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Abstract

Pollution of waters by azo dyes is a major global issue because some azo dyes have carcinogenic and mutagenic effects.
Therefore, advanced methods are required to remove those pollutants from wastewater. For instance, electrochemical oxi-
dation processes have been developed using various approaches to remove azo dyes from wastewater. Here, we review
electrochemical processes for the oxidative degradation of azo dyes. Processes include anodic oxidation, electro-Fenton,
photo-electro-Fenton, and solar photo-electro-Fenton. The influence of various parameters including process design, design
of reactors, and the characteristic degradation products and their toxicity, are discussed. Low molecular weight carboxylic

acids are mainly formed as by-products.

Keywords Advanced oxidation processes - Electrochemical oxidation - Azo dye - Wastewater treatment - Toxicity

Abbreviations
BDD Boron-doped diamond
‘OH  Hydroxyl radical

Introduction

Rapid population growth and urbanization in the twentieth
century and early twenty-first century contributed greatly to
the environmental pollution problems. Among the problems
associated with environmental pollution, water pollution
with persistent organic pollutants is the most critical one.
The discharge of industrial wastewater containing organic
compounds has led to the pollution of aquatic ecosystems.
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The problem of water pollution with various toxic/persis-
tent organic pollutants such as pesticides, pharmaceutical
and human care products, dyes, and chlorinated phenols has
been the subject of a large number of studies (Nidheesh et al.
2013; Bokare and Choi 2014; Asghar et al. 2015; Elkacmi
and Bennajah 2019; PaZdzior et al. 2019; Wang et al. 2021;
Brillas 2022).

Among the classes of organic pollutants, synthetic dyes
are widely used in various industries such as textile, phar-
maceutical, food and cosmetics. The most considerable
contribution to wastewater containing synthetic dyes comes
from the textile industry (Nidheesh et al. 2022b). Dyes are
organic compounds with a complex structure that give color
to various products. Dyes and their degradation products
have a direct toxicological effect on different living organ-
isms and humans (Copaciu et al. 2013). Currently, there are
a large number of dyes used worldwide and their production
reaches more than 900,000 tons per year. Azo dyes are the
most widely dyes used in various industries. More than 60%
of the dyes produced in the world are azo dyes (Giirses et al.
2016), and over 70% of the dyes used in industries are also
azo dyes (Berradi et al. 2019). According to various sources,
about 4-12% azo dyes are released into the environment
along with the industrial wastewater generated during their
production and dyeing processes (Pearce et al. 2003; Srivas-
tava et al. 2022). As a result, about 280,000 tons of dyes per
year are released globally with wastewater (Jin et al. 2007).

To date, various physicochemical methods such as
adsorption (Ayati et al. 2016; Raval et al. 2016), coagulation
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(Luo et al. 2019), chemical oxidation and reduction (Sel-
varaj et al. 2021), non-thermal plasma treatment (Tarkwa
et al. 2019b) and membrane filtration (Katuri et al. 2009) are
used to treat wastewater containing azo dyes. Many studies
are devoted to the use of biological methods for treating
wastewater containing azo dyes (Solanki et al. 2013; Bhatia
et al. 2017; Shah 2019). Most of the existing methods have
severe limitations for practical use, such as the high cost of
the technology, low removal efficacy, formation of second-
ary waste to be further treated, and formation of more toxic
products than the parent pollutant.

Among advanced oxidation processes, electrochemical
advanced oxidation processes for the removal of azo dyes
from wastewater received great interest (Sirés et al. 2014;
Brillas and Martinez-Huitle 2015; Moreira et al. 2017; Gar-
cia-Segura et al. 2018; Ghime and Ghosh 2019; Selvaraj
et al. 2021; Rodriguez-Narvéez et al. 2021). Electrochemi-
cal methods are quite easy to operate and can be referred
as “green technologies”; since wastewater treatment does
not require additional chemical compounds and does not
generate harmful organic intermediate products, because
organic pollutants can be oxidized until the mineralization
stage (transformation to CO,) before being released into the
environment (Nidheesh and Gandhimathi 2012; Titchou
et al. 2021a).

One of the most used electrochemical methods for azo
dye removal is anodic oxidation process (Panizza and Ceri-
sola 2009; Jiang et al. 2021; Martinez-Huitle 2021). This
process is based on the direct oxidation of azo dyes on the
surface of an appropriate anode via hydroxyl radical (OH)-
mediated oxidation. In this case, the anode material plays
a crucial role (Peralta-Hernandez et al. 2012; EI Aggadi
et al. 2021; Cornejo et al. 2021; Clematis and Panizza 2021;
Karim et al. 2021; Ganzoury et al. 2022). During electro-
chemical oxidation, azo dyes can be partially oxidized with
the formation of intermediate organic products that are gen-
erally biodegradable (Cornejo et al. 2021; Nidheesh et al.
2022a), or they can be completely mineralized with the for-
mation of carbon dioxide, water, and other inorganic ions
(Garcia-Segura et al. 2018; Nidheesh et al. 2019; Titchou
et al. 2021a). Electrochemical processes for dye removal are
based on the generation of various oxidants such as hydroxyl
radical, hydrogen peroxide, and hypochlorite ion (Titchou
et al. 2021a; Ganzoury et al. 2022) during electrolysis for
the indirect oxidation of dyes (Sarkka et al. 2015; Nidheesh
et al. 2018).

In contrast, the indirect electrochemical oxidation of azo
dyes includes the generation of homogeneous reactive oxy-
gen species in the bulk solution. Production of ‘'OH through
electrochemically generated Fenton’s reagent via electro-
Fenton process is the best example for indirect electrochem-
ical oxidation process (Lahkimi et al. 2007; Brillas et al.
2009; Oturan and Oturan 2018; Nidheesh et al. 2023a,b).
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Photo-electro-Fenton, sono-electro-Fenton, electro-perox-
one, peroxicoagulation and bioelectro-Fenton are the other
examples of indirect electrochemical oxidation process.
Recently, electrochemical generation of sulfate radical via
decomposition of persulfate or peroxymonosulfate and direct
conversion of sulfate ions are also received much attention
(Srivastava et al. 2021; Syam Babu and Nidheesh 2022;
Aratjo et al. 2022). At the same time, combined methods are
used to increase the efficiency of electrochemical processes.
A large number of papers on the use of combined methods
for the removal of azo dyes from real and simulated waste-
water have been published. Combined methods include the
combination of electrochemical oxidation with adsorption,
ultrasonic treatment, UV light irradiation, photo-catalysis,
biological oxidation and ozonation (Ganzenko et al. 2014,
Martinez-Huitle et al. 2015; Patidar et al. 2020; Qiao and
Xiong 2021; Koulini et al. 2022).

This review considers the most important aspects of
electrochemical oxidation of azo dyes, which comprise
one of the largest groups of dyes used in various industries.
Characteristics, classification and toxicity of azo dyes and
their intermediates are briefly discussed to understand how
to prevent water pollution. The main directions of research
in the field of electrochemical oxidation are given, and the
prospects for the development of electrochemical methods,
which are considered as the most environmentally friendly
methods of wastewater treatment, are outlined.

Characteristics of azo dyes

Azo dyes constitute the largest group of synthetic dyes and
are widely used due to ease of use, various properties, and a
wide range of colors from yellow to black. They are highly
light-resistant and used in multiple industries such as tex-
tile, printing, paint and varnish to dye various products. Azo
dyes can color most natural, artificial and synthetic materi-
als, including leather, plastic, and rubber products. Most of
the azo dyes are water soluble, and the coloration of vari-
ous materials is associated with their physical adsorption,
absorption, or mechanical fixation (Bafana et al. 2011).
Azo dyes are characterized by the presence of the func-
tional azo group (-N=N-) included in two or more symmet-
rical or asymmetrical aromatic groups (Bafana et al. 2011).
The azo group can be linked to benzene rings, naphthalene,
aromatic heterocycles, or aliphatic groups, which give color
with various shades and intensities to the dye (Benkhaya
et al. 2020b). In terms of the number of azo bonds in the
molecule, azo dyes can be classified into monoazo, diazo,
and polyazo dyes. In accordance with the international clas-
sification of dyes, azo dyes have color index (C.I.) numbers
from 11,000 to 39,000 (Selvaraj et al. 2021). The color index
number is indicated after the name of the dye, which reflects
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the dye technical classification and color (Kiernan 2001).
For example, Reactive Black 5 (C.I. 20,505) is a black dye
belonging to the group of reactive azo dyes.

The most water-soluble azo dyes, which can subsequently
get into the environment with wastewater, are acid, direct,
reactive, basic (cationic) and mordant ones. Acid and reac-
tive azo dyes, mainly mono- and diazo ones, make up more
than half of the currently used azo dyes (Benkhaya et al.
2017). Acid dye molecules contain sulfonic groups, which
define the solubility and acidic properties of the dye. Protein
fibers are colored using acid azo dyes, and the colors are
characterized by brightness and purity of the hue. As a rule,
acid dyes are sodium salts, which form colored anions in
the solution (Benkhaya et al. 2020a). The class of reactive
azo dyes includes the dyes that form a covalent bond with
cellulose, protein and similar fibers during their dyeing. As
a result, the dye becomes a fiber component, providing high
color fastness.

Currently, there is a rapid introduction of reactive dyes
into the technologies for the textile industry due to their val-
uable dyeing properties including high color fastness to wet
treatment comparable to the color fastness of vat dyes as well
as more excellent brightness of colors compared to direct,
acid, and basic dyes (Alsantali et al. 2022). Direct azo dyes
are mainly belong to diazo and polyazo compounds. They
contain many hydroxylamino groups and nitrogen heterocy-
cles. As a result, they form hydrogen bonds between the dye
groups and are used for dyeing cellulose fibers (Bafana et al.
2011). The basic azo dyes are cationic in nature, which can
color fibers containing acid groups. The molecules of these
dyes have free or alkylated amino groups and do not contain
either sulfonic or carboxyl groups (Kiernan 2001).

