferti-
lization. But many legal issues are arising with this method, 
such as surplus to the ecosystem and vaporization of nitro-
gen contingent on climate situations. Additionally, high 
volumes of liquid are required for the storage and transpor-
tation of urine, where the continuous application becomes 
an overdose and adversely increases the salinity of the soil. 
A substitute method can be the assimilation of fertilizing 
nutrients into phototrophic organisms, microalgae, which 
are much more competent at captivating these composites.

Microalgae biomass developed on different types of 
wastewater can be used as a slow-release fertilizer, because 
of its primary configuration being alike to that of plants, 
though practical experiments are still limited. Instead, the 
economic viability of this method is high because rich-value 
composites like pigments could be taken out from algal bio-
mass (Cai et al. 2013). However, these days research work 
is carried out for nutrient recovery through the growth of 
microalgae in urine (Chang et al. 2013; Jaatinen et al. 2016). 
Presently, domestic wastewater is considered as a reserve 
than waste like a nutrient reserve for the fertilization of 
plants, involving N and P. Large portion of the fertilizing 
nutrients in domestic wastewater are obtained from human 
urine, though it comprises only less than one percent of the 
total stream flow. These nutrients include 90% of K, 80% 
of N, and 50% of P as well as organic composites involv-
ing creatine, creatinine, and uric acid, as main components 
(Martin et al. 2022). Additionally, other than great concen-
trations of K, N, and P, many other trace elements are found 
in urine composition. Urine also comprises additional ions 
like  Cu2+,  Na+,  Mg2+, and  Cl− that are essential for plant 
growth (Viskari et al. 2018).

Cultivation of different types of microalgae was observed 
in previous studies by using existent and artificial human 

urine. These types are known as Chlorella sorokiniana 
(Tuantet et al. 2014a, 2014b), Cyanobacterium Spirulina 
platensis and Scenedesmus acuminatus. Some species of 
microalgae grow well in diluted human urine including Chlo-
rella sorokiniana. It grew well in a continuous bioreactor 
with a dilution ratio of 1:2–1:3 of human urine to get a high 
biomass production of 9.3 g  L−1  d−1 (Tuantet et al. 2014b). 
There is also another recent study that shows that source-
separated urine can be utilized to improve the growth of 
microalgae photoautotrophic microorganisms that recovered 
nutrients by using carbon dioxide utilizing an inorganic car-
bon source and light by means of an energy source (Tao et al. 
2022; Tuantet 2015). Microalgae cultivation needs nitrogen 
and phosphorus (N, P) nutrients, which are mainly present in 
urine with other several minor elements including (e.g., Zn, 
Cu, Fe, Mo, Co, and Mn) that are essential for the growth 
of microalgae. It was also observed that 97% of ammonium 
nitrogen, 96.5% of the total phosphorus and 85–98% of urea 
in diluted urine can be removed by the cultivation of micro-
algae, and this is a good strategy for waste management by 
using potential existing sources of urine (Behera et al. 2020).

Therefore, human urine appears as a promising medium 
for the growth of microalgae. This review evaluates algae 
growing in urine from a different perspective which includes 
different types of wastewater, their constituent and their 
treatment methods for the cultivation of microalgae. It also 
focused on different types of photobioreactors which are used 
for the combined action of wastewater treatment and cultiva-
tion of microalgae which will be helpful for future research 
related to the utilization of urine in algae production.

Wastewater treatment

Types of wastewaters

Wastewater that originates from home activities known as 
municipal sewage wastewater includes water excretions 
from public toilets, schools, hospitals, restaurants and hotels, 
which usually comprises urine and feces (Ahmed et al. 2021; 
Rose et al. 2015). Conservative methods of municipal sewage 
wastewater treatment systems contain different stages (Gan-
diglio et al. 2017). Firstly, they take in the sedimentation of 
solid ingredients known as the primary treatment stage. Sec-
ondly, the removal of suspended and liquefied organic ingre-
dients occurs known as the secondary treatment stage. The 
final stage of the treatment of water, the removal of numerous 
liquefied inorganic composites involving nitrogen and phos-
phorus takes place. It is called the tertiary treatment stage 
(Naidoo et al. 2014) after which water is released into the 
surrounding environment. If these procedures are not done 
properly, they can contaminate shallow and groundwater sup-
plies (Bustillo-Lecompte and Mehrvar 2017).
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Wastewater that originates from different types of farm 
activities involving processes of animal nourishing and the 
handling of agricultural harvests is agricultural wastewater 
(Odoemena et al. 2020). Another wastewater type is indus-
trial wastewater that originates from the processing of com-
mercial goods such as beverages, food, clothes, paper and 
chemical produce that we consume. This industrial waste-
water contains oils-grease, suspended solids, bacteria, pH, 
heavy metals and other chemical compounds. Heavy metal 
contaminants include chromium, cadmium, zinc, and other 
carbon-based chemical toxins include biocides, hydrocar-
bons, and surfactants (Kumar et al. 2021). Table 1 shows 
the types of wastewater and their effects on algae growth.

Substances in different types of wastewater 
and their purification

Wastewater contaminants range from steroids, antibiotics, 
pesticides, hydrocarbons, heavy metals, and their deriva-
tives which eventually cause considerable environmental 
damage (Ahmad et al. 2020; Bhatt et al. 2021; Mishra et al. 
2021). Conventional wastewater treatment methods are not 
entirely suitable for eradicating contaminants due to high 
energy consumption, high cost, large area demand, and 
still less ability to remove contaminants (Crini and Licht-
fouse 2019; Craggs et al. 2012). Therefore, scientists are 
trying to find out more easy-to-maintain, cost-effective and 
eco-friendly technologies to eradicate contaminants from 
wastewater (Saravanan et al. 2021). Numerous methodolo-
gies have been established to minimalize wastewater releases 
and lessen the threats of pollutants, including physical meth-
ods (adsorption, coagulation/flocculation, and membrane 
filtration, chemical methods (oxidation, ozonation), and 
biological methods (enzymes, microorganisms) (Xu et al. 
2018). Wastewater treatment methods are considered to have 
purification requirements and effluents’ characterization, 
overlooking their influence on the environment and general 
treatment performance (Khan et al. 2020).

Adsorption is reflected as one of the utmost effective 
methods among all the above-mentioned methods, for the 
treatment of wastewater because of many features, which are 
not so effective in other related methods (Slatni et al. 2020). 
Researchers have just dedicated their struggles to exploring 
the adsorbents with outsized surface areas, less cost, and 
friendliness to the surrounding environment. They found 
their way for effective adsorbents y using nanosized con-
stituents, which have been noticed as an important material 
for confiscating dyes, organic compounds, and heavy met-
als from wastewater (Nassar et al. 2017). Biological treat-
ment methods can be used to remove contaminants, which 
bacteria, fungi, and algae are commonly used (Rodriguez-
Rangel et al. 2022). In this way, wastewater can be treated 
employing microbes through two types of methods, known 

as bioaccumulation, secondly biosorption, and biodegrada-
tion (Bilal et al. 2021; Bai and Acharya 2017; Kalra et al. 
2021).

Microalgae has a significant role in the immobilized 
wastewater treatment system. However, some factors which 
can affect the immobilized microalgal wastewater treat-
ment system and removal of nutrients, are mainly linked 
to environmental, biological and operational factors (Nie 
et al. 2020). The main structure of the microalgae immo-
bilized system involves the accepted immobilization tech-
nique, matrix material, and essential microalgal species. For 
instance, alginates-based immobilized technique involves 
proportions of microalgae beads and the concentration of 
target contaminants (Emparan et al. 2021), bead size (Lee 
et al. 2020), volumetric fractions of diverse matrixes (Abu 
Sepian et al. 2019; Rushan et al. 2019), selection of alginate 
(Kube et al. 2019; Zamani et al. 2012), and microalgal strain 
(Kube et al. 2021). The bed reactor is another biological 
method used for the treatment of wastewater. There is lim-
ited research on the combined procedure of immobilized 
microalgae and bed-based reactors. There are three major 
types of bed reactors, which include fluidized bed reactors 
(Cheirsilp et al. 2017; Zheng and Ke 2017), moving bed 
reactors (Akizuki et al. 2021), and fixed-bed reactors (Babat-
souli et al. 2015; Garbowski et al. 2020).

Over the previous few eras, the importance of the treat-
ment of wastewater has been increased for evaluating the 
environmental efficiency of conventional wastewater treat-
ment found on the activated slurry procedure (Li et  al. 
2022a; Soares 2020). There are various issues related to 
the wastewater treatment process including emission, con-
sumption of energy, and financial gain (Dong et al. 2017). 
The presence of various organics and beneficial nutrients 
in wastewater promotes the growth of microalgae (Yadav 
et al. 2021). Consequently, microalgae have successfully 
aided in the recycling of carbon in the environment (Wang 
et al. 2016). Thus, neutralizing carbon in the ecosystem 
effectively yields 1 kWh/kg of biochemical oxygen demand 
(Sukla et al. 2019; Al-Jabri et al. 2020) which is essential for 
biological processes. Wastewater treatment methods through 
microalgae consume less power as compared to conventional 
methods (Khaldi et al. 2017). Apart from all these benefits, 
harvesting of microalgae is a critical factor, as normally 
microalgae cultivate at comparatively low cell density (Tan 
et al. 2020).

The main purpose of wastewater treatment is the 
removal of highly concentrated nutrients, particularly 
nitrogen and phosphorus, or else these nutrients can cause 
eutrophication by accumulating in lakes and rivers (Tang 
et al. 2018). Phosphorus is problematic to eradicate from 
wastewater; however, this challenge has been mitigated by 
the help of microbial action that helps extract and trans-
form phosphorus into an insoluble solid element during 
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wastewater treatment. For example, metal salts including 
iron (Fe) and aluminum (Al) for the congealing process 
consequently produce Fe–P or Al–P complexes (Kajjumba 
et al. 2021; Korving et al. 2019). Microalgae are effec-
tive in eradicating nitrogen, phosphorus, pesticides, toxic 
compounds, and heavy metals from wastewater through 
intracellular and extracellular mechanisms of their cell 
membrane and thus have the possibility to play a signifi-
cant role in remediation mainly in the final treatment of 
wastewater (Zhao et al. 2019; Hussein et al. 2018).

Algae can cultivate in numerous aquatic environments, 
like fresh and oceanic water, municipal sewage wastewater 
(Zhou et al. 2012a), agricultural wastewater (Zhou et al. 
2012b, 2012d; Hu et al. 2013, 2012) and industrial waste-
waters (Ali et al. 2021). Wastewaters are distinctive in 
their chemical and physical characteristics depending on 
whether they come from fresh or oceanic waters. Mod-
ern research showed that those algal biomasses which are 
produced from wastewater have the excessive potential for 
the production of biofuel and further applications (Wang 
et al. 2020). More research has been done on the growth 
of microalgae in municipal sewage wastewater and agri-
cultural wastewater because they are most accessible and 
are less unstable as compared to other types of wastewater 
including industrial wastewater (Zhou et al. 2012c, 2012d). 
Scientists examined the growth of Chlorella species on 

these four diverse types of wastewater to check their capa-
bilities to remove and utilize nitrogen, phosphorus and 
chemical oxygen demand, and other minor elements and 
determined that the growth of algae and efficacy of nutri-
ent removal were relational to the concentration of nutrient 
of municipal sewage wastewaters (Nirmalakhandan et al. 
2019).