Reactive azo dyes are mainly used for dyeing cellulose
fibers. The mechanism of dyeing materials with reactive
dyes involves the formation of covalent bonds between the
dye molecules and the fibers, which are more resistant to
various conditions of use. Reactive substituents of these azo
dyes can also react with the hydroxyl groups present in the
dye bath due to the alkaline environment, and as a result,
part of the hydrolyzed dyes can no longer react with the
fiber. Thus, from 10 to 50% of the initial dye charge will
be present in the dye bath effluent, resulting in a strongly
colored effluent (Al-Degs et al. 2000). It should be noted that
reactive dyes have a toxicological effect on living organisms
(Salazar and Ureta-Zafiartu 2012). They reduce the amount
of ammonium-oxidizing bacteria in the soil, which may limit
the efficiency of using nitrogen by plants, thereby decreas-
ing the productivity of land ecosystems (Topag et al. 2009).

Direct azo dyes are the cheapest and easiest to use. Most
direct azo dyes are diazo and polyazo compounds. The dis-
advantage of direct azo dyes is their poor recovery from the
dye bath, and therefore, about 30-60% of the dye enters the
wastewater. Direct azo dyes are mainly used to dye cellulose

fibers, and they link with the fibers by hydrogen bonding and
van der Waals interactions. Therefore, direct azo dyes have
low color fastness to wet treatment, and they are currently
less used (Bafana et al. 2011). It should be noted that direct
azo dyes, like other groups of azo dyes, have a pronounced
toxicological effect on populations of living organisms in
ecosystems (Hernandez-Zamora and Martinez-Jer6nimo
2019a, 2019b).

Azo dyes have mutagenic properties (Hashemi and
Kaykhaii 2022), and they are difficult to oxidize under aero-
bic conditions at biological treatment plants (Senthil Rathi
and Senthil Kumar 2022). Under certain conditions, their
degradation can result in toxic products (Gottlieb et al. 2003;
Rawat et al. 2016). In addition, mammal microbiota, includ-
ing skin or intestinal microflora, can turn the azo dyes into
carcinogenic metabolites (Feng et al. 2012). The toxicologi-
cal effect of selected azo dyes is presented in Table 1.

Many of the azo dyes, products of their reductive splitting
as well as chemically related aromatic amines are reported
to affect human health by causing allergies and other human
diseases. Some azo dyes exhibit toxic effects. For example,
Acid Orange 10 or Orange G is a monoazo dye used mainly
for dyeing silk and woolen products, paper and industrial
ink, and is also used in the manufacture of pencils and dye-
ing cell structures in biochemical research. Acid Orange 10
has shown genotoxicity and may also be hazardous to human
health (Jovié-Jovicic et al. 2010). Monoazo dye Acid Red 14
is used for dyeing woolen fabrics, silk and polyamide fibers
(see the structural formula in Table 2). Acid Red 14 is also
used in the food industry and is known as carmoisine or
food additive E122. According to the European Food Safety
Agency, the hyperactive-child syndrome may be associated
with the ingestion of carmoisine (Thiam et al. 2015c). Acid
Red 27 or amaranth food color is a water-soluble monoazo
dye. Acid Red 27 is added during the manufacture of various
food products, giving them a distinctive red color (Rovina
et al. 2017). Some countries have banned the use of Acid
Red 27 in food and beverages because its toxicological effect
was scientifically proven (Barros et al. 2014; Rovina et al.
2017). Therefore, Acid Red 27 removal from aqueous solu-
tions by various methods, including electrochemical oxida-
tion, was reported (Fan et al. 2008).

To date, most dyes are not controlled for toxicity and are
considered nontoxic. However, supposedly nontoxic azo dyes
have functional groups that can impart mutagenic and car-
cinogenic properties upon degradation. For example, they
can lead to the formation of degradation products such as
p-naphthylamine, aniline, triazine, p-phenylenediamine, and
p-amino-a-naphthol, which are well-known genotoxicants
(Briischweiler et al. 2014; Rawat et al. 2016). It should also
be noted that diazo, triazo and polyazo dyes are the most toxic
among azo dyes (Golka et al. 2004). When assessing toxicity
of azo dyes, attention is focused only on a laboratory study.

@ Springer
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Table 1 (continued)

Structural formula

Toxicological effect

TUPAC name CAS number

Name

Mutagenic

61,969-42-4

Cobalt(2 +) bis {2-[(2E)-2-(5-chloro-1-ox-

C.I. Solvent Blue 53 (Orasol Navy Blue 2R)

onaphthalen-2(1H)-ylidene)hydrazinyl]-

S-nitrophenolate }

C.I.—color index

Their possible degradation under the influence of various envi-
ronmental factors, including biological oxidation at biological
treatment plants or in natural water, is not taken into account.
The formation of toxic degradation products of azo dyes has
been shown in many works (Briischweiler et al. 2014). In par-
ticular, the formation of carcinogenic 3,3’-dimethoxybenzidine
during the degradation of Direct Blue 15 azo dye is reported
(Golka et al. 2004). Degradation of Acid Orange 7 and Reac-
tive Black 5 dyes, which are considered to be non-toxic, also
leads to the formation of hazardous aromatic amines (Gottlieb
et al. 2003).

The concentration of azo dyes in dyeing wastewater
can widely range from 5 to 1500 mg/L, depending on
the material to be dyed. The resistance of azo dyes to
biodegradation requires their pre-treatment using various
physicochemical methods. Physicochemical and biologi-
cal methods for treating wastewater containing azo dyes
are primarily used to remove the color of solutions. Each
of the method for color removal has its own advantages
and disadvantages, including factors such as the nature
of the dye, the composition of wastewater, concentration,
toxicity, the cost of used chemicals, as well as the cost of
processing of unit volume of wastewater and the equip-
ment. These factors determine the economic feasibility of
each method for wastewater treatment of azo dyes efflu-
ents (Selvaraj et al. 2021). The oxidation or reduction
by-products play a significant role in evaluating the effec-
tiveness of the method for treating wastewater containing
azo dyes. It should be noted that using a single method for
removing azo dye might be insufficient. In view of this,
the study of the processes of azo dye removal has become
an urgent task, and the search for environmentally sound
methods of dye removal in order to reduce an anthropo-
genic load on ecosystems associated with the discharge
of wastewater containing azo dyes is currently ongoing.

In this context, the interest of researchers in developing
methods for azo dye removal from wastewater is increas-
ing (Salazar and Ureta-Zafiartu 2012; Jager et al. 2019).
In recent years, many studies have been carried out on
developing electrochemical methods for removing azo
dyes of different colors (Almomani and Baranova 2012,
2013). Among azo dyes, acid, reactive, and direct dyes
are of the greatest interest to researchers. Table 2 lists
different azo dyes and their removal by electrochemical
approach. Most of the studied azo dyes belong to mono-
azo and diazo compounds, and they are characterized by
the formation of various aromatic fragments during elec-
trochemical oxidation (Bafana et al. 2011). Electrochemi-
cal oxidation has been used to remove azo dyes from solu-
tions due to their toxic properties. In particular, much
attention has recently been paid for the removal of various
food colors from wastewater because of their effects on
human, especially on the child (Parsa et al. 2014; Thiam

@ Springer
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et al. 2015a, 2016; Rahmani et al. 2015; Malakootian and
Moridi 2017; Ben Hafaiedh et al. 2020).

Electrochemical oxidation of azo dyes

Electrochemical methods for azo dye removal attract
much attention as they are environmentally friendly since
the leading reagent that oxidizes azo dyes is an electron
transferred from the surface of various electrode mate-
rials (Shukla and Oturan 2015). Oxidation of azo dyes
during electrolysis is also associated with the generation
of 'OH on the surface of the electrodes during oxidation
of water (anodic oxidation) and in the bulk of the elec-
trolyte upon adding a catalyst and in situ generation of
hydrogen peroxide during electrolysis (electro-Fenton).
Electrochemical oxidation removes azo dyes with high
chemical oxygen demand ranging from 0.1 to 100 g/L
from wastewater (Sirés et al. 2014). On the other hand,
electrochemical advanced oxidation processes can be used
as a pre-treatment process to increase the biodegradability
of azo dyes containing wastewater for a biological post-
treatment (Ganzenko et al. 2014).

Other oxidation processes for removing azo dyes have
limitations and disadvantages compared to electrochemi-
cal advanced oxidation processes. The chemical oxida-
tion processes, such as ozone oxidation and hypochlorite
ion oxidation, and advanced oxidation processes such as
Fenton's reagent, photo-Fenton, and photo-catalytic oxida-
tion also lead to decolorization of azo dye solutions (Deng
et al. 2020). However, applying these methods for waste-
water treatment and azo dyes removal is limited due to
some disadvantages. For example, the main disadvantage
of the Fenton's reagent and related advanced oxidation
processes is the formation of an iron-containing sludge
and the process is effective only at acidic pH (Oturan and
Aaron 2014; Deng and Brillas 2023). Oxidation processes
based on ozone have the disadvantage of a short half-life
of ozone molecules (Javaid and Qazi 2019). The use of
hypochlorite ions as oxidants leads to incomplete destruc-
tion of azo dyes with the formation of aromatic amines
(Isaev and Magomedova 2022), which can be more toxic
than the original azo dyes (Gottlieb et al. 2003). Photo-
catalytic methods also have limited application due to high
rates of recombination of the photo-generated electrons
and holes (Ge et al. 2016). However, the use of advanced
oxidation processes for removing azo dyes compared to
other physicochemical methods such as adsorption or
coagulation does not lead to the secondary pollution asso-
ciated with the transfer of azo dyes from one phase to
another (Ma et al. 2021).

@ Springer

Electrochemical oxidation of azo dyes has advantages
over other physical and chemical methods. For example,
electrochemical removal of azo dyes can be carried out
under relatively mild conditions at ambient temperature
and pressure without additional chemicals. Electrochemi-
cal methods are highly efficient, do not produce secondary
waste, are easily automated, and can be supplemented by
other methods for dye removal (Sarkki et al. 2015; El-
Kacemi et al. 2017; Cui et al. 2021). The disadvantages of
a typical electrochemical process implemented by anodic
oxidation include high energy consumption for the treat-
ment of wastewater with a low concentration of organic
pollutants, heterogeneous nature of the electrochemical
process (mass transfer limitation), and a decrease in the
activity of the electrode surface due to adsorption of azo
dye degradation products (Garcia-Segura et al. 2018).
To compensate disadvantages of this process, various
approaches including indirect electrochemical oxidation
with the generation of oxidizing agents such as active
chlorine species, persulfate (called mediated oxidation)
(Panizza and Cerisola 2009), and photo-electrochemical
oxidation were developed. On the other hand, the electro-
Fenton process and related techniques such as heterogene-
ous electro-Fenton, photo-electro-catalysis, photo-electro-
Fenton and solar photo-electro-Fenton take the advantages
to generate hydroxyl radicals homogeneously in the bulk
solution, in addition of heterogeneous hydroxyl radical
formed on the anode surface, to increase the process effi-
ciency (Titchou et al. 2021a). Figure 1 summarizes the
main electrochemical methods used for the removal of azo
dyes from wastewater. The main parameters affecting the
efficiency of electrochemical oxidation of azo dyes are the
electrode material, current density, initial concentration
of dyes, nature of the dye and the electrolyte, fluid hydro-
dynamics, pH, and temperature (Qiao and Xiong 2021).

The electrochemical oxidation of azo dyes has been the
subject of a large number of studies. Most of the publica-
tions are devoted to electrochemical oxidation of acid and
reactive azo dyes using various electrochemical methods,
which is due to the wide use of both azo dyes for dyeing var-
ious materials. The efficiency of electrochemical oxidation
of azo dyes can also be affected by the molecular structure
of dyes. Research results show that functional groups, which
reduce nucleophilicity of the azo dye, inhibit electrophilic
attack of the electro-generated ‘OH and, thus, reduce overall
effectiveness and decolorization rate. In addition, the pres-
ence of an additional chromophore azo bond in the molecule
leads to the formation of a more stable conjugated n-system,
which increases the activation energy required for electro-
philic attack and enhances the persistent nature of azo dyes
(da Costa Soares et al. 2017).
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Fig. 1 Electrochemical oxidation processes for removal of azo dyes.
Direct oxidation—oxidation directly on the anode surface due to elec-
tron transfer and formation of ‘'OH on the anode surface (Panizza
and Cerisola 2009; Moreira et al. 2017); indirect oxidation—oxida-
tion due generation of various oxidants such as H,0,, hypochlo-
rite, and persulfate (Scialdone 2009); electro-Fenton—oxidation due
homogeneous. OH via electrochemical generated Fenton’s reagent
(Oturan and Oturan 2018; Vasudevan and Oturan 2014; Nidhesh et al.
2018); photo-electro-Fenton—oxidation due electrochemical generated
Fenton’s reagent with simultaneous ultraviolet or sunlight irradiation
(Brillas 2020; Ganiyu et al. 2018)

Anodic oxidation

Anodic oxidation of organics can occur by a direct elec-
tron transfer to the anode surface and by hydroxyl radicals
formed on the anode surface during water oxidation. The
efficiency of producing hydroxyl radicals and, consequently,
oxidation of azo dyes are depending on the anode material
used in anodic oxidation process. Since the formation of OH
is a heterogeneous process, in the case of using active metal
and metal oxide anodes (so-called active anodes), chem-
isorption occurs on the electrode surface and the minerali-
zation of organics is not much high (Panizza and Cerisola
2009). The formation of hydroxyl radicals is facilitated by
anodes with high oxygen over-potential (called non-active
anodes), such as boron-doped diamond (BDD), PbO,, and
sub-stoichiometric titanium oxide (Peralta-Hernandez et al.
2012; He et al. 2019; Trellu et al. 2020; Karim et al. 2021;
Srivastava et al. 2021). The mechanism of oxidation of
organic compounds with the formation of hydroxyl radicals
has been studied in sufficient detail by many researchers
(Comninellis 1994; Panizza and Cerisola 2009). In the case
of active anode, heterogeneous hydroxyl radicals MO, (HO)

form mainly during water oxidation [Eq. (1)] is strongly
adsorbed to the anode surface. Adsorbed radicals lead to the
formation of chemisorbed oxygen [Eq. (2)] or oxygen release
[Eqg. (3)]. Chemisorbed oxygen can then release as gaseous
oxygen [Eq. (4)]. MO,(HO-) and oxygen oxidize organic
substances (noted RH), followed by catalytic regeneration
of the anode surface according to Egs. (3)—(6).

MO, + H,0 - MO,(HO') + H* + e~ e8)
MO, (HO') = MO,,, + H" + ¢~ )
MO, (HO) -» MO, + H* + ¢ + 0.50, 3)
MO,,, —» MO, + 0.50, 4)
MO (HO') + RH - MO, + H,0 +R’ 5)
MO,,, + RH — MO, + RHO (6)

The proposed mechanism is different in the case of a non-
active anode, such as BDD. The BDD(HO) is very slightly
adsorbed on the anode surface and behaves as quasi-free
hydroxyl radicals. Therefore, the oxidation of organic pol-
lutants leading to their mineralization can be summarized
as follows:

BDD + H,0 — BDD(HO') + H* + ¢~ 7
BDD(HO') + RH — BDD + oxidationintermediates  (8)

intermediates + BDD(HO)

— BDD + CO, + H,0 + Inorganicions ©)

Anodic oxidation of azo dyes results in the formation of
low molecular weight organic compounds, such as carbox-
ylic acids, available for biological oxidation or complete
mineralization occurring with the formation of CO,, H,0,
and other inorganic compounds (Alcocer et al. 2018). The
efficiency of direct anodic oxidation of dyes depends on
several functional groups (for example, azo bonds) in their
molecules, making them electro-active for direct electron
transfer (Alagesan et al. 2021).

Indirect electro-oxidation

During indirect oxidation, the reaction of anodic oxidation
or cathodic reduction (of water or species present in the
medium) results in the formation of intermediate products
or oxidizing agents such as ozone, hydrogen peroxide, and
other active species on the electrode surface under the action
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of external current (Nidheesh et al. 2018). In the presence of
SO42_, Cl” and PO43_ ions as electrolytes, oxidizing agents
such as S,04°, Cl,, HCIO and P,04*" can also form (EI
Aggadi et al. 2021; Divyapriya and Nidheesh 2021). Oxi-
dizing agents or active species thus formed can react with
organic pollutants leading to their oxidation with the forma-
tion of various intermediate compounds (Martinez-Huitle
and Brillas 2009; Martinez-Huitle et al. 2015). The initial
oxidation reaction occurs on the electrode surface, and the
subsequent degradation of pollutants occurs in the bulk elec-
trolyte (Qiao and Xiong 2021).

Electro-Fenton

The electro-Fenton is one of the most popular electrochemi-
cal advanced oxidation processes along and is based on elec-
trochemically assisted Fenton reaction. In contrast to the
classical Fenton system in which Fenton’s reagent (mixture
of H,0, and Fe?*) is externally added to the solution to be
treated, the electro-Fenton process does not use chemicals
except a catalytic amount of ferrous iron (Oturan et al. 2000;
Brillas et al. 2009). H,0, is formed by a two-electron reduc-
tion of O, [Eq. (10)] on a suitable cathode. Formed H,0O,
reacts with externally added catalyst (Fe**) to form ‘OH
homogeneously via Fenton reaction [Eq. (11)].

0, + 2H* + 2¢” — H,0, (10)

H,0, + Fe’* - Fe’™ + OH™ + OH (11)

Continuous generation of ‘OH is then ensured by the
electro-regeneration of Fe** [Eq. (12)) from the reduction
of Fe** formed in Fenton reaction [Eq. (11)]."OH further
reacts with organic pollutants leading to their oxidation to
biodegradable species, which can be further removed by a
biological post-treatment (Olvera-Vargas et al. 2016). Alter-
natively, organic pollutants can be mineralized to CO, and
inorganic ions as in anodic oxidation (Egs. (9) and (10)].
However, the latter option needs longer treatment time and
more energy.

Fe*t + ¢ — Fe*

12

The most widely used cathode materials for the efficient
production of H,0, are based on carbon materials (carbon
felt, reticulated vitreous carbon (RVC), carbon sponge,
carbon nanotubes (CNT) or graphite) (He and Zhou 2017,
Ganiyu et al. 2018; Divyapriya and Nidheesh 2020; Sopaj
et al. 2020). The performance of the electro-Fenton process
was strongly improved with the use of non-active anodes,
mainly BDD anode. The use of BDD as an anode in the
electro-Fenton process allows for the simultaneous produc-
tion of homogeneous ‘OH in the bulk solution [Eq. 11] and
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heterogeneous BDD('OH) on the anode surface (Oturan et al.
2012).