Agricultural wastewater, which is often derived from 
manure, contains high amounts of nutrients like nitrogen 
and phosphorus in comparison to municipal sewage waste-
water. It was observed from studies that microalgae grow-
ing on agricultural waste are efficient at removing nitrogen 
and phosphorus from animal manure-based wastewater. 
For instance, the green alga (Botryococcus braunii) is well 
developed in piggery wastewater comprising 788 mg  L−1 
 NO3, and 80%  NO3 was removed at the initial growth stage. 
Scientists developed a cheap media by using deep seawater 
and agitated swine urine and cow dung water for increasing 
production of algal biomass, signifying the high possibility 
of the rich nutrient animal compost wastewater stimulat-
ing fast algae growth (Pittman et al. 2011). There are some 
studies on retrieval of nutrients by algae growth on animal 
manure wastewater which evaluated the probability of ben-
thic freshwater algae despite planktonic algae because ben-
thic freshwater algae have more ability of nutrients recovery 
as compared to planktonic species of algae (Pittman et al. 

Table 2  Literature on algae production in urine and wastewater

Types of Algae Method of cultivation Source of cultivation Reference

Spirulina platensis Bubble column photobioreactor Human urine Chang et al. (2013)
Chlorella sorokiniana Short light-path photobioreactor Human urine Tuantet et al. (2014b)
Chlorella
sorokiniana Batch cultures Semi-continuous cultures 

6-L sequencing-batch microalgae 
cultivation

Concentrated unfiltered fresh urine, 
filtered fresh urine as

N and P sources, non-pre-
treated, non-filtered fresh 
urine in the photobioreactor

Zhang et al. (2014)

algae production Mixed algal bacterial bioreactor Liquid portion of animal manure Shin and Schideman (2015)
Chlorella vulgaris Batch cultivations Diluted human urine Jaatinen et al. (2016)
Tetradesmus dimorphus Open photobioreactor Urban wastewater Gentili and Fick (2017)
Chlorella singularis, Mic-

ractinium pusillum, and 
Chlorella sorokiniana

Culturing incubation Human urine, Poultry waste, Cow dung, 
and urine

Kumar et al. (2018)

Desmodesmus abundans Immobilized cultivation Diluted human urine Piltz and Melkonian (2018)
Chlorella sorokiniana Bench-scale panel
photobioreactors Both synthetic urine and real human 

urine
Tuantet et al. (2019)

Chlorella vulgaris Light-receiving-plate
(LRP)-enhanced raceway pond Fresh pig urine Zou et al. (2020)
Chlorella vulgaris Lab-scale membrane photobioreactor Fresh male urine Nguyen et al. (2021)
Chlorella emersonii Erlenmeyer flasks and bubble column 

reactors. Photoautotrophic biofilm
Municipal wastewater, Brewery waste-

water, Dairy wastewater
Schagerl et al. (2022)
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2011). Table 2 shows types of wastewater and their effects 
on algae growth.

Treatment of wastewater by using algal strains is eco-
nomically effective and also completes the rigorous release 
and reusing principles (Whitton et al. 2015). Additionally, 
algal biomass can also be transformed into many valued 
products like biofuels, biogas, bio-fertilizers, and antibac-
terial and antiviral mediators, with the consequent treatment 
of wastewater (Raheem et al. 2015). In recent decades, the 
cultivation of microalgae has been studied on various types 
of wastewater (Fig. 1) for the removal of contaminants fol-
lowing nutrient recovery with biomass production (Renuka 
et al. 2015). The accomplishment of those studies mainly 
depends on the enactment of the particular strains of micro-
algae. Many species of microalgae including Chlorella sp., 
(Gouveia et al. 2016) Micractinium sp., (Santiago et al. 
2013), Scenedesmus sp., (Wang et al. 2019a, 2019b) Heyni-
gia sp., Actinastrum sp., Hindakia sp., Chlamydomonas sp., 
(Ghayal and Pandya 2013), Pediastrum sp., Botryococcus 
sp., Dictyosphaerium sp., and Coelastrum sp. and Spirulina 
sp., (Emparan et al. 2019) have been confirmed and were 
ascertained to be capable to use and remove nitrogen, phos-
phorus and other minor elements from the wastewater.

Application of microalgae for the treatment of wastewater 
can be done either by using conventional oxidation ponds 
or the advanced suspended algal pond schemes including 
high-rate algal ponds (Arashrio et al. 2018; Rao et al. 2019), 
which are known as shallow raceway-type oxidation ponds 
with automatic mixing, and these are considered as most 
efficient for the treatment of wastewater. Previous studies 

show that microalgae can be cultivated in different systems 
including ponds and bioreactors (Fig. 2). These bioreactors 
involve both open and closed systems (Liyanaarachchi et al. 
2021; Rezvani et al. 2022). For treating great amounts of 
wastewater produced from municipal sewage, agriculture, 
and industry, bioreactors should be certainly clambered up 
and activated for effective removal of nutrients. For this 
purpose, a raceway pond with paddle-wheel agitation and a 
multi-layer bioreactor can be used which were assumed as 
the most reasonable and cheap culture systems for wastewa-
ter treatment (Hu et al. 2013). Some large-scale assembly of 
algal biofuels was produced from wastewater by using high-
rate narrow, open raceway algal ponds, which were used for 
the treatment of municipal sewage wastewater. For instance, 
a 2000-L and 40.000-L pilot-scale multi-layer bioreactors 
were developed successfully for the cultivation of microal-
gae in wastewater of animal manure and centrate for efficient 
production of algal biomass by removing nutrients from 
wastewater (Min et al. 2014). In recent times, an innova-
tive system for the cultivation of microalgae was developed 
known as “OMEGA” system (offshore membrane enclosures 
for growing algae). In this system, microalgae were grown in 
floating photobioreactors positioned in a safe coastal marine 
environment where outlets of municipal wastewater would 
also occur (Wiley et al. 2013; Peter et al. 2022).

Fig. 1  Valorization of waste-
water specifically in source-
separated urine as potential 
growth media for the cultivation 
of microalgae
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Urine as wastewater

Composition of urine

Human urine is a liquid solution comprising urea, nitrogen, 
potassium, phosphorus and sodium chloride as main ele-
ments while calcium, magnesium, phosphate, and sulfate 
as minor elements. Some other trace elements also exist 
in urine including glucose, amino acid, vitamins and hor-
mones. In general, source-separated urine involves the diver-
sion or collection of urine from its point of production for 
treatment processes that helps in the maximum recovery of 
nutrients such as nitrogen and phosphorus (Jimenez et al. 
2015). There were some methods devised for the recovery 
of nutrients from source-separated urine. Now, a new bio- 
electrochemical method is used for the production of energy 
joints with the recovery of nitrogen from urine found on 
microbial energy cells (Kuntke et al. 2012). More maintain-
able growth of microalgae can be attained if the nutrients are 
from reprocessed sources or wastewater supplies (Ahmad 
et al. 2014; Rawat et al. 2013).

Scientists successfully grew Spirulina platensis with 
already treated urine, and Spirulina platensis can also be 
grown in nitrified human urine which has a key composi-
tion close to the Zarrouk medium, which is an improved 
medium for culturing. Many studies proved that the growth 
of Spirulina platensis has the potential for the production 
of aquatic food. The benefit of cultivating microalgae on 
urine is that they clean urine by eliminating phosphorus and 
nitrogen from it and also harvest high production of biomass 
which can be used as biofuel (Chang et al. 2013). A large 
amount of nitrogen consists of urea [CO(NH2)2] in fresh 
urine, which will be converted into ammonia by hydrolyza-
tion during storage, in the presence of microbes (Zhang et al. 
2013; Kim et al. 2014). Based on this process, the microbial 

fuel cell has the benefit of handling ammonia  (NH3) in urine 
besides generating electricity.

The transduction of urine to operational energy for charg-
ing smartphones and remote systems by using an integrated 
microbial fuel cell was done by (Walter et al. 2017). The 
microbial fuel cell generates electrical power through the 
transformation of chemical energy (Sahu 2019). This infers 
that sources like wastewater, urine, or any other organic mat-
ter could be used as fuels for the generation of electricity 
by a microbial fuel cell (Ha et al. 2012; Rengasamy and 
Berchmans 2012; Samsudeen et al. 2015). The notion of the 
microbial fuel cell was first recognized in 1911 by Potter, but 
only recent data are published which contains pile configura-
tion (Ledezma et al. 2013), optimization of the constituent, 
and reactor design (Winfield et al. 2015; Gajda et al. 2015; 
Ieropoulos et al. 2013).

Cow urine also has been applied to produce electricity 
by means of a clayware microbial fuel cell, which was cost-
effective and an easy procedure (Jadhav et al. 2016). This 
conversion causes an increase in pH from approximately 6 to 
9 followed by bicarbonate ions and ammonia  (NH3) (Larsen 
et al. 2021). This increase in pH activates the precipitation 
of magnesium and calcium in the form of phosphate and 
carbonate composites, which can be easily identified in 
stored urine with a decreased level of magnesium and cal-
cium. Diverse sources of nitrogen like ammonium, urea, and 
nitrate have been considered for the growth of many diverse 
types of microalgae (Chang et al. 2013; Hulatt et al. 2012). 
It was observed that the growth of Chlorella vulgaris in a 
medium that contains nitrogen supply in the form of urea 
had a somewhat maximum level of biomass growth and har-
vest as compared to nitrate, whereas no growth happened in 
the presence of ammonium (Hulatt et al. 2012).

Fig. 2  Microalgae cultivation 
in different types of algal ponds 
and bioreactors by treating 
great amounts of wastewater 
produced from municipal sew-
age, agriculture, and industry, 
for efficient production of 
algal blooms and recovery of 
nutrients
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Annual production quantities of urine 

Typically, one person produces 1.4 L of urine per day (DWA 
2016). Normally each individual gives about 2.5–4.3 kg 
of nitrogen, 0.9–1.0 kg of potassium and 0.7–1.0 kg of 
phosphorus each year through urine excretion. Addition-
ally, some substances which improve growth also exist in 
human urine including glucose, amino acids, and vitamins. 
Though human urine encompasses less than 1% of the entire 
municipal wastewater by capacity, it gives considerably 69% 
of nitrogen, 40% of phosphorus, and 60% of potassium in 
wastewater and, consequently, can be a reason for pollution 
(Chatterjee et al. 2019).

Urine disposal as source material and input 
in processes

Fresh urine can be toxic due to the presence of ammonia; 
therefore, stored urine is supposed to be fine for activities of 
aquaculture involving algae production because of the pri-
mary degradation of microbes, which is followed by detoxi-
fication of ammonia, deactivation of the pathogen, and sta-
bility of nutrients for its usage as nontoxic fertilizer. Human 
urine has great nutrients and is easily available from urine-
averted desiccated eco-toilets. Human urine is considered to 
be one of the best fertilizers for the growth of phytoplankton 
in aquatic systems, which are known as important natural 
food for fish in pond ecologies. In recent periods, wastewater 
produced from human actions has instigated many harmful 
effects on surface water reservoirs.

Human urine is one of the contaminants, which is a waste 
produced by the human body in liquid form, which comes 
through the digestion of endogenic wastes (food and drinks) 
and purification of blood and then released by kidneys (Patel 
et al. 2020). Due to pollution problems, it needs to be con-
sidered that an ideal decentralized waste treatment system 
should be applied for evolving countries where the urine 
would be properly collected and treated for nutrient recovery 
purposes (Igos et al. 2017). For example, wastewater-alien-
ated urine has been used as fluid fertilizer for plants and soil. 
Environmental hygiene toilets are urine departure desiccat-
ing toilets constructed on the notion that urine, feces, and 
water are parts of the environmental loop supplies. Human 
urine is confined to various types of contaminants with high 
absorption quantities of nitrogen (76 to 86%), phosphorus 
(46 to 50%), and potassium (51 to 55%). Human feces also 
contain 10% nitrogen, 12% potassium, and 40% phosphorus. 
Consumers use 80% of these sources in their fields as ferti-
lizer. Nutrients from urine are recuperated by cost-effective 
techniques including urine-diverting desiccation toilets, then 
precipitation of struvite then nitrification, and then distilla-
tion, generating valued fertilizer for native societies (Udert 
et al. 2015; Krahenbühl et al. 2016; Tilley 2016). These 

techniques of urine separation are possible, specifically for 
rural areas and small towns (Xu et al. 2019).

The capabilities of human urine nutrients should not be 
ignored and undervalued. It is important to consider the use 
of urine for the growth of microalgae since in many countries 
fish farming is a common means of income for livelihood 
where culturing and production of fish are costly because of 
the implementation of conventional chemicals and fertiliz-
ers in aquaculture. On the other hand, the implementation 
of human urine in place of fertilizer would decrease the cost 
of production by using standard protocols. One experimental 
study was performed to compare the results of the primary 
production of phytoplankton in trial tanks nourished with 
fresh human urine, stored human urine, and mixed human 
urine. It was concluded that the prime production of phy-
toplankton developed in these trial tanks was impacted by 
the nutrient condition of the tank, specifically the nitrogen 
and phosphate added to the tanks that were recovered from 
human urine (Jana et al. 2012). Modifications in the pro-
duction of phytoplankton were strongly reliant on the con-
centration of phosphate in each treatment. The production 
of phytoplankton occurred due to the increased concentra-
tion of phosphate to nitrogen. This shows that the higher 
concentration of phosphate in the stored human urine was 
the reason for the maximum values of prime production of 
phytoplankton in that trial tank (Jana et al. 2012).

Human urine comprised some soluble liquefied com-
posites or drug elements with inhibitory effects (Fig. 3), 
which can be omitted from the fluid by stimulated carbon 
treatment. These pharmaceutical drugs commonly include 
non-steroidal anti-inflammatory drugs (NSAIDs) such as 
diclofenac and ibuprofen. Non-steroidal anti-inflammatory 
drugs (NSAIDs) have been tested for their influence on cul-
tures of eukaryotic algae in the axenic laboratory (Bacsi 
et al. 2016). A stimulated carbon treatment system has been 
suggested as a feasible choice for decreasing the threat of 

Fig. 3  Pharmaceutical compounds found in human urine can inhibit 
the growth of algae 
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the augmentation of pharmaceuticals such as antibiotics, 
non-steroidal anti-inflammatory drugs, and beta blockers 
in a decentralized system of sanitation and recycling sys-
tems (Udert et al. 2015). Some previous studies show that 
60–100% of pharmaceutical drugs like ibuprofen, diclofenac, 
and paracetamol possibly are removed in an algae photobio-
reactor, through photolysis and biodegradation (de Wilt et al. 
2016). High pH levels and free concentration of ammonia in 
urine could be the reason to constrain the growth of micro-
algae (Zhang et al. 2014; Chang et al. 2013). At least 100% 
dilution of urine should be essential for the stable growth of 
algae (Tuantet et al. 2014a).

The source separation of urine from gray water, brown 
water, and stormwater might open up several chances for 
the reclamation of energy, nutrients, and water from waste 
(Larsen et al. 2016). Even with its small volume compared 
to the wastewater, human urine normally gives more than 
two-thirds of the nitrogen and half the potassium and phos-
phorous present in sewage waste (Udert and Wachter 2012; 
Chrispim et al. 2017; Ishii and Boyer 2015). Even with its 
rich concentration of nutrients, urine cannot be used directly 
in the field as an ideal fertilizer because of its non-ideal ratio 
of phosphorus, nitrogen, and potassium, and its high content 
of ammonia and organic acids. However, if the conversion 
of these nutrients into valuable products is done in the right 
way, the possible ecological and economic benefits would 
be huge (Ishii and Boyer 2015; Tarpeh et al. 2017; Mehta 
et al. 2015).

Utilization of urine by microalgae

Microalgae growth in urine

To prevent eutrophication of surface waters and subsequent 
blooms of algae or cyanobacteria, nutrients must be removed 
from wastewater. The same microbes could thus provide a 
method for nutrient removal in contained treatment systems 
(Tuantet et al. 2019). Human urine contributes approxi-
mately 80% of nitrogen, 50% of phosphorous, and 90% of 
potassium to urban wastewaters despite having a volume 
of only 1–1.5 L/d per capita compared to 150–200 L/d of 
wastewater generated per capita (Chatterjee et al. 2019). 
Due to the high content of nutrients, urine can be used as a 
great source for microalgal cultivation rather than commer-
cial fertilizer. Urine has the potential to provide nutrients 
for the growth of microalgal biomass, which can then be 
used as fertilizer and soil conditioner (Tuantet et al. 2019). 
Microalgae are the most promising biofuel feedstock due to 
their rapid growth rate, high lipid content, comparatively low 
land usage, and high carbon dioxide  (CO2) absorption and 
uptake rate (Chang et al. 2013). Hence, microalgae-based 

biomass production can help solve the energy crisis and pre-
vent eutrophication by growing microalgae in urine.

Various microalgae species like Chlorella sp., Scened-
esmus sp., Spirulina Sp. Chlamydomonas sp. Phormidium 
sp., Synechocystis sp., Synechococcus sp. etc. have been 
grown in urine. (Piltz 2018; Abdelaziz et al. 2013). For 
instance, Chang et al. (2013) cultivated Spirulina platen-
sis (Arthrospira platensis) a cyanobacteria, using synthetic 
and human urine in a bubble column photobioreactor under 
autotrophic conditions for ten (10) days. Biomass production 
was further increased with the addition of sodium acetate as 
algae could effectively remove and utilize nitrogen and phos-
phorus. Chlorella species like C. vulgaris, C. sorokiniana, 
and C. singularis are widely used in cultivation by using 
urine as a culture media. Jaatinen et al. (2016) cultured C. 
vulgaris using diluted urine and artificial media and com-
pared their biomass yields. The results showed that diluted 
urine (1:100) produced the highest biomass yield, while 
diluted urine (1:300) was sufficient for biomass production 
in the pH range of 5 to 9. Ammonia production did not show 
an inhibitory effect on biomass yield.

C. vulgaris has also been studied by Nguyen et al. (2021) 
and Volpin et al. (2019). Nguyen and his team studied nutri-
ent recovery and microalgae biomass production rate using a 
membrane photobioreactor. Using real urine as a draw solu-
tion, algae concentration was increased fourfold in Volpin 
study. C. sorokiniana is also one of the most cultivated 
microalgae using urine as compared to other studies. Zhang 
et al. (2014) cultivated C. sorokiniana with a daily supply of 
fresh urine; it was found that a high amount of biomass pro-
duction along with nutrient recovery was achieved. Tuantet 
et al. (2014a, b) and Tuantet et al. (2019) optimized algae 
production and studied biomass production and nutrient 
removal capacity of C. sorokiniana using a photobioreactor. 
They demonstrated that increased volumetric biomass pro-
duction and nutrient removal could be achieved by enriching 
the urine with magnesium, adjusting the nitrogen and phos-
phorus molar ratio, and shortening the reactor light path.

Other than that, Piltz et al. (2018) compared the growth 
of Chlorella sp, Chlamydomonas sp, Sphaerocystis sp, Chla-
mydomonas sp, Scenedesmus sp, Synechococcus sp, and 
Phormidium sp in urine using a Twin-Layer PSBR. They 
found that diluted urine provided better growth results than 
undiluted urine. A comparative study in terms of growth and 
biomass production was studied between Secendesmus sp, 
C. vulgaris, and Chlorococcum humicola in diluted urine 
in the range of 1:50 to 1:200 (Torres et al. 2014). Table 3 
summarizes the relevant studies about the usage of urine as 
a medium to grow and the associated outcome.
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Nutrient recovery by microalgae

Nutrient recovery is a long-term solution for wastewater 
treatment and the process recovers nutrients that should 
not be in waterways. These nutrients are then converted 
into high-quality fertilizers (Nutrient recovery from waste-
water, 2022). For concentrated waste streams, nutrient 
recovery may be economically feasible (Fig. 4). Source-
separated urine is an ideal target stream in this context 
because it contains most nutrients found in urban waste-
water (Coppens et al. 2016). Nitrogen (N) is used in about 
100 million metric tons of fertilizer each year. Phosphorus 
(P) reserves exist in the earth's crust, with annual use of 
more than 14 million metric tons in fertilizers, accounting 
for roughly 80% of total P production (Zhang et al. 2014). 
Although urine production volume is only 1–1.5 L per 
person per day, and total wastewater discharge can be up to 
150–250 L/d, approximately 80% of N, 50% of P, and 90% 
of potassium (K) in domestic wastewater are originated 
from human urine that made up just 1% of the total waste-
water. Human urine contains trace elements such as B, Cu, 
Zn, Mo, Fe, Co, and Mn in addition to high levels of N, 
P, and K (Chatterjee et al. 2019). Recycling of nutrients 
leads to wastewater treatment management. Also recycling 
carbon (C), N, and P from wastewater and excreta for algae 
growth is cost-effective (Miranda et al. 2015). Not only 
does microalgae cultivation promote nutrient recovery 
from wastewater, but it also promotes biomass produc-
tion for value-added products such as biodiesel, bioetha-
nol, bio-fertilizers, bioplastics, pharmaceuticals, and feed 
supplements. If microalgae can be grown in urine, it may 
be possible to extract nutrients from the urine (Luo et al. 
2017; Li et al. 2019).

Various innovative techniques, such as struvite precipi-
tation, ion exchange, and ammonia stripping, using urine 
diversion and treatment systems, have demonstrated the 
possibility of recycling, and saving water by using under-
lying nutrients as a source of energy (Chatterjee et al. 
2019; Posadas et al. 2017).

Biomass retention times have a significant effect on 
nutrient remediation and biomass productivity. C vul-
garis shows biomass retention time-dependent nutrient 
recovery and biomass retention with the MBPR system 
(Nguyen et  al.  2021). Urine concentration, source of 
urine and urine culture temperature also have profound 
effects on biomass and lipid production along with nutrient 
recovery. Diluted human urine has better lipid accumula-
tion in comparison with various artificial media (Behera 
et al. 2020). S. platensis  shows great nutrient removal 
capacity with human urine compared to artificial urine 
media (Chang et al. 2013). Nutrient recovery and bio-
mass production increase with a reduction in the dilution 
of human urine. For example, C. sorokiniana biomass Ta
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Fig. 4  Nutrient recovery and 
biomass production from 
source-separated urine using a 
digester and bioreactor in the 
presence of a light source like 
sunlight

Table 4  Nutrient recovery and biomass production rate of various microalgae

Microalgae species Methods/ Bioreactor Recovered Nutrient Biomass/ Lipid Production References

C. sorokiniana Photoautotrophic cultivation Nitrogen 93% (35.15 mg/L) 
and Phosphorus 97.5% 
(5.38 mg/L)

The lipid content of the 
biomass was 36.8%

Zhang et al. (2014)

C.vulgaris Membrane photobioreactor Total nitrogen 77.3% 
(70 mg/L) and total phos-
phorus 53.2% (2.5 mg/L)

Total biomass 2140 mg/L Nguyen et al. (2021)

Native algal consortium Erlenmeyer flasks method – Total biomass 2520 mg/L 
and total lipid content 
26.27%

Behera et al. (2020)

S. platensis Bubble column photobiore-
actor

Total  NH4
+- N utilized 

85–98% and total phospho-
rus 96.5%

Total biomass 0.81 g/L and 
total lipid 19.8% and total 
protein 35.4%

Chang et al. (2013)

S. acuminatus Fluorescence illumination Total nitrogen removal 52% 
(55 kg/d), total phosphorus 
38% (2.3 kg/d),  NH4

+- N 
67% and total volatile solid 
0.74 g/L

Methane 275 L/kg VS Chatterjee et al. (2019)

A. platensis Submerged membrane bio-
reactors

Total nitrogen recovery 10% 
and total phosphorus 9.1% 
of the dry weight of A. 
platensis

Biomass protein content 
62.4%

Coppens et al. (2016)

C. vulgaris Batch Bottle – Biomass production 0.60 g/L Jaatinen et al. (2016)
C. sorokiniana Erlenmeyer flask method Total nitrogen removal was 

63.2% and total phosphorus 
was 55.8%

– Mbir et al. (2017)

S. obtusiusculus Erlenmeyer flask method Total nitrogen removal 45.9% 
and total phosphorus 76.3%

– Mbir et al. (2017)

Desmodesmus abundans Porous substrate photobio-
reactors

Total nitrogen recovery was 
87.1% and total phosphorus 
was 87.5%

Biomass—36.19 ± 2.945 g/
m2

Piltz (2018)

C. sorokiniana Shake flask method Total nitrogen removal 70% 
(1125 mg/L) and total 
phosphorus removal 99% 
(99 mg/L)

Biomass – 6.3 g/L Tuantet et al. (2014a, b)
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production improved from 1 g/L to 8 g/L with a 5-time 
decrease in the dilution of human urine (Tuantet 
et al. 2014). A decrease in culture temperature leads to 
lower nutrient recovery in the case of S. acuminatus (Chat-
terjee et al.2019). Fresh urine as a daily nutrient stock is 
more effective compared to concentrated used urine for 
better nutrient recovery (Zhang et al. 2014).