The electro-Fenton process is optimal at acidic pH of
about 3. To overcome this pH dependency and to recover
the catalyst used in the process, several modifications were
recently done by developing heterogeneous electro-Fenton
process including various solid catalysts, and catalyst loaded
on cathode surface. The various advancements in electro-
Fenton process are explained in detail in previous research
and review articles (Barhoumi et al. 2017: Heidari et al.
2021; Meijide et al. 2021; Gopinath et al. 2022; Krishnan
et al. 2022; Nidheesh et al. 2022c; Nidheesh et al. 2023a, b).

Photo-electro-catalysis

Photo-electro-catalysis is a rapidly developing method for
removing azo dyes from aqueous solutions (Garcia-Segura
and Brillas 2017; Brillas and Garcia-Segura 2023). This
is due to the increased efficiency of organic dye removal
through the synergistic effect of photo-catalysis and elec-
tro-catalysis (Laghrib et al. 2020). The main advantage of
photo-electro-catalytic oxidation of azo dyes is the high rate
of charge separation compared to photo-catalysis and low
energy consumption compared to electrochemical oxidation
of azo dyes, especially when using sunlight as an energy
source (Zhang et al. 2023; Brillas 2023). In this case, the
main disadvantage of photo-catalytic oxidation of azo dyes,
rapid recombination of photo-generated electrons and holes
(e~/h™"), can be eliminated by applying an external poten-
tial during photo-electro-catalytic oxidation of azo dyes
(Ma et al. 2020). For photo-electro-catalytic oxidation of
azo dyes, semiconductor electrodes, that capable of react-
ing to UV or sunlight, are used and applied onto various
substrates. The absorption of a photon by the semiconductor
photo-electrode with energy exceeding its band gap results
in charge separation, generating electrons (e™) in the con-
duction band and holes in the valence band [Eq. 13] (Rajput
et al. 2021).

MO +hv— e + ht (13)

Under the influence of an external applied potential, the
photo-generated e can move towards the counter electrode,
leading to redox reactions on the electrode surfaces (Cao
et al. 2017). Simultaneously with the electrolysis process,
direct azo dyes oxidation reactions occur on the photo-
catalyst surface, forming highly active oxygen-containing
particles (Feng et al. 2021). The combination of electro-
catalytic and photo-catalytic processes reduces the rate of
electron—hole pair recombination and increases the lifetime
of holes (Zarei and Ojani 2016). The resulting h* has a
strong oxidizing ability and can migrate to the surface for
direct interaction with azo dyes or react with H,O/OH"™ to
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form hydroxyl radicals, which also oxidize organic pollut-
ants [Eq. 14]. Photo-generated electrons can react with dis-
solved oxygen to form active oxygen-containing particles
according to Eq. 15 (Garcia-Segura and Brillas 2017).

h* +H,0 - OH+H* (14)

e +0, >0 (15)

In addition to photo-catalytic processes, electrochemi-
cal oxidation of azo dye can also occur on oxide-metal
semiconductors. Anodic oxidation of azo dye can occur by
direct electron transfer to the surface of the anode and ‘OH
formed on the surface of the anode during water oxidation.
The efficiency of hydroxyl radical formation and thus the
oxidation of azo dyes depend on the anode material. Since
the formation of ‘OH is a heterogeneous process, the use of
active metal and metal oxide anodes leads to chemisorption
of oxidation products of azo dyes on the electrode surface
and their low activity in the oxidation process (Panizza and
Cerisola 2009). Anodes with high oxygen evolution over-
potential, such as BDD, PbO,, and others, promote the for-
mation of hydroxyl radicals (Peralta-Hernandez et al. 2012;
Alimirzaeva et al. 2019; He et al. 2019; Karim et al. 2021).

Photo-/solar photo-electro-Fenton

Photo-electro-Fenton process consists of light (UV or vis-
ible) irradiation of electro-Fenton reactor. This process
implemented first by Brillas’ team allows for increasing
mineralization efficiency of electro-Fenton process. The
short-chain carboxylic acids formed during electro-Fenton
oxidations are complexed by Fe>* present in the medium and
become recalcitrant to ‘OH, resulting in low mineralization
rates. On the other hand, UV or visible light irradiation can
destroy this complex and thus facilitate the mineralization of
carboxylic acids. For example, Eq. (16) shows the destruc-
tion of Fe(Ill)-carboxylic acid complex with the regenera-
tion of Fe?" (catalyst). The photo-generated Fe>* ion can
subsequently catalyze the Fenton reaction, which results in
the formation of Fe** and ring closure [Eq. (11)]. Addition-
ally, photo-reduction of Fe** generated in Fenton reaction
allows the formation of additional ‘'OH [Eq. (17)] (Brillas
et al. 2009; Oturan and Aaron 2014; Ganiyu et al. 2018;
Divyapriya et al. 2021).

2 Fe(C,0,)" "

n

+hv - 2Fe’ + (2n— 1) C,0;” + 2 CO,
(16)

Fe** + H,0 + hn — Fe’" + OH + H' 17)

Although the photo-electro-Fenton in practice provides
high oxidation/mineralization power, the use of artificial

light makes the process costly. Therefore, solar photo-elec-
tro-Fenton process have been developed to remediate this
inconvenient (Bedolla-Guzman et al. 2016; Salazar et al.
2019; Brillas 2020; Wang et al. 2021). This process is effec-
tive for completely mineralizing synthetic azo dyes and real
wastewater (Brillas 2022) with higher mineralization power
and lower energy consumption than conventional electro-
Fenton processes.

Electrochemical oxidation of various azo
dyes

Various electrochemical processes are used to remove azo
dyes from wastewater: direct and indirect electrochemical
oxidation, electro-Fenton, photoelectrocatalysis, photo-elec-
tro-Fenton, solar photo-electro-Fenton, and a combination
of electrochemical processes with other physical-chemical
or biological treatments. The combination of electro-oxi-
dation with various types of physical and chemical treat-
ment increases the efficiency of color and chemical oxygen
demand removal. For example, this enhancement has been
demonstrated during oxidative degradation of Reactive
Black 5 by ultrasonic treatment coupled with electrochemi-
cal oxidation (Johin et al. 2019), sono-electro-Fenton in the
presence of electrochemically generated hydrogen perox-
ide (Sahinkaya 2013), and photo-electro-Fenton with UV
or sunlight irradiation in the presence of electrochemically
generated hydrogen peroxide and semiconductor materi-
als (Wang et al. 2008b; Sala et al. 2016). Electro-catalytic
oxidation of Methyl Orange in a hybrid self-powered elec-
trochemical cell has also been reported to be a variant of
creating an energy-independent technology for wastewater
treatment from azo dyes (Yang et al. 2013).

Electrochemical generation of Fenton’s reagent is used
as an effective and potentially practical method for remov-
ing azo dyes from wastewater (Isarain-Chévez et al. 2013).
The rate of Methyl Orange oxidation is higher for elec-
tro-Fenton process as compared to anodic oxidation with
electro-generated hydrogen peroxide (do Vale-Junior et al.
2018). The addition of heterogeneous catalysts, such as
magnetically separable nano-Fe;O, (Sasidharan Pillai and
Gupta 2016) and Fe,(MoO,);-kaolin-based iron molybdate
(He et al. 2014) to Methyl Orange solution for hydrogen
peroxide decomposition, leads to an increase in the rate of
‘OH generation and, accordingly, an increase in the rate of
decolorization and chemical oxygen demand removal (Jiang
et al. 2016).

Among acid azo dyes, electrochemical oxidation of
Methyl Orange was extensively studied by several research-
ers. Methyl Orange is used as a model compound for study-
ing the activity of various electrode materials and in deter-
mining the effectiveness of new electrochemical methods.
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Direct anodic oxidation of Methyl Orange and its indirect
electrochemical oxidation are also studied with the genera-
tion of active chlorine on the anode or hydrogen peroxide on
the cathode (Zhang et al. 2015) in solutions with a high NaCl
concentration (Yu et al. 2015). These authors showed that a
high current density, an acid environment, and an increase
in the concentration of NaCl have a positive effect on the
electro-oxidation rate of Methyl Orange. It should be noted
that the electrochemical oxidation of Methyl Orange in chlo-
ride-containing solutions does not lead to the formation of
intermediate organochlorine compounds (Pillai et al. 2015).

Acid Orange 7 is mainly used in printing and textile
industries and hardly degrades by biological and other
wastewater treatment methods. When dissolved in water,
Acid Orange 7 can form three types of molecules with dif-
ferent charges depending on the solution pH (Chou et al.
2011). AO7 electrochemical oxidation in various electrolytes
and using various approaches have been studied in sufficient
detail (Chou et al. 2011; Qiao et al. 2015; Wu et al. 2016).
An increase in the efficiency of electrochemical oxidation
for complete removal Acid Orange 7 can be achieved by
combining electrochemical oxidation with other treatment
methods. Acid Orange 7 electrochemical oxidation results
in the accumulation of toxic aromatic fragments, which can
be removed using subsequent sorption (Li et al. 2015). The
overall efficiency of Acid Orange 7 electrochemical oxida-
tion using granular activated carbon as electrodes and in
combination with coagulation reduces chemical oxygen
demand and color to 99% and 87%, respectively (Xiong
et al. 2001). Bio-electrochemical treatment of the solutions
containing Acid Orange 7 azo dye has also been reported,
which leads to complete decolorization of the solution with
an additional mineralization of toxic products formed during
azo dye oxidation (Pan et al. 2017).