Taken together, it can be concluded that microalgae 
growth in urine does help in nutrient removal along with 
biomass production, and the dilution of human urine along 
with light intensity can play a vital role (Tuantet et al. 2014a, 
b). Table 4 shows a compilation of studies using urine as 
a growth media for various microalgae and their nutrient 
recovery and biomass production outcome.

Impact of urine application on the environment 
and socioeconomic sector

Considering the high nutrient content of urine, the treat-
ment of source-separated urine appears to be very promis-
ing in terms of efficiently recovering nutrients in the form 

of fertilizers from the perspective of circular economy and 
energy limitations (Igos et al. 2017; Ishii 2015). P and N 
are essential nutrients in crop cultivation and the main com-
ponent in urine, and their use in food production is becom-
ing increasingly important as the world's population grows 
(Viskari et al. 2021). Despite the numerous advantages of 
urine separation and fertilizer efficiency demonstrated by 
research, several obstacles prevent or impede the use of 
urine nutrients as fertilizer. Photobioreactors are critical to 
producing microalgae, but they are expensive. Furthermore, 
urine-diverting toilets, separate pipelines, and maintenance 
are all required to collect urine as a source for microalgae 
cultivation. Building all this infrastructure will have a sig-
nificant socioeconomic impact on poor and developing coun-
tries. There is still a lack of efficiency in biomass and nutrient 
recovery at the industrial level, as well as regulatory poli-
cies (Pathy et al. 2021; Badeti et al. 2022). Environmental 
effects such as soil salinization and the spread of pathogens, 
as well as harmful substances such as heavy metals and phar-
maceuticals from urines, are also of great concern. Table 5 
summarizes the impact of the use of urine in various sectors 

Table 5  Summary of the impact of the use of urine in various sectors

Impact Sector Possible Impact References

Techno-economic 
and market 
factor

To use urine as media for microalgae growth and use for nutrient recovery installation of urine-
diverting toilets, separate pipelines and maintenance will be necessary

Simha et al. (2017); Zhou 
et al. (2018); Pathy et al. 
(2021); Badeti et al. 
(2022)

Above all, transportation and management necessitate additional resources means additional 
costs

To harvest microalgae algae reactors like photobioreactors are required those also come at a 
great price

Poor and developing countries where basic infrastructures are lacking will face great economic 
impact by upgrading the sanitization system and applying urine separation and using sepa-
rated urine for microalgae production for nutrient recovery and biomass production

The use of urine for biomass production and nutrient recovery is highly effective on the labora-
tory scale but as soon as it comes to scale up, efficiency drops significantly, and market value 
will go very high due to the lack of commercialization

Among all low regulatory policies and lack of coordination between the stakeholder will give 
more hard time in the market sector economically

Environmental The risk of spreading pathogens and harmful substances, such as heavy metals and pharmaceu-
ticals, into the environment is a concern with agricultural urine use

Viskari et al. (2021); 
Giannakis et al. (2018); 
Arias et al. (2019); 
Salehi et al. (2018)

The high salt content in urine like sulfate and chloride soil salinization poses a high risk
Urine contains a high concentration of biodegradable organic compounds, which causes urine 

to become contaminated with a variety of microorganisms such as bacteria and pathogens, 
leading to several infections when handled improperly

Bacterial presence in the urine causes spontaneous changes in urine such as ammonia volatili-
zation, microbial urea hydrolysis, and mineral precipitation

Due to the high use of pharmaceutical products, urine contains a high number of such product 
and those compounds undergo several drug metabolism pathways and leads to the production 
of formation of endocrine-disrupting chemicals (EDC) and compounds. EDC exposure may 
contribute to several acute and chronic diseases, including cancer, diabetes, infertility, and 
brain damage
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such as the environment, socioeconomic, and global markets 
(Giannakis et al. 2018).

Microalgae production

Design of photobioreactors

Photobioreactors (PBR) are closed systems made of glass, 
plastic, or other transparent materials in the form of plates, 
tubes, or bags. The high-power consumption and operating 
costs of artificial light have traditionally been major costs asso-
ciated with photobioreactors, but solar-lit photobioreactors do 
exist (Fig. 5). The light intensity is critical for the microalgae 
growth in the photobioreactor; hence, the optical properties of 
the materials used in photobioreactor construction are vital. 
Materials like glass, polyvinyl chloride, polyethylene, poly-
carbonate, plexiglass, fiberglass, etc. are commonly used for 
constructing photobioreactors (Johnson et al. 2018).

The integration of capturing, transportation, distribu-
tion, and utilization of light by microalgae via photosynthe-
sis determines the effectiveness of PBRs. In the 1940s, the 
first PBR systems were developed and designed (Johnson 
et al. 2018). PBR design can be effective if (a) the PBR 
utilizes the maximum light available and process it to the 

PBR cultivation vessel for maximum biomass production, 
(b) operative and pinpointed control over operational param-
eters, (c) mitigate capital and operational costs, as well as 
energy consumption during operation with maximum light 
energy used for biomass production (Wang et al. 2012; Fu 
et al. 2019).

When selecting a PBR design for a specific manufactur-
ing process, there are numerous factors to consider. Some 
PBR designs are more commonly used than others; thus, a 
design should be chosen on a case-by-case basis to optimize 
the efficiency of a microalgae biofuel production process. 
The following sections describe some of PBR designs.

Porous membrane photobioreactors

The porous membrane of the tubular PBRs can be either 
vertically or horizontally supported. The growth medium 
circulates within the dialysis membrane tube and seeps 
through pores to the membrane's outer surface (Ojanen et al. 
2015). A dialysis membrane tube is placed inside the PBR 
tube, and microalgae can be grown outside the membrane. 
A  CO2 source is used to supply aerated  CO2 gas to the cul-
ture, which, along with light, can aid biomass production. 
The significant interfacial area provided by the membrane 
is the biggest advantage of porous membrane PBRs, but 

Fig. 5  Photobioreactor mechanism for biomass production in the presence of light source and with the help of a pump module to pump media 
and gas mixture through the photobioreactor
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high-water vapor permeability could be a pitfall (Sarbatly 
et al. 2013).

Bubble column photobioreactors

Bubble column reactors are multiphase contactors that use 
the dispersion of a gas phase in the form of bubbles inside 
a cylindrical vessel containing a liquid or a suspension 
(Leonard et al.2015). Bubble column PBRs have a higher 
surface area-to-volume ratio than other types of photobio-
reactors, making them more efficient in microalgae produc-
tion with greater volumetric and areal productivity (Mubarak 
et al.2019). The bottom of the reactor is sparged with  CO2, 
causing bubbles to rise uniformly across the cross-sectional 
area and exit through the reactor top (Gerdes et al. 2014). 
Compressors and gas flow meters are combined with con-
trollers to control the speed and size of gas bubbles dis-
persed in the microalgae suspension (Saldarriaga et  al. 
2020). Microalgae cells can utilize  CO2 from the bubble for 
biomass production. If external illumination is used, bubble 
column PBRs are typically made of transparent material. 
Plastics such as polyvinyl chloride and plexiglass are com-
mon, and glass is also used commonly. Transparent double 
jackets are wrapped around PBR or the PBR is placed inside 
an incubator for temperature control. Stainless steel tubes 
as heat exchangers also can be used (López-Rosales et al. 
2016). Because microalgae are susceptible to mechanical 
shear force, the excessive mechanical shear force caused by 
over-aeration causes cell damage (Ding et al. 2021). PBR 
has several advantages, including high heat and mass trans-
fer rates, no moving parts, compactness, ease of operation, 
and low maintenance and operational costs. Their main dis-
advantage is the significant back mixing, which can affect 
reaction product selectivity and conversion (Leonard et al. 
2015).

Airlift photobioreactors

Airlift PBRs come under vertical tubular PBRs. Cylindri-
cal airlift PBRs are built with distinct vertical flows known 
as risers and downcomers separated by a physical barrier. 
The barrier that separates the downcomer and riser does not 
extend to the airlift reactor's top or bottom. The air enters 
the riser via a sparger located in the PBR's riser section. 
The growth medium is compressed in the sparger's bubble 
flow and travels up the PBR to the surface, where air exits 
the growth medium. The growth medium cannot exit the 
PBR with the air, forcing it to turn laterally to the down-
comer, where it turns and moves vertically down the PBR. 
Because the growth medium cannot exit the bottom of the 
PBR, it returns to the riser, from which the sparger entrains 
gas into the flow, and the process is repeated (Johnson et al. 

2018). For adequate light availability in the center of an 
airlift PBR, the diameter of the column should not exceed 
0.2 m. Furthermore, the cylinder's height is limited to about 
4 m for structural reasons, due to the strength of the trans-
parent materials used, and to reduce mutual shading in large 
commercial cultivations. High capital and cleaning costs are 
big disadvantages for an airlift PBR, but it does help with 
low power consumption, low shear stress, good mixing, and 
mass transfer (Huang et al. 2017).

Tubular photobioreactors

The PBR is divided into two major components: the solar 
receiver and the airlift system. Solar receivers are designed 
to maximize solar radiation interception while minimizing 
flow resistance and occupying as little space as possible. 
A bubble column, on the other hand, is used for mixing, 
degassing, and heat exchange culture (Fernandez et al. 
2014).  CO2 is also injected at the end of the airlift system 
and at the start of the solar receiver to increase  CO2 resi-
dence time in the solar receiver section. A heat exchanger 
also can be included in this section to improve control over 
the cultivation temperature (Ojanen et al. 2015).

Vertical and horizontal tubular photobioreactors are the 
two most common tube orientations used in laboratories, 
and both can be operated continuously, semi-continuously, 
or discontinuously. Depending on the type of experiment, 
temperature, pH, and oxygen concentration can be meas-
ured at various points along the tube, while liquid and gas 
flow rates are measured at the  CO2 injection point (Soli-
meno et al. 2017). The challenges associated with tubular 
PBRs are related to maintaining a low partial pressure of 
 CO2 along with uniform light intensity. Due to the mixing 
and cooling system of PBRs, tubular PBR is relatively 
costly to construct and maintain. The rise in  CO2 con-
centration at the injection point, and the maintenance of 
the same, can be a problem. The production of microal-
gae biomass is directly proportional to  CO2 concentration 
(Giannelli et al. 2012; Moraes et al. 2020).

Flat plate photobioreactors

Flat plate PBRs are used for medium-scale cultivation 
of microalgae. PBR flat panels are made of two joined 
plates that are kept at a constant distance from each 
other. Flat plates can be placed vertically, horizontally, 
or at an angle depending on the method used. Because 
of the larger surface area, light consistency is very high, 
resulting in better microalgae cultivation (Li et al. 2014; 
Huang et al. 2015). For aeration and cultivation, sparg-
ers, tubes, or membranes are used to mix and deliver air 
and  CO2 (Yan et al. 2016).  CO2 can be used for the pH 
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balance of the microalgae suspension as the pH normally 
rises due to the use of  CO2 by the microalgae (Pfaffinger 
et al. 2019). Though Light-Emitting Diodes (LEDs) are 
commonly used as a light source, other sources like neon 
lamps, sodium vapor lamps, OLEDs, fluorescent, halogen 
lamps, etc. also have been used. The flat panel PBRs have 
two-sided lighting (Huang et al.2015; Benner et al. 2022). 
When light distribution in flat panel PBRs is compared to 
the light distribution in cylindrical bubble column PBRs 
illuminated from the outside, the light attenuation caused 
by microalgae in suspension is much more pronounced 
than in flat panel reactors (Jacobi et al. 2012). Transparent 
double jackets are used as heat exchangers for temperature 
control, or PBRs can be placed in water baths to maintain 
temperature. pH, dissolved oxygen, and temperature are 
measured online with sterilizable electrodes (Vogel et al. 
2018).

Bag photobioreactors

This type of reactor is specifically important for low- and 
middle-income countries that require an inexpensive cultiva-
tion system, are technically simple to operate, scalable, and 
meet basic good manufacturing practice requirements. These 
requirements are fulfilled by a disposable bag PBR (Cui et al. 
2022). Bag PBRs are made up of three parts: plastic bags, 
a frame (to hold the plastic bag), and aeration systems. The 
size, materials, aeration types, mixing methods, and frame 
structure are all important design considerations (Ting et al. 
2017). Sterilization of these bags is a big disadvantage as 
the material used for bag production is mostly polyethylene. 
Although UV or gas sterilization are options, they come at a 
high cost. Bag PBR systems are frequently hung vertically, 
with growth medium pumped to the top and flowing down 
to the bottom. Similar to tubular PBRs, gas exchange occurs 
in a unit separated from the photosynthetically active area 
of the bag (Johnson et al. 2018). Cost-effectiveness is the 
main advantage of the bag type PBR but photolimitation, 
bad mixing, frailty to leakage, and short life span are some 
disadvantages associated with it (Huang et al. 2017).

Photobioreactors are closed systems used for the cul-
tivation of microalgae. They provide precise control of 
environmental conditions such as temperature, light, and 
nutrients, which can result in higher productivity and better 
quality of microalgae biomass (Sun et al. 2016). Photobio-
reactors have higher productivity than open pond systems 
because they can provide optimal conditions for growth. In 
photobioreactors, microalgae receive a uniform amount of 
light, CO2, and nutrients, which promotes their growth and 
reproduction. Photobioreactors provide a sterile environment 
that minimizes contamination by unwanted microorganisms. 
This makes the cultivation of specific strains of microalgae 
easier and can result in higher purity of the final product. 

Photobioreactors allow for precise control of environmental 
conditions, which can be adjusted according to the require-
ments of different microalgae strains. The control of temper-
ature, pH, and nutrient levels can optimize the growth and 
productivity of microalgae. Photobioreactors can be scaled 
up or down depending on the production needs. This makes 
them suitable for small-scale or large-scale production of 
microalgae (Chanquia et al. 2021).

However, photobioreactors also have some disadvantages 
that should be considered before choosing this cultivation 
method. Photobioreactors require a significant capital invest-
ment to build and maintain. The cost of the equipment and 
technology needed for photobioreactor cultivation is often 
higher than that of open pond systems. The use of artificial 
lighting and heating systems in photobioreactors requires a 
significant amount of energy, which can result in high oper-
ating costs. Additionally, the energy source used to power 
these systems may have environmental impacts. Photobio-
reactors require regular maintenance to ensure their proper 
functioning. This includes cleaning, sterilization, and moni-
toring of the system components. Photobioreactors require 
skilled personnel to operate and maintain the system. The 
complexity of the equipment and technology used in pho-
tobioreactors can make the cultivation process more chal-
lenging than open pond systems (Amaral et al. 2020). In 
conclusion, photobioreactors offer several advantages over 
open pond systems to produce microalgae. They provide a 
controlled environment that allows for higher productivity 
and reduced contamination. However, they also have some 
disadvantages that should be considered, such as high capital 
cost, energy consumption, maintenance requirements, and 
complex operation. Ultimately, the decision to use photobio-
reactors for microalgae cultivation should be based on the 
specific needs and goals of the production process.

Parameters for optimal microalgae growth

Strain, carbon and nutrient levels, light intensity, light/dark 
cycle, temperature, and pH have an impact on microalgae 
growth and carbon fixation efficiency. These factors are 
critical for providing optimal condition management. Under-
standing how these variables affect algae growth and bio-
logical carbon sequestration can aid in process optimization.

Carbon source and strain

Microalgae can absorb dissolved inorganic carbon (DIC) 
from the aquatic environment in the forms of  CO2,  H2CO3, 
 HCO3

−, and  CO3
2− from the suspension (Zhou et al. 2017). 

Different microalgae have different preferences for DIC 
form. For instance, gaseous  CO2 is the most suitable for 
Chlorella sp. Similarly, Nannochloropsis sp. can actively 



2805Environmental Chemistry Letters (2023) 21:2789–2823 

1 3

transport  HCO3
− (Piltz 2018; Zhou et  al. 2017). A few 

strains of microalgae can absorb  HCO3
−, which is then 

converted to  CO2 by carbonic anhydrase. The process of 
converting  CO2 and water into organic compounds pow-
ered by ATP and NADPH generated by photosynthesis is 
referred to as microalgae  CO2 fixation. Microalgae capture 
 CO2 through the Calvin cycle, such as carboxylation, reduc-
tion, and regeneration. During the transfer process, the main 
limiting factors influencing  CO2 fixation are  CO2 transpor-
tation resistance and diffusion (Razzak et al. 2017; Gerotto 
et al. 2020). Low carbon concentrations promote unsus-
tainable microalgae growth, and dissolving enough  CO2 in 
the growth suspension is expensive. Below 5% (V/V)  CO2 
concentration is best for microalgae growth, which is less 
than 10–20% flue gas  CO2 concentration. Microalgae cannot 
always use organic carbon due to the large molecular size of 
carbon or to being trapped in large solid particles (Chowdury 
et al. 2020; Zhou et al. 2017).

Light source and light intensity

Light intensity is critical in microalgae photosynthesis, and 
when light intensity exceeds a critical level, light satura-
tion and photoinhibition may occur (Fig. 6). Depending on 
the light stress and the length of time the microalgae are 
exposed to the stress, photoinhibition is either reversible or 
irreversible (Wang et al. 2012). Natural light is the most 
easily available and the cheapest option as a light source for 
microalgae cultivation, but it has some disadvantages due 
to changes in weather, diurnal cycle, and season. Although 
sunlight has a photon flux density (PFD) of over 2000 µmol. 
 m−2.  s−1, organisms that use oxygenic photosynthesis can 
only achieve a theoretical maximum conversion efficiency of 
8%-10% solar-to-biomass energy (Huang et al. 2017).

Photosynthetic microorganisms such as microalgae can 
only use the 400–700 nm range, known as photosyntheti-
cally active radiation (PAR), but PAR accounts for only 50% 

of sunlight (Acien et al. 2013). Non-uniform light intensity 
distribution inside a PBR occurs due to the absorption and 
scattering of light in the culture. Radiation attenuation is 
dependent on the light wavelength, cell concentration, PBR 
geometry, and light penetration distance. If the light inten-
sity is higher than a critical value, photoinhibition will take 
place and extra light will be wasted as fluorescent and heat. 
In case of lower light intensity, photolimitation will take 
place and the culture will collapse.

Depending on the cell growth due to light intensity, PBR 
can be divided into three zones, viz. strong illumination 
zone, weak illumination zone, and dark zone (Huang et al. 
2017). Even during the day, microalgae in a controlled cul-
tivation system are subjected to a different type of light/dark 
cycle. Because of the light gradient inside a PBR, algae are 
cyclically exposed to different microenvironments, from the 
light near the PBR surface to the dark in the center of a solar 
tube. As a result, algae are subjected to light/dark cycles that 
affect biomass production (Yen et al. 2019).

Light-Emitting Diodes (LEDs), halogen lamps, fluores-
cent lamps, and incandescent bulbs are all examples of artifi-
cial light sources that can be used for microalgal cultivation. 
The energy consumption, spectrum, wavelength distribution, 
and cost of these light sources differ. When these factors are 
considered, fluorescent lamps and LEDs are the most used 
light sources for microalgae production. When compared to 
fluorescent lamps, the use of LEDs allows for better light 
control, and the use of different wavelengths can be benefi-
cial for biomass production (Chowdury et al. 2020).

Temperature

It has been reported that 20-300C is the optimal tempera-
ture for microalgae cultivation. The growth rate becomes 
slow below  200C and when the temperature goes above  300C 
severe death and damage can occur. Marine microalgae are 
easily susceptible to slow growth rate at  280C and death at 
 300C. Freshwater microalgae can operate between 25 and 
 300C, and at even  400C also shows tolerance for a brief 
period (Acien et al. 2013). PBRs are optically transparent 
due to the need for light. Without a temperature control unit, 
the inside PBR temperature can rise to 10-300C from the 
ambient temperature in the summertime. High temperatures 
can lead to photocatalytic reactions and cause disturbance 
in the chemical equilibrium of the species, along with the 
solubility of supplied gas and pH (Huang et al. 2017). As a 
result, additional cooling mechanisms are frequently used to 
keep the culture within a safe range. Submerging the entire 
culture in a water pool, spraying with water, shading, or 
incorporating a heat exchanger with PBR for cooling is some 
of these mechanisms (Wang et al. 2012).

Fig. 6  Effect of light intensity on the growth rate of algae and rep-
resents the requirement of optimal light intensity for optimal growth 
rate
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pH and salinity

The optimal pH range for most of the microalgae species 
is between 7 and 9, and it is crucial for optimal growth and 
target product formation (Yen et al. 2019). The solubility of 
 CO2 and carbonates in the microalgae suspension and avail-
ability are greatly dependent on the pH. The hydroxide ion 
(OH) accumulates in the growing medium, causing the pH 
to gradually rise during photosynthetic  CO2 fixation. This 
shifts the chemical equilibrium of the inorganic carbon in 
the medium toward the formation of carbonates  (CO2−

3
−) 

(Chowdury et al. 2020). Thus,  CO2 availability at high pH 
becomes a trouble for microalgae growth. Nutrient uptake by 
cells, intracellular metabolite production, and metal toxicity 
can be caused by acidic pH, whereas alkaline pH decreases 
the affinity of microalgae for  CO2 and interferes with cell 
division (Chang et al. 2017). pH also can interfere with pho-
tosynthetic activity. The pH of the culture is also affected by 
nitrogen addition. When nitrogen is supplied in the form of 
ammonium, the pH of the solution rises due to a decrease 
in the concentration of nitrogen in microalgae. Elevated 
pH can also influence the concentration of phosphorus in a 
culture medium by causing phosphate precipitation. Micro-
algae, bacteria, and cyanobacteria can generally withstand 
salt concentrations of up to 1.7 M. (Cai et al. 2013). pH 
control mechanism should be employed with the PBR, with 
sodium bicarbonate widely used to control the pH (Huang 
et al. 2017). Chlorella sp. KR-1, for example, grew well in 
a pH range of 4–7, but its growth was significantly inhibited 
at a pH below 3.5 (Zhou et al. 2017).