During the Acid Orange 7 indirect electrochemical oxida-
tion through the generation of hydrogen peroxide, the cath-
ode material plays an important role. The cathode material
was subjected to various modifications to increase the effi-
ciency of hydrogen peroxide production yield. Modifying a
carbon air-diffusion cathode with nanoparticles of tungsten
oxide resulted in increased hydrogen peroxide yield and azo
dye oxidation (Paz et al. 2018). In a polypyrrole framework,
lignin-based composites deposited on graphite felt was also
used as the cathode in Acid Orange 7 electrochemical oxi-
dation (Sun et al. 2015). When the powdered sludge car-
bon resulted from pyrolysis reaction at 800 °C was used
as the cathode, the Acid Orange 7 removal from the solu-
tions occurred efficiently due to simultaneous adsorption
and electro-oxidation (Sun et al. 2015). Besides, when an
electrochemically active tubular carbon-graphite membrane
was used as the cathode, Acid Orange 7 electro-oxidation
was supplemented with dynamic filtration technology (Liang
et al. 2016). The electrochemical oxidation of Acid Orange
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7 took place rapidly in anodic oxidation with PbO,-coated
RVC composite cathode (RVC/PbO,/TiNT) and an indus-
trial stainless steel mesh anode (Ramirez et al. 2016). Com-
bining the processes of ozonation and electrolysis with the
formation of H,0, on the cathode led to an increase in the
efficiency of the azo dye oxidation process. In this case,
complete decolorization and total organic carbon removal
at the level of 95.7% were obtained after 4 and 45 min of
treatment, respectively (Bakheet et al. 2013).

The use of the electro-Fenton process also refers to Acid
Orange 7 indirect electrochemical oxidation. Acid Orange
7 oxidation in the electro-Fenton process occurs with the
formation of electro-generated ‘'OH, leading to the com-
plete oxidative degradation of the dye up to its complete
mineralization. H,O, and Fe?* ions are catalytically electro-
generated on a carbon felt cathode (Ozcan et al. 2009). The
new cathode for electro-Fenton based on reduced graphene
oxide deposited on the carbon felt surface makes it possible
to decolorize the Acid Orange 7 solution after 5 min of elec-
trolysis (Le et al. 2015). Electro-Fenton is the most efficient
method for Acid Orange 7 removal. A comparison of two
cathode materials, unidirectional carbon fiber and reticulated
vitreous carbon, showed that the former electrode was more
efficient in generating hydrogen peroxide and subsequent
oxidation of Acid Orange 7 (Ramirez-Pereda et al. 2018).

According to the literature data, the efficiency of anodic
oxidation and electro-Fenton processes of Acid Red 27
depends on the electrolyzer configuration, current density,
electrolyte type, and electrodes used (Zhang et al. 2012).
The solutions of food azo dye were processed using different
anode materials at different temperatures and solution flow
rates, which ensured the color and chemical oxygen demand
removal of more than 75% (Elaissaoui et al. 2019). When
Ir-Sn-Sb mixed-oxide anode was used in the electro-Fenton
and photo-electro-Fenton processes, the efficiency of Acid
Yellow 36 oxidation increased compared to anodic oxida-
tion. Oxidation of the dye occurred mainly by heterogene-
ous M('OH) and generated active chlorine species (Agui-
lar et al. 2017). In situ electrochemical generation of H,0,
has also been used to oxidize the Acid Yellow 36 azo dye
(Cruz-Gonzélez et al. 2010). In this case, H,0, continuously
formed in the dye solution from electro-reduction of dis-
solved molecular oxygen (Isaev and Aliev 2012; Rodriguez
De Leo6n et al. 2019).

Using other physicochemical methods combined with
electrochemical oxidation increases the efficiency of Acid
Red 14 removal. The electro-Fenton process promotes
about 60-70% of Acid Red 14 mineralization, while photo-
electro-Fenton can mineralize Acid Red 14 more efficiently
(total organic carbon removal of more than 94%) even at
low current densities, due mainly to the contribution of UV
light irradiation (Wang et al. 2008a). The addition of TiO,
to the Acid Red 14 solution significantly enhances the dye
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degradation (Shen et al. 2002), and the addition of Fe;O,
nanoparticles leads to heterogeneous Fenton-like processes
of dye oxidation on the catalyst surface (Es’haghzade et al.
2017). Acid Red 14 electrochemical degradation in a plasma
flow (Barrera et al. 2020) is also more efficient than anodic
oxidation (Wang et al. 2010). In the case of a plasma-stimu-
lated oxidation process, the formation of hydrogen peroxide
occurs in a plasma discharge, which enhances dye degrada-
tion, and the introduction of iron ions (Fe>*/Fe’*) into the
solution leads to the formation of an enormous amount of
‘OH through Fenton reaction (Barrera et al. 2020).

The combination of electrochemical oxidation of Methyl
Orange with the subsequent adsorption of degradation prod-
ucts increased the process efficiency due to the synergistic
effect between electrolysis and adsorption (Liu et al. 2022).
The combination of the AO16 electro-oxidation process with
the subsequent adsorption process has also been reported,
resulting in an increase in chemical oxygen demand removal
efficiency (Zakaria et al. 2015). Comparatively treated the
Acid Red 1 solutions by anodic oxidation with electro-gen-
erated H,O, (anodic oxidation-H,0,), electro-Fenton and
photo-electro-Fenton processes at constant current density
and oxidation power was found in the following sequence:
anodic oxidation-H,0, < electro-Fenton < photo-electro-
Fenton. Faster and similar decolorization efficiency was
achieved in electro-Fenton and photo-electro-Fenton owing
to the quicker destruction of aromatics with hydroxyl radi-
cals produced in bulk (Fig. 2).

The highest efficiency of dye oxidation by electro-oxi-
dation process was reported in the case of the use of high
oxygen over-potential anodes in combination with other
oxidation processes, such as oxidation with electro-gener-
ated hydrogen peroxide (Vahid and Khataee 2013), elec-
tro-generated sodium hypochlorite (Akrout and Bousselmi
2013), electro-Fenton (El-Desoky et al. 2010b; Rahmani
et al. 2016; Zhang et al. 2019a, b), photo-electro-Fenton
(Almeida et al. 2012, 2014, Pacheco-Alvarez et al. 2019),
heterogeneous photo-catalysis (Santos et al. 2015; Morales
et al. 2018), addition of persulfates (dos Santos et al. 2020b,
a), and biological oxidation (Cui et al. 2020). Color removal
ranges from 80% to complete decolorization, chemical oxy-
gen demand from 60% to over 90% and total organic carbon
from 50 to 80%. Table 3 shows comparative data on electro-
chemical oxidation of various azo dyes.

Effect of electrode materials
on the electrochemical degradation of azo
dyes

Various electrode materials have been used to remove azo
dyes from water using electrochemical oxidation. Using
electrode materials with high oxygen over-potential makes
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Fig.2 Dissolved organic carbon (DOC) abatement: a and color
removal vs. electrolysis time for the degradation of Acid Red 1 (AR1)
solutions, b using a Pt/air-diffusion cell (open symbols) or a boron-
doped diamond (BDD)/air-diffusion cell (solid symbols). Method:
(O,®) Anodic oxidation with formation H,O, (AO-H,0,), (O0,M)
electro-Fenton (EF) with 0.5 mM Fe?* and (A,) photo-electro-Fenton
(PEF) with 0.5 mM Fe?* and 6 W ultraviolet light of ,,,, =360 nm.
Poor dissolved organic carbon (DOC) removal of the AR1 solution
by AO-H,O, with Pt, only reaching 16% mineralization at the end.
The alternative use of a BDD anode causes a much faster DOC decay;
up to attain 93% mineralization at 360 min. The slow DOC removal
found for EF with Pt at long electrolysis time. The faster degrada-
tion process under the action of 'OH in the bulk can also be observed
in EF with BDD, primordially during the first 180 min of treatment
where 80% DOC reduction was already achieved. When the PEF pro-
cess was applied, less influence of the anode material was found due
to the potent action of UVA irradiation. PEF yielded a very fast min-
eralization of the ARI solution to yield almost total mineralization
(>96% DOC removal) after 300 min using Pt, and in a shorter time
of 240 min for BDD. Reprinted by permission from Florenza et al.
(2014a). Copyright 2014, Elsevier

it possible to treat azo dyes containing solutions effec-
tively. On metal oxide electrodes, Methyl Orange oxidation
proceeds mainly with the generation of hydroxyl radicals
(Mais et al. 2020). When comparing the efficiency of the
process of Methyl Orange electrochemical oxidation on
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various electrode materials, complete removal of color and
chemical oxygen demand has been achieved only using the
BDD anode, while residual chemical oxygen demand was
in the solution treated with PbO, anode, and TiRuSnO,
anode allows only partial oxidation (Labiadh et al. 2015).
The use of heterostructures of various metal oxides as elec-
trodes with additional treatment using ultrasound and UV
light makes it possible to increase the efficiency of Methyl
Orange oxidation due to the synergistic effect of various
processes (He et al. 2010; Peng et al. 2013). Methyl Orange
electrochemical oxidation on PbO, deposited on Ti/SnO,—Sb
substrate and doped with P25-TiO, has been studied (Xu
et al. 2013a). In this case, a synergistic effect was observed
between electrochemical oxidation and photo-catalysis on
P25-TiO, under UV light irradiation. The same synergistic
effect was also observed for the composite electrode based
on TiO, and BDD (Pacheco-Alvarez et al. 2018). PbO,
nanospheres deposited on SnO, nanowires and deposited
on a titanium substrate (PbO, nanospheres @ SnO, nanow-
ires/Ti) also indicated high efficiency of Methyl Orange
oxidation. During 60 min of electrolysis, chemical oxygen
demand decreased by 92.7% at 25 °C and pH 5.0 under a
current density of 15 mA/cm? (Li et al. 2014b).