Oxygen removal

Microalgae photosynthesis uses light energy and  CO2 to pro-
duce oxygen  (O2) as a byproduct. In the rubisco enzyme, 
microalgae have a lower binding affinity for  CO2 than  O2. 
Excessive dissolved  O2 competes with  CO2 for the rubisco 
binding site, resulting in photorespiration that reduces pho-
tosynthetic activity (Chang et al. 2017). The presence of 
excess oxygen and light can lead to the formation of reac-
tive oxygen species (ROS), thus leading to cellular damage. 
The dissolved  O2 concentration in the medium should not be 
higher than 400% of the air saturation level, and algae can-
not tolerate elevated  CO2 levels for more than 2 or 3 h. Only 
the degasser removes accumulated dissolved  O2 via mass 
transfer because dissolved  O2 not only oxidizes one or more 
enzymes but also affects the electron transmission chain and 
suppresses photosynthesis. Thus, dissolved  O2 accumulation 
should be avoided, and effective mixing is an excellent way 
to reduce dissolved  O2 (Huang et al. 2017).

Mixing

Mixing is directly related to biomass production because it is 
the most limiting parameter for optimal microalgae growth 
and biomass production (Yen et al. 2019). Microalgae den-
sity can reach  109 cells, resulting in reduced light transmis-
sion, increased rates of dissolved  CO2 consumption and 
dissolved  O2 accumulation, and a rapid increase in culture 
temperature (Wang et al. 2012).

Besides, mixing ensures uniform nutrient distribution to 
cells and efficient light utilization, as well as facilitating heat 
transfer, promoting gas exchange, keeping cells suspended, 
and preventing cell clumping and attachment to PBR walls. 
Furthermore, mixing is also important in PBRs because it 
moves cells from the photic zone to the dark zone, artificially 
providing light and dark cycles to boost productivity.

A mixing or agitation system is classified into two types, 
namely nonmechanical and mechanical. Non-mechanical 
mixing systems include airlift, bubble columns, and tubular 
PBR, while mechanical mixing systems include stirred tanks 
and raceway ponds (Chang et al. 2017).

Sterility and cleanability

Slow-growing microalgae species are hard to cultivate as 
they take a longer period for growth, biofuel production, 
and  CO2 sequestration, thus leading to impurity formation 
in the PBR (Wang et al. 2012). Bag PBR has issues with 
sterilization as they are made up of polyethylene (Johnson et 
al. 2018). Cleanability is essential for a PBR to reduce the 
formation of biofilm on the surface and to ensure the steril-
ity of the PBR. In this situation, PBR should be designed 
with a smooth internal surface that helps the prevention of 
biofilm formation and other sedimentation in the wall along 
with a large enough surface area for conventional cleaning 
(Wang et al. 2012).

Nutrient

For microalgae growth, major nutrient requirements are N, 
P, and mineral elements such as magnesium (Mg), potassium 
(K), iron (Fe), cobalt (Co), and vitamins. Optimal N and P 
levels, and C: N: P ratios, promote rapid growth and effi-
cient  CO2 fixation (Zhou et al. 2017). Urine as a microalgae 
growth media is highly suitable because of the high presence 
of N and P along with other essential nutrients. According 
to the molecular formula of biomass, approximately 50% of 
the biomass is composed of C (Chowdhury et al. 2020). C 
is essential as the building block for carbohydrates, proteins, 
nucleic acids, vitamins, and lipids. A high autotrophic pro-
duction rate requires a supply of  CO2 and  HCO3

−. N can be 
found in 1–14% of the dry weight of microalgae biomass 
and is responsible for proteins, nucleic acids, vitamins, and 
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photosynthetic pigment formation. The percentage of P is in 
the range of 0.05 to 3.3% in dry mass of microalgae biomass 
and is essential for the formation of nucleic acid and DNA 
along with energy transfer (de Alva et al. 2018). Nutrients 
such as ammonium, ammonia, and other substances found 
in urine, including heavy metals, drugs, and disinfectant by-
products are all very toxic to microbial growth (Collos et 
al. 2014). To overcome this situation, microalgae-based 
nutrient removal can be effective.

Nutrient content

Several nutrients in microalgae can potentially be used as 
the best substitute for traditional foods. Microalgae comprise 
many nutritional composites which can generally be consid-
ered superfoods. Spirulina is known as “the future food” as 
confirmed by the Food and Agriculture Organization (Ahsan 
et al. 2008). Microalgae have compressed nutrients that can 
be used in space missions; therefore, the National Aero-
nautics and Space Administration of the USA built some 
algal species into astronauts' diets as they fundamentally 
require a great intake of nutrients in dense volumes (Kainer 
2018). Microalgae also have bioactive composites includ-
ing antioxidant, anti-inflammatory, anti-carcinogenic, anti-
hypertensive, anticoagulant, anti-diabetic, immunomodula-
tory, cardiovascular protective, antiviral, and antimicrobial 
(Elaya Perumal and Sundararaj 2020; Nova et al. 2020). The 
study on the use of algae having nutritional and nutraceutical 
characteristics allowed their inclusion into the “foodomics” 
(Dvir et al. 2021). There is a description of nutrient contents 
that are present in algae, and both extrinsic and intrinsic 

factors such as nutrients, light, and CO2 generally enhance 
algal biomass production (Fig. 7).

Proteins and  peptides The main concern of microalgae 
nutrient contents is the protein that is abundantly present 
in algae; for instance, Spirulina platensis have up to 70% of 
their dry weight as protein. It was observed that half of the 
customary protein will be substituted by proteins from algal 
or insect-based diets in the coming year 2054 (Khanra et al. 
2018). Moreover, some species of microalgae like Cholera 
vulgaris and Arthrospira platensis have similar quality of 
amino acids as in soybean (Grossmann et al. 2019). Micro-
algae proteins can be well digested as compared to other 
food products like oats, wheat, and beans, and help to reduce 
causes of hypertension, cardiovascular diseases, and oxida-
tive stress (Levasseur et  al. 2020). Species of microalgae 
that provides useful peptides in food are Chlorella spp., such 
as C. vulgaris, C. ellipsiodea, and Spirulina platensis, Nan-
nochloropsis oculata (Ejike et al. 2016).

Lipids and essential fatty acids Microalgae also have essen-
tial fatty acid and polyunsaturated fatty acids including 
omega-3 polyunsaturated fatty acids like docosahexaenoic 
acid and eicosapentaenoic acid and (DHA). These bioactive 
composites have many benefits for human health involv-
ing the control of high blood pressure, and stroke, which 
decreased the risk of cardiac arrest, and helped in resolving 
asthma, and depression (Adarme-Vega et al. 2012). These 
are important factors involved in brain development, espe-
cially at the early stages of childhood (Yeiser et al. 2016; 
Charles et  al. 2019). Microalgae are a good substitute for 

Fig. 7  Effect of the amount of 
nutrient, light and dissolved 
 CO2 for obtaining optimum 
biomass and lipid concentration, 
and the illustration depicts the 
importance of high light,  CO2, 
and nutrients for maximum 
biomass concentration
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fish for the provision of these polyunsaturated fatty acids 
(Yeiser et al. 2016), and the main species with the status of 
Generally Recognized As Safe involve Arthrospira, Haema-
tococcus, Chlorella, Crypthecodinium cohnii, Dunaliella, 
and Porphyridium cruentum (Caporgno and Mathys 2018).

Carbohydrates and  polysaccharides Carbohydrates also 
present a major part of microalgae contents; however, the 
content of carbohydrates can vary in different developmen-
tal conditions. For instance, Chlorella vulgaris can yield 
9–41% carbohydrates in its dry mass and Scenedesmus 
obliquus provides 10 to 47% of carbohydrates. The fore-
most species of microalgae used to provide polysaccharides 
involve Chlorella sp., Porphyridium purpureum, Tetraselmis 
sp., Isochrysis sp., Porphyridium cruentum, and Rhodella 
reticulate (Levasseur et  al. 2020). Polysaccharides are the 
most ample sort of carbohydrate in microalgae, which were 
used for congealing and gelling properties (Bernaerts et al. 
2019). For instance, beta-glucans might control the immune 
response, while sulfated polysaccharides can prevent a vari-
ety of cancer cell lines by having antioxidant properties 
(Nazih and Bard 2018).

Carotenoids Carotenoids are regular pigments that have 
many functional properties for improving human health, 
including antioxidants, anticancer, anti-inflammatory, and 
antiobesity effects, and averting ophthalmic and cardiac 
diseases (Cezare-Gomes et  al. 2019). Many commercially 
significant carotenoids (containing β-carotene, astaxanthin, 
and zeaxanthin) can be obtained through microalgae. Some 
species like Chlorella spp., Dunaliella salina and Haema-
tococcus pluvialis have carotenoids which are mostly used 
for the manufacturing of nutraceutical products due to 
their anti-aging and antioxidant characteristics (Mehariya 
et al. 2021). Matters of astaxanthin in Haematococcus plu-
vialis can range from 3% of dry weight while β-carotene 
in Dunaliella salina can range up to 10%, of dry weight 
(Cezare-Gomes et al. 2019).

Vitamins Vitamins obtained from microalgae have an 
important role in the metabolism of all humans, animals, and 
microbes. A deficiency of vitamins causes night blindness, 
beriberi, and rickets. Dunaliella spp. microalgae produced 
pro-vitamin A (β-carotene), vitamin E (Tocopherol) which 
was higher than soybean oil, and vitamin C (Ascorbic acid). 
Though, Euglena gracilis was the greatest manufacturer of 
vitamin C as compared to lemon, for instance (Ismailkhod-
jaev et al. 2019). Arthrospira platensis and Chlorella spp. 
Also produced Vitamin C (Andrade et al. 2018). Dunaliella 
tertiolecta has the potential to produce cobalamin (vitamin 
B-12) and riboflavin (vitamin B-2), while Chlorella spp. 
produce a high amount of biotin (vitamin B-7) (Koyande 
et al. 2019). Recent research showed that Nannochloropsis 

limnetica, N. oceanica, and Dunaliella salina can produce 
vitamin D3 after exposure to Ultraviolet-B light (Ljubic 
et al. 2020).

Minerals Minerals have important roles in many physi-
ological functions in the human body, and their scarcity 
can lead to disease indications. Arthrospira species can 
be significant sources of minerals like potassium, magne-
sium, phosphorus, zinc, and chromium, calcium 180% more 
than milk, and iron 5100% more than spinach (Alagawany 
et al. 2021). Chlorella vulgaris also produce calcium, zinc, 
magnesium, manganese, copper, and iron (Alagawany et al. 
2021). Manufacturing of food with microalgae can upsurge 
their mineral matters which is lower than minerals of tradi-
tional compounds (Pomport et al. 2021).

From the above discussion, it is confirmed that the use 
of urine as a nutrient source for microalgae cultivation 
can have a significant influence on the nutrient content of 
microalgae-based food. Urine is a rich source of nitrogen, 
phosphorus, and potassium, which are essential nutrients 
for microalgae growth. When urine is used as a fertilizer for 
microalgae, it can enhance the growth rate and biomass yield 
of the microalgae, resulting in higher nutrient content in the 
final product. Microalgae grown with urine as a nutrient 
source may contain higher levels of nitrogen, phosphorus, 
and potassium than microalgae grown with conventional 
synthetic fertilizers or other organic sources of nutrients. In 
addition, microalgae cultivated with urine may also contain 
other essential micronutrients such as calcium, magnesium, 
and sulfur, which are also present in urine. The nutrient con-
tent of microalgae-based food can be influenced by various 
factors such as the strain of microalgae used, the cultivation 
conditions, and the processing methods.

However, the use of urine as a nutrient source for microal-
gae cultivation can be an effective way to increase the nutri-
ent content of microalgae-based food, particularly in terms 
of nitrogen, phosphorus, and potassium. Moreover, the use 
of urine as a nutrient source for microalgae production can 
also have environmental benefits, as it can reduce the reli-
ance on conventional synthetic fertilizers, which can have 
negative impacts on soil and water quality. Urine is a readily 
available and renewable resource that can be collected and 
processed locally, reducing the carbon footprint associated 
with the transportation of fertilizers. In conclusion, the use 
of urine as a nutrient source for microalgae cultivation can 
significantly influence the nutrient content of microalgae-
based food, particularly in terms of nitrogen, phosphorus, 
and potassium. However, the safety and hygiene of the final 
product must be ensured through appropriate treatment and 
processing methods (Chang et al. 2013; Lamminen et al. 
2019; Tao et al. 2022).
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Capital cost, operating cost, and profitability

A PBR's rational design is critical, and the capital cost (high 
surface area/volume ratio), operating cost (i.e., the cost of 
auxiliary energy demand, cleaning, and maintenance), and 
lifespan of the PBR should all be considered before com-
mercial exploitation. A good PBR should have a simple 
structure, simple operation, and temperature control, a low 
capital cost, a low operating cost (i.e., low energy consump-
tion and easy cleaning and maintenance), and a long lifespan 
(Huang et al. 2017).

The three storage carbon substances (i.e., protein, carbo-
hydrate, and lipid) are the main products from microalgae 
that are exploited in various market scenarios, according to 
the economic analysis (Sun et al. 2018). Animal feed prices 
are calculated using a broad correlation with protein con-
tent. Protein-rich microalgae, such as Chlorella pyrenoidosa, 
are promising strains in animal feed, with a value of $ 750 
 tonne−1 (Ruiz et al. 2016). There are numerous business 
opportunities for microalgae products, and the interest in 
investing in them is growing over time. If nutrients are sup-
plied in sufficient quantities, production can be produced, 
leading to a higher yield.

Algae must be sold as high-value products to attain a 
reasonable profit. For instance, Haematococcus pluvialis, 
an algae species rich in the natural source of the red pig-
ment astaxanthin, has a high market value and demand (Kaur 
2021). Biodiesel also can be obtained from microalgae bio-
mass. If the capital cost and operational cost are maintained 
and along with sustainability, there will be a great market 
valuation for microalgae-based products.

Potential hurdles

Consumer opinion on the use of urine as an input 
in microalgae cultivation

Consumers are very concerned about the chemical and 
microbial safety of algal food products, for example, the 
cyanobacteria, and microalgae spirulina, are generally con-
sumed as food or used as a nutritional supplement in many 
European countries such as France, Germany, and Spain 
(Araújo et al. 2021). Consequently, in Europe, strict legisla-
tions such as EC 2073/2005 and EC 1441/2007 are evident 
for both producers and consumers as vital requirements for 
the safety of food products. Although no standard microbial 
criteria have been established for microalgae, microalgae 
considered for food and nutritional purposes are categorized 
as ‘vegetable products’ under the European Food Safety 
Authority system of classification (Heinsoo 2014).

As urine is considered an alternative nutrition cultivation 
medium for alga growth, many studies have concluded the 

high content of contaminants such as pharmaceutical pol-
lutants and the presence of heavy metals such as lead and 
copper. It has thus been confirmed that between 64 and 80% 
of undigested pharmaceutical products are excreted through 
urine which finds their way as residues or metabolites of 
pharmaceutical compounds into mainstream wastewater 
treatment plants (Ronteltap et al. 2007; Heinsoo 2014). 
Thus, an effective wastewater treatment process that can 
considerably eliminate most contaminants in urine will 
ensure maximum nutrient recovery and a safer and contam-
inant-free urine suitable for algae cultivation for food appli-
cation purposes. Furthermore, the adoption of cost-effective 
industrial processes in wastewater treatment that can effi-
ciently provide an effective concentration of treated urine 
for microalgal cultivation is very essential. Thus, nutrition-
ally recovered and safety-assessed urine with enhanced yield 
performance for biomass production from algal growth will 
address the challenges of consumer perception of the safety 
of algal food products (Heinsoo 2014; Muluye et al. 2021).

One of the biggest challenges in evolving countries is the 
requirement for food production which should be enough to 
feed the increasing population (Akpan-Idiok et al. 2012). 
Malnutrition poses a threat to those nations which majorly 
rely on agricultural food production (Benoit 2012). Exten-
sive drops in soil fertility caused due to the use of com-
mercial chemical fertilizers in several areas have resulted 
in the deterioration in organic matter of the soil and hence 
a decreased crop yield. Conventional agriculture practices 
have become more problematic due to the rise in fertilizer 
prices for farmers in evolving countries. Human urine is a 
favorable product to be used in agricultural activities as it 
contains comparatively high amounts of nitrogen, phospho-
rus, and additional nutrients including potassium and micro-
nutrients, and therefore can be used as a multi-constituent 

Fig. 8  Human urine comprises water and a diversity of organic and 
inorganic compounds as compared to solid inorganic fertilizers and is 
a vital source of liquid nitrogen, and thus can be considered an inex-
pensive and good fertilizer system
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inorganic fertilizer. In fresh urine, nitrogen found as urea is 
useful for plants and it is also found in marketable fertiliz-
ers. Urine also comprises water and a diversity of organic 
and inorganic compounds in comparison to solid inorganic 
fertilizers (Fig. 8). Human urine is a quick and cheap source 
of enough liquid nitrogen. The fertilizing effects of human 
urine are higher than that of mineral fertilizers which were 
observed in many different countries as shown in Table 6.

In terms of the legal use of urine as fertilizer, legislation 
of the European Union does not prohibit or permit the usage 
of human urine as a nutrient fertilizer. Previous studies show 
that the application of urine as fertilizer for the cultivation of 
food was an ancient practice in China and was well accepted. 
In Southern China and Vietnam, farmers used human urine 
as a “valuable fertilizer.” Conventionally human urine was 
a good alternative to costly inorganic fertilizers to enhance 
production in home gardens and agriculture. In many other 
countries, human urine is applied as a nutrient supply for 
agricultural drives including Mexico, USA, Germany, 
Denmark, Sweden, and some African countries. There is 
less information on the usage of human urine as fertilizer 
in South Africa due to the lack of urine diversion toilets 
that permit the sanitary separation of urine. The new imple-
mentation of urine diversion toilets in South Africa must 
enhance the usage of urine as fertilizer for agricultural prac-
tices (Lamichhane et al. 2013). The application of human 
urine for agricultural practices is still considered a foreign 
concept and normally is not accepted since human urine is 
considered a waste product and unhealthy (Benoit 2012). 
Personal preconceptions and moral concerns have additional 
effects to cause a reduction in the approval of using human 
urine as a fertilizer. Perceptions and approaches concerning 
the health risks and peoples’ repulsion from human urine 
differ between different cultures and even within particu-
lar cultures universally. The common attitudes of people 

concerning the usage of human urine depend on many social 
factors linked to the use of human urine as fertilizer, such as, 
employment, culture, age, locality, education, religion, sex, 
status, class, and martial status.

In a research study, the approaches of workers and stu-
dents at the Medunsa Campus of Limpopo University were 
questioned and discussed the implementation of human 
urine in the farming and production of crop plants was eval-
uated (Mugivhisa and Olowoyo 2015). The purpose was to 
assess exactly how frequently people eat cultivated fresh 
vegetables, fruits, and other crops, how much knowledge 
and awareness they had about various types of fertilizers 
including manure, compost, and chemical, and which kind 
of fertilizers they chose for cultivating their food crops. 
Further objectives were to evaluate how much knowledge 
people had about the nutritional importance of human urine 
and what would they like to eat, maize or spinach, enriched 
with animal urine or human urine. The major concern of 
this evaluation was to check the willingness of people to 
modify their approaches after they become well aware of the 
concerns, they had for refusing to eat those food crops which 
were enriched with human urine (Mugivhisa and Olowoyo 
2015). In a study of Swiss farmers, 57% of farmers believed 
that urine can be used as an agricultural fertilizer and 42% of 
farmers were inclined toward purchasing products enriched 
by urine (Lienert et al. 2003; Lamichhane et al. 2012).

Consumer acceptance and legal barriers for use of algae 
as food

It was observed that the foremost challenge for the consump-
tion of microalgae as food products is sensory acceptance, 
generally concerning appearance and flavor for greater 
concentrations. Some species of microalgae can also act as 
smart elements, such as smart flavor or smart color, which 

Table 6  Observing fertilizing effects of human urine higher than that of mineral fertilizers

Food production by using human urine as fertilizer Locations References

Hordeum vulgare (barley) Germany Mugivhisa and Olowoyo (2015)
Beta vulgaris (Swiss chard) Ethiopia Mugivhisa and Olowoyo (2015)
Brassica oleracea (head cabbage) Kotebe Metropolitan University, 

Ethiopia
Alemayehu et al. (2020)

Phaseolus vulgaris (snap beans) South Africa Pandorf et al. (2018)
Brassica rapa (Turnip) South Africa Pandorf et al. (2018)
Brassica oleracea (Cauliflower) Nepal Kc and Shinjo (2020)
Abelmoschus esculentus (Lady finger) South Eastern
Nigeria, Akpan-Idiok et al. (2012)
Cicer arietinum (chick pea) Comparative analysis Ganesapillai et al. (2016)
Triticum (Wheat) Comparative analysis Kishor et al. (2020)
Vegetables Zimbabwe Parwada et al. (2021)
Conventional practice for production of food production China Ferguson (2014)
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means that they can impart the flavor or color besides 
increasing nutritional value, and subsidize environmental 
and technological characteristics in more or fewer cases 
(Ashaolu and Ashaolu 2020), though they are worthy for 
the consumers, the manufacturer and the globe.

Normally microalgae have nasty flavors, such as moldy, 
grassy, earthy, or fishy, which establish major hurdles for 
usage in food products. These unwanted tastes are mostly 
created by volatile organic compounds, comprising phenolic, 
hydrocarbons, ketones, lactones, alcohols, aldehydes, and 
esters. The quantity and configuration of volatile organic 
compounds might change according to the species of micro-
algae, growth stage and cultivation circumstances (Fu et al. 
2021). A study was done in Europe to explore consumers' 
acceptance of three altered microalgae-based food products: 
sushi, pasta, and jerky, all incorporated with Arthrospira 
platensis to enhance the protein content. They were served 
to 1035 people from 3 countries: France, Germany, and 
Netherlands, who would taste and categorize the food prod-
ucts according to sensory parameters. It was observed that 
Pasta was the utmost desired one, maybe due to the aware-
ness of this type, but there were no substantial variances 
among the three countries examined (Grahl et al. 2018). 
It was concluded from this study that eating practices and 
knowledge about food are significant aspects and can affect 
consumer selections. So, customary food products might be 
possible mediums for microalgae integration. In the above 
study, all three examining countries were European, which 
perceives that results can be different if this study was done 
in Asian countries, for example, Sushi is a customary food 
in Japan and can be chosen in its place of pasta by Japanese 
customers.

In another study, smoothies were developed from fresh 
fruits and vegetables without heating, also added Chlorella 
vulgaris and Dunaliela salina microalgae. It was concluded 
that D. salina presented a superior effect both, on values 
of sensory parameters and antioxidant activity (Sahin and 
Ozturk 2021). It shows that the amalgamation of diverse 
colors of vegetables and fruits possibly will mask the colors 
from microalgae and increase consumer acceptance of algae-
based food products. In another case, masking of appear-
ance and color, broccoli soups were formed by added with 
Chlorella sp., Spirulina sp., or Tetraselmis sp. and got nicely 
accepted food products with greater contents of antioxidant 
and polyphenols.