The anode material plays a vital role in Acid Orange 7
electrochemical oxidation. When BDD is used as the anode,
complete decolorization of the Acid Orange 7 solution and
chemical oxygen demand removal by more than 90% were
observed (Fernandes et al. 2004). When comparing the
activity of platinum and BDD anodes, BDD shows a higher
rate of Acid Orange 7 mineralization with the formation of
end oxidation products such as CO, and inorganic ions such
as sulfate, nitrate, and ammonium (Hammami et al. 2008;
Zhang et al. 2014a). At the same time, it can be noted that
Acid Orange 7 oxidation on BDD leads to the formation of
polymer intermediates at low pH values (Chen and Chen
2006). The formation of inorganic compounds as end prod-
ucts of Acid Orange 7 oxidation also occurs when PbO,
is used as the anode. The PbO, anode modified with neo-
dymium and cerium also shows a high efficiency upon Acid
Orange 7 oxidation (Qiao et al. 2018).

Comparison of SnO,-Sb, PbO,-F, and BDD anodes
showed that a higher decolorization rate was obtained using
the SnO,—Sb and PbO,-F anodes in dilute Acid Orange 7
solutions, while a higher rate of chemical oxygen demand
removal from concentrated Acid Orange 7 solutions was
obtained using BDD and SnO,—-Sb electrodes (Mao et al.
2008). Ti/SnO,-Sb doped with titanium nitride (TiN) nano-
particles also had a higher Acid Orange 7 decolorization
efficiency than Ti/Sb-SnO, (Duan et al. 2014). It was found
that BDD was much more active than Ti/Sb,05-SnO, elec-
trodes during Acid Orange 7 oxidation (Chen et al. 2003).
Ta,O5 coating is an effective method for improving surface
morphology and electrochemical characteristics of Ti/TiO,/

@ Springer

PbO, nanotubes. The degradation efficiency of Acid Orange
7 and total organic carbon removal using the Ti/TiO, NT/
Ta,05-PbO, anode was almost 100 and 98.3%, respectively,
compared to the Ti/PbO, anode at the same electrical charge
consumption 3 A-h/L (Gui et al. 2019). When TiO,-modified
p-PbO, was used as the anode material in photo-electro-
catalysis, the maximum efficiency of Acid Orange 7 removal
was reached at pH of 2.29 (Li et al. 2006a). In this case, Acid
Orange 7 was oxidized due to the formation of hydroxyl
radicals and direct electron transfer, as well as the hole gen-
eration on TiO, upon UV light irradiation (Li et al. 2006b,
2014a).

The use of spent activated carbon (resulted from adsorp-
tion of wastewater with heavy metals) for electrochemical
decolorization of the Acid Orange 7 solution in the presence
of peroxydisulfate is reported by Li et al. (2016). Granular
activated carbon electrode is able to decompose peroxy-
monosulfate and peroxydisulfate, which leads to the forma-
tion of sulfate radicals (SO, ™) and ‘OH (Li et al. 2017a).
Catalysts based on iron and cobalt supported by mesoporous
silica lead to an increase in electrochemical activation of
peroxydisulfate with the formation of SO, ™, which leads to
effective chemical oxygen demand and total organic carbon
removals from the solution of Orange II (Cai et al. 2014).
The same effect on Acid Orange 7 electrochemical oxidation
by peroxydisulfate is also observed in the presence of Fe;0,
(Lin et al. 2014). Activated carbon fiber can be used as an
in situ regenerated cathode-adsorbent during Acid Orange 7
electrochemical oxidation in the presence of Fe** ions and
peroxymonosulfate. The azo dye adsorbed on the cathode
surface is able to completely degrade and mineralize the
dye, leading to an in situ regeneration of the adsorbent (Sun
et al. 2020).

Acid Orange 7 electrochemical oxidation is promoted
by the presence of chlorides in the solution. The formation
of active chlorine contributes to faster indirect oxidation
of the dye molecules. The degree of total organic carbon
removal using Ti/RuO,-Pt electrode was 79.48% with com-
plete decolorization of the solution (Zhang et al. 2014b). In
chloride-containing solutions, decolorization proceeds faster
upon increasing chloride concentration, but complete miner-
alization of Acid Orange 7 is not achieved when anodes with
low oxygen over-potential are used (Scialdone et al. 2014).
A more considerable chemical oxygen demand decrease for
Acid Orange 7 solutions is observed using BDD (Scialdone
et al. 2014).

Acid Orange 10 electrochemical oxidation has been stud-
ied using various electrode materials and approaches (Radha
et al. 2012; Lounis et al. 2016; Hamous et al. 2020, 2021).
In particular, Acid Orange 10 degradation on a platinum
electrode was studied in detail by Hamous et al. (2020). The
mechanism of Acid Orange 10 oxidation in chloride and
sulfate electrolytes differs. The presence of chlorides in the
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solution leads to accelerated oxidation of Acid Orange 10
molecules, just as for other azo dyes, which is associated
with the formation of hypochlorite ions and indirect oxi-
dation of the azo dye. Non-active electrodes, such as Ti/
SnO,—Sb (Sarafraz et al. 2015) and Ti/PbO, (Bonyadinejad
et al. 2016), are able to produce hydroxyl radicals through
water oxidation. Under optimal electrolysis conditions, com-
plete decolorization of the dye solution was achieved, and
chemical oxygen demand/total organic carbon removal was
61.3/43.9% for Ti/SnO,—Sb and 63/60% for Ti/PbO,, respec-
tively (Sarafraz et al. 2015; Bonyadinejad et al. 2016). Modi-
fication of the Ti/Sn0O,-Sb,05—RuO, anode with tantalum
improves electro-catalytic properties during Acid Orange 10
oxidation due to an increase in the ability to generate ‘OH
(Zhao et al. 2022). Only partial Acid Orange 10 oxidation
was observed on a titanium anode coated with IrO,/TaO,/
RuO, (Muthukumar et al. 2007). Ti/TiO,-based semicon-
ductor anodes enable the oxidation of Acid Orange 10 upon
UV light irradiation (Xie and Li 2006). In this case, the dye
oxidation can occur through photo-electro-catalysis, electro-
oxidation, and electro-Fenton processes.

Among the studied anode materials, BDD was proved
to be the most potent anode for Acid Red 27 oxidation
because of high oxygen over-potential and the formation of
hydroxyl radicals slightly adsorbed on its surface, as com-
pared to Pt (Jain et al. 2009) and PbO, (Elaissaoui et al.
2016, 2019). On the other side, anode materials such as Ti/
IrO,-Ta,05 (Fajardo et al. 2016), IrO,-Ru,0-Sn0O,-TiO,/
Ti, Ru,0-Sn0,-TiO,/Ti (Salazar-Gastélum et al. 2013) and
Ti/Pt-SnSb (Fajardo et al. 2017) are preferred as anodes in
Acid Red 27 oxidation due to their relatively low cost, even
though the dye oxidation efficiency is lower as compared to
BDD (Fajardo et al. 2016).

Methyl Red electrochemical oxidation was studied
by different groups (Panizza and Cerisola 2007; Santos
et al. 2020a, b). It was noted that the degree of chemical
oxygen demand removal depended on the anode mate-
rial and decreased in the following order: Si/BDD > Ti/
PbO, > Pt > Ti/Ti( 5oRug 4551, sO, (Panizza and Cerisola
2007). Under the optimal conditions, the electro-Fenton pro-
cess (Zhou et al. 2008) led to decolorization of the solution
with a concentration of 20 mg/L in 20 min, while at a higher
dye concentration (100 mg/L) only 74% decolorization was
achieved. In addition, Methyl Red electrochemical oxida-
tion was studied using other anode materials such as PbO,
and BDD (Panizza and Cerisola 2008), Ti/Ru 34Ti( 460,
(Morais et al. 2013), RuO,-IrO,-TiO, (Sathishkumar et al.
2017), Zn(OH), and ZnO thin films (Ahmad et al. 2022).
Its oxidative degradation was also carried out by electro-
Fenton process oxidation along with the generation of active
chlorine species (Ma and Zhou 2009; Sathishkumar et al.
2017). Finally, Tavares et al. (2012) reported the electro-
catalytic activity of two anode materials, Ti/Ru, ;Ti, ;O, and

Ti/Pt, during direct and indirect electrochemical oxidation
of Methyl Red with the determination of the resulting oxida-
tion products.

Under optimal conditions, when PbO, is used as anode,
continuous oxidation of the Acid Red 18 dye occurs, leading
to the removal of 99.9% of the dye and 80.0% of chemi-
cal oxygen demand after 180 min of electrolysis (Rahmani
et al. 2015). The electro-Fenton process is a relatively fast
and efficient method for Acid Red 18 removal from indus-
trial wastewater (Malakootian and Moridi 2017). Complete
mineralization is achieved after 15 min of electrolysis using
heterogeneous catalysts such as magnetite (Fe;O,) and
hematite (Fe,0;) (Ben Hafaiedh et al. 2020). Simultaneous
ozone exposure and electrochemical oxidation synergisti-
cally affect Acid Red 18 removal from aqueous solutions
(Parsa et al. 2014). Table 4 shows the results of processing
Reactive Black 5 solutions using various electrode materials.

Electrochemical oxidation of Reactive Orange 16 azo dye
was mainly carried out using BDD. A systematic study on
the influence of various supporting electrolytes and various
current densities on simultaneous ozone exposure and elec-
trochemical oxidation synergistically affects Acid Red 18
removal from aqueous solutions of Reactive Orange 16 dye
with BDD was made by Lanzoni Migliorini et al. (2017). A
higher rate of Reactive Orange 16 oxidation was observed in
the K,SO, solution at pH 10, which was associated with the
effect of deprotonation of the dye molecule, which contrib-
uted to the destruction of the dye molecule, in particular, of
the azo bond. In addition, a higher concentration of hydroxyl
ions promoted the generation of hydroxyl radicals on BDD
(Migliorini et al. 2011). Comparison of the efficiency of
Reactive Orange 16 oxidation on Ti—-Pt/#-PbO, and BDD
using a filter-press reactor showed that BDD was more
effective in decolorizing the solution than Ti—Pt/f-PbO,;
complete decolorization was achieved by passing 1.0 Ah/L
and 2.0 Ah/L, respectively. The presence of NaCl led to a
decrease in the time for complete decolorization due to the
electro-generation of active chlorine (Andrade et al. 2009).