Two types of microalgae Dunaliella (D. salina) and Spir-
ulina (A. platensis) are mostly cultured and consumed all 
over the world. One experiment was performed in which 
both types of microalgae were added in cookies, to enhance 
the increasing hardness and dark color of cookies. After 
examining, it was observed that cookies with Spirulina (A. 
platensis) were not chosen by panelists as compared to tra-
ditional cookies products, but Dunaliella (D. salina), had 

reasonable sensory acceptance even with its great quantity of 
antioxidant and phenolic compounds (Sahin 2020). A survey 
of French consumers gives the basic causes that might avert 
consumers from buying algae-based foodstuffs, known as a 
lack of consumer awareness about consuming microalgae as 
food, their inaccessibility in grocery stores, unpleasant taste 
and appearance, and hesitation of consumers (Lucas et al. 
2019). Except these environmental apprehensions are rela-
tively diverse among countries; for example, although Span-
ish consumers contemplate microalgae as environmentally 
friendly, the French have oppositely dual opinions and the 
Belgians do not perceive this as an encouragement to inspire 
microalgae consumption (Lafarga et al. 2021; Moons et al. 
2018; Thomas et al. 2020). Interestingly, a survey in Ger-
many reported that they wanted microalgae as a global sus-
tainability biomass, but on the other hand, their preference 
was based on their total health, well-being and the intake of 
a balanced diet (Roßmann and Rösch 2020).

It was observed that consumers’ perception of algae con-
sumption had changed in the last two decades due to con-
tinuous research and the growing cultivation of algae in the 
European market (Enzing et al. 2014; Rumin et al. 2020; 
Ricci et al. 2018). To overturn this inclination, research dem-
onstrates that it is critical to abolish consumer reluctance 
toward exasperating novel food products and to emphasize 
on differentiation of products by applying quality status 
labels and certifications (Lucas et al. 2019). The panel of 
the European Food Safety Authority ponders that no appre-
hension has been found about the noxiousness of this novel 
microalgae-based food, and it is harmless for use in nutri-
tional supplements at the concentrated consumption limit of 
1 g docosahexaenoic acid per day for adults, except lactating 
and pregnant women (EFSA 2020). Chlorella and Spirulina 
are available in the Brazilian market as a type of food sup-
plement. This type includes minerals, vitamins, bioactive 
substances and probiotics. These food supplements are used 
for athletes, pregnant women and particular for the pledge 
medications. After the booklet of RDC 240/2018 (Collegiate 
Board Resolution), simply those supplements which con-
tained probiotics or enzymes need to be registered with “The 
Brazilian Health Surveillance Agency” (BRASIL 2018).

The Dietary Supplements Information Expert Committee 
in the USA assessed the safety of nutritional supplements 
and their ingredients and has acknowledged Spirulina algae 
species in The United States Pharmacopeia Resolution—
National Formulary (Fu et al. 2021; García et al. 2017). 
According to Regulation (EU) No. 2015/2283, the European 
Union, with the “European food safety authority,” confirms 
that new food and its ingredients go through a safety evalu-
ation to care for public health. The European list of new 
foods are Tetraselmis chui, Haematococcus pluvialis, Schiz-
ochytrium sp., Odontella aurita, and Ulkenia sp. (EFSA 
2020; Niccolai et al. 2019; EU 2018, 2015). Furthermore, 
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Europe accredited the usage of β-carotene derivative of 
Dunaliella salina by means of a food stabilizer (Hachicha 
et al. 2022; Koutsoumanis et al. 2020).

In the USA, the safety of algae food products is consid-
ered under the law of “Food and Drug Administration,” 
which gives the standing of food presence “generally recog-
nized as safe” to any food matter which is well thought-out 
to be safe for human ingestion (García et al. 2017). Canada 
has parallel principles to those of the USA for novel food 
assessment; the “Health Canada” organization supervises 
food safety regulations and refers to “novel foods” as any 
food product which is innovative or has been reformed as 
compared to customary food (Government of Canada 2021; 
Health Canada 2021).

Legal situation and legal hurdles regarding the use 
of urine

Microalgae are recognized as a potential source for the 
removal of pollutants from wastewater discharges (Gupta 
et al. 2017a). Treatment of wastewater through the cultiva-
tion of microalgae into it is a cost-effective and effective pro-
cedure without contributing infectious constituents (Gupta 
et al. 2015, 2016; Ansari et al. 2017). Despite these ben-
efits, there are several challenges, which involve the cost and 
effectiveness of microalgae harvesting and scaling up the 
production of bioenergy through microalgae from the labora-
tory level to the commercial level. Furthermore, the cultiva-
tion of microalgae in an ongoing wastewater treatment plant 
also poses many technical and economic issues that require 
observation, including culture instability, the requirement of 
land for cultivation, climatic aspects, cost of production, and 
analysis of the life cycle (Gupta et al. 2017b). Some of the 
hindrances involve the existence of growth-inhibiting factors 
which can be biotic (algal pathogens like bacteria, viruses, 
and fungi, inborn photosynthetic microbes, zooplankton, 
phytoplankton, and grazers), and abiotic factors (light, pH, 
temperature, salinity, carbon dioxide, nitrogen oxides, sulfur 
oxides, oxygen, ammonia, and heavy metals). These factors 
have the strongest influence on algae growth in wastewater 
(Hwang et al. 2016; Posadas et al. 2017). The level of such 
nutrients in wastewater, particularly those from agriculture 
and municipal sources, can constrain the growth of micro-
algae; thus, in certain cases, diluting the nutrient system is 
recommended. Further research is required to understand 
how to adjust the level of nutrients in wastewater for the 
efficient growth of microalgae (Acien et al. 2012).

Environmental factors like intensity, light, and tempera-
ture are important for the procedure and cost efficacy of algal 
treatment methods (Mohsenpour et al. 2021). Thus, the site 
of the algal-based wastewater recovery plant is also consid-
ered. Climatic changes in day span and light concentrations 
are site specific and have a significant role in algae species 

growth (Ferro et al. 2020; Posadas et al. 2017). The usage 
of site-specific local algal species is beneficial in develop-
ing wastewater recovery plants due to their integral suitabil-
ity to precise environmental situations, which significantly 
enhances maximum efficiency as less energy is required for 
recovery processes. Studies on algal species from Mohsen 
pour Finland (Jamsa et al. 2017; Lynch et al. 2015), Swe-
den (Ferro et al. 2018; Lindberg et al. 2021), and Canada 
(Abdelaziz et al. 2014) have been used for their capability 
to treat municipal wastewater in cold weather.

One of the main hurdles for the growth of microalgae 
in the treatment of wastewater is the harvesting of algal 
biomass because harvesting normally causes more than 
thirty percent of the overall production charge and can 
be changed according to the type of harvesting method 
and the properties of selected species of microalgae and 
the desired product (Barros et al. 2015). Mostly used har-
vesting processes are founded on biological, chemical, 
mechanical, and electrical methods including filtration, 
centrifugation, gravity sedimentation, and flotation (Kadir 
et al. 2018). However, some of these methods are costly 
and not eco-friendly like chemical-based methods (Lam 
and Lee 2012). Filtration is a simple and cost-effective 
method for harvesting microalgae. The major benefit of 
this method is that the end product of biomass has no 
chemical impurities, and this can be specifically applied 
for the recovery of remaining nutrients (Ahmad et  al. 
2012).

Urine is one of the most plentiful wastes on earth that 
can develop the ‘‘carbon substance of the future’’ (Chaud-
hari et al. 2014). In present studies, human urine is used to 
yield novel carbon, known as ‘‘Urine Carbon’’ for existing 
and upcoming energy-required applications. It was noticed 
from the experiment that urea is the main component of 
urine, which is an important carbon-based source of hydro-
gen, carbon, oxygen, and nitrogen. Meanwhile, human urine 
comprises major elements including urea, sodium, chloride, 
creatinine, potassium, and other organic and inorganic ions 
and composites, and the urine is supposed to produce a 
compound comprising of carbon and a combination of salts 
after carbonization (Lu et al. 2013). Silicon and phosphorus 
compounds are also excluded from urine from the human 
body after many metabolic processes. Therefore, the exist-
ence of these components makes urine such a vigorous ante-
cedent for the creation of uniquely doped carbon. Though 
despite being recycled to provide hydrogen through urea 
also worked for the nourishment of microbial energy cells 
(Ieropoulos et al. 2012; Kuntke et al. 2012), still, no work 
is reported where human liquid waste like urine was used 
as an antecedent to yield carbon or some other constituents.

Sensible usage of urine as per carbon antecedent will not 
simply improve cost-effectiveness in the growth of purpose-
ful materials but also assist to decrease the ecological burden 
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by inhibiting the potassium, nitrogen, and rich phosphate 
urine contaminants from reaching the water bodies, therefore 
reducing the oxygen-depriving eutrophication, development 
of algal blooms, and development of marine ‘‘dead zones’’ 
in oceans and rivers. Furthermore, the human body does not 
digest pharmaceutical medicines entirely and ejects some 
vital or in a combined form besides further organic impu-
rities in urine. These composites are carried by means of 
domestic waste watercourses to municipal sewage wastewa-
ter management plants or, in some circumstances, directly 
reach waterbodies without treatment, posing many ecologi-
cal distresses. In this discovery, transforming urine to carbon 
will not merely increase the abundance of directly above 
ecological concerns, but also help in evolving valued tools 
for several mechanical applications. Some of these applica-
tions include the development of involving supercapacitors, 
fuel cells, Li-ion batteries, and many others (Zhuang et al. 
2018), which can make this technique technically, finan-
cially, and environmentally encouraging (Chaudhari et al. 
2014). Some benefits of human urine conversion to carbon 
are given in Table 7.

Conclusion

Although synthetic media has been employed to support the 
growth and cultivation of microalgae commercially, there is, 
however, a growing potential for low-cost alternative nutri-
ents to be sourced from urine for the commercial production 
of microalgae as they are of economic value. Valorization 
of urine from wastewater for secondary applications such as 
microalgae cultivation has added value and enhanced natural 
resource efficiency. Interestingly, there are several ecological 
principles or environmental concerns that have been linked 

to large-scale microalgae production via wastewater treat-
ment. Some of these concerns are focused on how environ-
mentally sustainable utilizing urine from wastewater treat-
ment for large-scale microalgae cultivation is. This stems 
from the fact that microalgae production with urine could 
lead to toxic atmospheric emissions such as the release of 
methane and nitrous oxide gases into the environment lead-
ing to the depletion of the ozone. Also, these atmospheric 
emissions can be highly significant, especially for open 
system cultivation facilities than closed systems whereby 
emissions could be trapped by photobioreactors. In addition, 
a poor control system or its failure during waste urine treat-
ment could result in a major potential environmental prob-
lem if microalgae nutrients are released which could result 
in a serious eutrophication crisis for the aquatic ecosystem. 
Another point for future evaluation should be focused on the 
toxicological impact of the biomass produced from micro-
algae cultivated with waste urine. Biomass sourced from 
microalgae for food and pharmaceutical applications should 
be devoid of traces of toxic elements, and as such a regula-
tory and environmental policy could support consumer inter-
est in products sourced from such microalgae. Consequently, 
awareness creation for stakeholders and the public about the 
broad benefits of using microalgae cultivated from treated 
wastewater could enhance the setting up of more large-scale 
facilities for the production of microalgae, as this is a cost-
effective alternative nutrient recovery process.
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Table 7  Benefits of human urine conversion to carbon

Objective Benefits Reference

Cost-effective Development of functional materials Chaudhari et al. (2014)
Help to reduce the environmental burden By preventing the nitrogen, potassium, and phosphate-rich urine pollut-

ants from reaching the water bodies, thus minimizing the formation of 
algal blooms, oxygen-robbing eutrophication and formation of oceanic 
‘‘dead zones’’ in rivers and oceans

Chaudhari et al. (2014)

Graphitic carbon nitride quantum dots show 
optimum fluorescence

Great photostability Zhuang et al. (2018)

Less cytotoxicity
Multicolor imaging of cells

Potential fluorescent probes Biosensing Zhuang et al. (2018)
Catalysis
Disease diagnosis

Exceptional Nanosensors Fluorescence quenching-based detection of important heavy metal con-
taminants of ecological interest like mercury

Essner et al. (2016)

Development of technical valuable materials Formation of a fuel cell, supercapacitor, Li-ion battery Zhuang et al. (2018)
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