The use of a platinum wire as an anode in Reactive
Orange 16 oxidation showed lesser efficiency. After 4 h of
electrolysis by chronoamperometry, the degree of decolori-
zation of the dye solution was only 40% in an acidic medium
and 18% in an alkaline medium (Aggadi et al. 2021). At the
same time, 93% decolorization of the Reactive Orange 16
solution was achieved in a flow cell on a Pt electrode after
60 min at 2.2 V/SHE using 1.00 g/L NaCl as electrolyte
(Gomes et al. 2011). A thin Pt film on a titanium substrate
(Pt/Ti) (Gomes et al. 2009) and an anode based on plati-
num oxide (Mijin et al. 2015) also showed good efficiency
in Reactive Orange 16 oxidation. For Pt electrode, a 93%
decolorization was obtained after 60 min at 2.2 V/SHE using
0.017 M NaCl solution and 0.5 M H,SO, solution as an
electrolyte. For Pt/Ti electrode, the color removal was 98%

@ Springer
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Table 4 Decolorization and chemical oxygen demand removal of Reactive Black 5 solution using various electrodes

Anode material ~ Type of process  Initial concentra- Current density ~ Process parameters Color COD TOC™ Referencse
tion removal, removal, %
%
Boron-doped Anodic oxidation 40 mg/L 1 mA/cm? 0.02 M Na,SO,, natu- 97 51 Yavuz and Shah-
diamond ral pH bazi 2012
100 mL/min, 40 min
Reticulated vitre- Electro-Fenton 200 mg/L 20.6 mA/cm? 0.5M Na,SO,,23°C, >98 82 Vasconcelos et al.
ous carbon flow rate 100 dm/h, 2016a
90 min
[Fe?*]>0.05x 107 M
RuO,/IrO,/TiO, Anodic oxidation 300 mg/L 100 A/m? 0.008 M NaCl, 60 min 99 33 Jager et al. 2018
18%*
Ti/RuO, Anodic oxida- 40 mg/L 2.5 A/dm? 10 L/h, 0.1 M NaCl, 100 74,05 Raghu and Basha
tion in NaCl pH 10.6 2007
medium
Graphite Anodic oxidation 70 mg/L - 0.1 M Na,SO,, 3 h 100 95% Rivera et al. 2011
04L
Ti/(RuO,)y (S  Anodic oxidation 26.4-93.6 mg/LL.  0.62-12.38 mA/ 0.0062-0.1238 M 100 73.77 Viana et al. 2018
b,03)0 cm? NaCl, 180 min
Ti/Ti0,-RuO,- Three-dimen- 25 mg/L 15 mA/cm? pH=3, 60 min, 98.9 85.96 Mengelizadeh
IO, sional 100 mg/L particle etal. 2019
electrochemical electrode
reactor
Ti/Pt Indirect oxida- 4 mg/L 571 A/m? pH 4.0, 91.6 83.3* Feng et al. 2022
tion [Ce(IV)]=50 pM,
0.05 M Na,SO,

COD-chemical oxygen demand; TOC—total organic carbon

under the same conditions (Gomes et al. 2009). The use of
thin-film TiO, electrodes led to the complete decolorization
of the Reactive Orange 16 solution after 20 min of photo-
electro-catalysis (Carneiro et al. 2004). The efficiency of
Reactive Orange 7 oxidation in the flow mode was 90.91%
(Basiri Parsa et al. 2015). Reactive Orange 7 oxidation was
also studied using the C/PbO,, Pb+ Sn/PbO, + SnO,, Pb/
PbO, electrodes. At 25 °C and in the presence of 4 g/L
NaCl, almost complete Reactive Orange 7 oxidation was
achieved using these electrodes after 15 min (97.66%, 95.33,
and 94.60% for C/PbO,, Pb + Sn/PbO, + SnO, and Pb/PbO,
electrodes, respectively) at pH of 2.54 and current density
of 25 mA/cm? (Ghalwa et al. 2012).

Using a titanium electrode modified with ZnO and car-
bon nanotubes, the maximum efficiency of Reactive Orange
7 oxidation for the dye mixture removal was only 25.9%
(Mahmoudian et al. 2021), while using Ti/nano ZnO—-CuO
under optimal conditions, the color decreased by 99.16% and
chemical oxygen demand by 66.66% after 60 min of elec-
trolysis (Akbari et al. 2022). Complete oxidation of Reac-
tive Orange 107 (RO107) azo dye using composite electrode
materials Ce, gGd, ,0,, Ce, gNd, ,0, and Ce gSm, ,0, was
also reported (Rajkumar et al. (2015). Results obtained for

@ Springer

the electrochemical oxidation of some reactive azo dyes are
given in Table 5.

Electrochemical oxidation of Congo Red was studied
using BDD (Jalife-Jacobo et al. 2016), Pb/PbO, (Chen
et al. 2021), graphite (Kaur and Kaur 2016), Ti/RuO,-IrO,
(Sathishkumar et al. 2019), multiwalled carbon nanotubes—
MnO,/Ni (Zhu and Chen 2021) and polyaniline-/graphene-
modified anode (Li et al. 2022). Complete removal of total
organic carbon during oxidation of direct azo dyes requires
long electrolysis time, which is associated with the forma-
tion of a larger number of aromatic fragments produced
upon breaking the —-N =N- bond (Faouzi et al. 2006; Shetti
et al. 2019). During Congo Red oxidation using BDD, a
qualitative analysis by spectrophotometry showed different
behaviors of Congo Red molecules during ozonation and
electrochemical degradation. During ozonation, a rapid
decolorization of the solution was observed, while the color
remained until the end of the galvanostatic electrolysis. This
is due to the difference in the oxidation mechanisms of the
two processes. Simultaneous degradation of azo groups
and subsequent degradation during electrochemical oxida-
tion using BDD with complete removal of chemical oxygen
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demand and total organic carbon are assumed during ozona-
tion (Faouzi Elahmadi et al. 2009). The better ability of -
PbO, to generate ‘OH contributed to the Congo Red removal
(68.62%) from its initial concentration of 20 mg/L and at
current density of 8§ mA cm™ for 20 min (Chen et al. 2021).

A comparative study of Direct Red 23 oxidation in
aqueous solutions by electro-Fenton process using various
anodes: carbon-graphite, Ti,0, Magneli phase, BDD and
DSA, was reported by Titchou et al. (2021b). The highest
total organic carbon removal efficiency was achieved using
BDD anode at a current density of 5 mA/cm?. When treat-
ing a Direct Red 23 solution with an initial concentration of
60 mg/L, total organic carbon removal was about 86% at 6 h
electrolysis and in the presence of NaCl and Na,SO, electro-
lytes. Using BDD anode led to the complete decolorization
and 50.2% mineralization during electrochemical degrada-
tion of Direct Blue 71 dye operated in flow mode and under
galvanostatic conditions, at a current density of 7.75 mA/
cm? and a flow rate of 600 mL/min (Xu et al. 2022). The
presence of chloride ions accelerated the oxidation of direct
azo dyes (Kupferle et al. 2006; Jalife-Jacobo et al. 2016)
including Congo Red (Jalife-Jacobo et al. 2016) and Direct
Red 83 (Kupferle et al. 2006). Complete decolorization of
the Direct Blue 71 triazo dye solution was achieved after
90 min of electrolysis with Pt anode, and complete minerali-
zation occurred after 120 min in a laboratory electrochemi-
cal reactor (Parsa et al. 2009).

Electrochemical treatment is able to achieve almost com-
plete chemical oxygen demand removal from wastewater
with high current yield (Vaghela et al. 2005). When treat-
ing wastewater containing a mixture of active azo dyes by
electrocoagulation in combination with electrochemical oxi-
dation processes, in particular electro-Fenton process, com-
plete removal of turbidity and color and 97% removal of total
organic carbon were achieved. In this case, energy consump-
tion for decolorization of wastewater was 0.45-1.5 kWh/kg
of removed total organic carbon depending on the current
density (Zazou et al. 2019).

Studies on the treatment of wastewater containing azo
dyes have been carried out using various anode materials
such as Ti/Pt (Wang et al. 2009), RuO,/IrO,/TaO, (Bhaskar
Raju et al. 2009), graphite (Bhatnagar et al. 2014), Ti—Pt/f-
PbO, and Ti/Ti, ;~Ru,, 30, (Aquino et al. 2014), BDD (Zhu
et al. 2011), and Ti/RuO,/IrO, (Raghu et al. 2009). Nota-
bly, higher efficiency in chemical oxygen demand and total
organic carbon removals were observed for metal oxide
electrodes and BDD. The use of electrochemical process for
oxidative degradation of organic azo dyes made it possible
to bring the indices of wastewater to the standard level for
its discharge into the environment without further treatment
(Gallios et al. 2012).
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Factors controlling the performance
of the electrochemical oxidation of azo dyes

Various factors, including pH, applied current or voltage,
hydrogen peroxide generation rate (in the case of electro-
Fenton process), electrode material, initial dye concentra-
tion, electrolyte type and concentration, electrode spacing
and electrolysis time, affect the removal of azo dyes by
electrochemical oxidation processes (Vasudevan and Oturan
2014; Nidheesh et al. 2018; Rodriguez-Narvéez et al. 2021;
Qiao and Xiong 2021; Sun et al. 2022). The transition
to a more complex structure of the dye molecule led to a
decrease in the rate of electrochemical decolorization. It was
shown (Chen et al. 2020) that the degradation rate changed
downward in the following series: fuchsine acid—Reactive
Red 2—-Acid Orange G—Alizarin Red—Acid Blue 92—Reactive
Orange X-GN-Orange II-Reactive Blue 19. The use of the
electro-Fenton process led to a significant acceleration of
oxidation yield of reactive azine azo dyes. For example, the
decrease in total organic carbon for Acid Red 2 during 3 h of
electrolysis was 87% (Lei et al. 2015). The use of ultrasound
also significantly enhanced electro-oxidation of reactive azo
dyes (Somayajula et al. 2012).

Among reactive dyes, electrochemical oxidation of Reac-
tive Orange 7 attracted the most attention of researchers.
The effect of the initial dye concentration, solution pH, elec-
trolyte concentration, and current density on the efficiency
of Reactive Orange 7 removal using Ti/Sb-SnO, anode has
been studied. Under the optimal conditions, complete decol-
orization was achieved after 5 min; chemical oxygen demand
reduction was up to 70.3% after 90 min (Basiri Parsa et al.
2013). Depending on the type of anode and cathode materi-
als, the type of process and the electrolyte, acid azo dye Acid
Red 18 can be degraded due to a single or combined action:
direct anodic oxidation, indirect (mediated) oxidation near
the anode or in the bulk of the solution by the homogene-
ously generated ‘'OH and by indirect oxidation with active
chlorine (Thiam et al. 2015a, 2016).

The efficiency of Methyl Orange removal from solutions
by electrolysis is affected by current density, electrolyte con-
centration and solution pH (Oukili and Loukili 2019). Aera-
tion of Methyl Orange solutions during electrochemical oxi-
dation increases the process efficiency, which is associated
with the formation of hydrogen peroxide on the cathode (Li
et al. 2013b; Zhang et al. 2015). The introduction of halogen
salts to the solution increased the rate of Methyl Red miner-
alization as follows: control < NaCl < NaBr < NaF. The use
of a titanium plate anode led to the formation of an anatase
film on its surface, which enhanced the Methyl Red oxida-
tion due to the synergistic effect resulting from the combina-
tion of electrochemical oxidation and photo-catalysis on a
titanium anode (Martin de Vidales et al. 2020).
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Acid Orange 7 electrochemical degradation combined
with a photo-catalytic process led to a higher dye conversion
(Kusmierek and Chrzescijanska 2015). The use of a TiO,
coating consisting of 29% rutile, 9% anatase and 62% Ti;O 5
on a stainless steel substrate as a photo-anode and an air-
diffusion cathode to produce H,0, in a photo-electrochem-
ical cell under sunlight irradiation resulted in the complete
decolorization of the solution after 120 min under optimal
conditions. The photo-anode made by immobilizing a TiO,
film on activated carbon fibers (TiO,/AC) was also used
to remove Orange II (Hou et al. 2009). Good results were
obtained during AO7 photo-electrochemical oxidation using
a composite electrode made of exfoliated graphite and bis-
muth vanadate (EG-BiVO,) (Orimolade and Arotiba 2019).

Using different anode materials and different electro-
chemical cell design options, the effect of different operat-
ing parameters, such as the anode material (Oliver-Tolentino
et al. 2014; Popli and Patel 2015; Sowmiya et al. 2016; Soni
et al. 2017), solution pH (Yavuz and Shahbazi 2012; Radi
et al. 2012), nature of the electrolyte (Sakalis et al. 2005;
Rivera et al. 2011; Vasconcelos et al. 2016b), initial dye
concentration (Navarro et al. 2010; Li et al. 2019), cathode
material (Méndez-Martinez et al. 2012; Aveiro et al. 2018),
current density (Singh et al. 2017; Koulini et al. 2022), elec-
trode potential (Cerdn-Rivera et al. 2004) and applied volt-
age (Jovic et al. 2013), on the efficiency of Reactive Black
5 removal was optimized. Several authors noted that color
removal, current efficiency, chemical oxygen demand and/or
total organic carbon decrease, and specific energy consump-
tion are mainly depend on the above parameters (Rao et al.
2006; Bansal et al. 2013; Jager et al. 2018; Mengelizadeh
et al. 2019; Saxena and Ruparelia 2019). In addition, the
structure of the reactive azo dye can also affect the oxidation
efficiency, as reported during electrochemical oxidation of
four reactive azo dyes (Reactive Orange 91, Reactive Red
184, Reactive Blue 182, and Reactive Black 5) using a Ti/Pt
electrode (Sakalis et al. 2005).

Examples of reactive azo dyes containing azine rings are
Reactive Orange 4 and Reactive Orange 13, which differ
only in one substituent: -OH (Reactive Orange 4) or -NH,
(Reactive Orange 13). During oxidation using a Ti/Pt anode
in a chloride-containing electrolyte, it was found that the
active group had an effect on the solution decolorization
efficiency. The presence of the -NH, substituent ensured a
higher decolorization rate than that of the -OH substituent
(Gutiérrez-Bouzan and Pepi6 2014). In this case, the dye
concentration was the most significant factor in electrochem-
ical oxidation of the both reactive dyes, Reactive Orange 4
and Reactive Orange 13 (Nordin et al. 2015; Lépez-Grimau
et al. 2018).

High energy consumption of the electrochemical method
is one of the disadvantages, which prevents its large-scale
application for wastewater treatment. Therefore, most studies
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Fig.3 Energy consumption (E) and chemical oxygen demand (COD)
removal of wastewater from textile industries at anodic oxidation on
boron-doped diamond (AO (BDD)); anodic oxidation on PbO, (AO
(PbO,); by electro-Fenton process oxidation with use of Ti/RuO,
anode (EF (Ti/RuO,) and photo-electro-Fenton (PEF) process. The
AO (BDD) process is the most effective for the COD removal, but
this is accompanied by increased energy consumption. The most pre-
ferred type of electrochemical oxidation of azo dyes with efficiency
of COD removal and low power consumption is PEF. The diagram
is made according by the data given in Aquino et al. (2011), Hmani
et al. (2012) Kaur et al. (2019) and Salazar et al. (2019)

on electrochemical oxidation of azo dyes have been carried
out in laboratory conditions using individual dyes as model
pollutants. However, it is essential to test the treatment of
real wastewater from the textile industry, which is a complex
system containing not only azo dyes, but also other related
pollutants, as well as a large amount of suspended solid
particles, pH varying over wide ranges, high temperature,
chemical oxygen demand and various mineral salts (Chatz-
isymeon et al. 2006; Solis et al. 2012).

The efficiency of electrochemical treatment of real waste-
water from the textile industry was evaluated in several
works to determine the optimal process conditions (Fig. 3).
For example, effluents from ink manufacturing contain a
wide variety of pollutants such as dyes, surface-active mate-
rials, and solvents (Mukimin et al. 2017). Electrochemical
oxidation of a mixture of dyes (Methylene Blue and Rhoda-
mine B), solvents (monoethylene glycol, diethylene glycol,
and glycerol), and surface-active materials (sodium dodecyl
benzenesulfonate) has been studied using a single-chamber
electrochemical flow cell with BDD as the anode and stain-
less steel as the cathode (Caiiizares et al. 2007).

Degradation products and their toxicity
evolution during electrochemical oxidation

Toxicity reduction of dye solutions during the application

of electrochemical technologies for removing azo dyes is of
great importance. Degradation products of azo dyes such as
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aromatic amines can be mutagenic and carcinogenic (Selva-
raj et al. 2021). Evaluating the toxicity of azo dye solutions
after treatment using an electrochemical approach is vital
for their subsequent discharge into water bodies or its use
for other purposes. Incomplete oxidation of the azo dyes or
their intermediates may cause the toxicity of the solution
to change slightly, and sometimes may increase it because
of the formation of more toxic intermediate products (Xia
et al. 2020).

The possibility of toxic chlorinated organic intermedi-
ates production during the indirect electrochemical oxidation
(Jager et al. 2018), which are more harmful than the original
azo dyes, is a drawback of the system. Evaluation of the
phytotoxicity using Vigna radiata of the initial wastewater
containing azo dyes and solutions after anodic oxidation
with generation active chlorine species on Ti/IrO,-RuO,-
TiO, anode with subsequent biological treatment led to the
decrease of toxicity (Aravind et al. 2016). At the beginning
of electrochemical oxidation on Fe-doped PbO,, toxicity of
the treated Acid Orange 7 solution towards Vibrio fischeri
slightly increases and then rapidly decreases to non-toxicity
upon increasing electrolysis time (Xia et al. 2020). In the
initial period of treatment of azo dyes by electrochemical
oxidation, an increase in the toxicity of the solution was
observed (Le et al. 2016). When Acid Orange 7 was oxidized
by the electro-Fenton process, an increase in the toxicity up
to 100% was noted, which was measured by observing the
inhibition of marine bacteria Vibrio fischeri. This is due to
the formation of intermediates like 1,4-benzoquinone and
1,2-naphthoquinone, which are more toxic than the initial
dye. Further electrochemical treatment leads to complete
mineralization and a decrease the toxicity (Le et al. 2016).

During electrochemical oxidation of azo dyes, first of
all, the azo bond breaks and then benzene and naphthalene
rings are gradually destroyed forming anthraquinone struc-
tures (Yang et al. 2014), which leads to the decolorization
of the solution. Subsequently, the aromatic ring opening
reaction results in the formation of aliphatic compounds
(Fajardo et al. 2016). Sulfur in the diazo dye turned into
S0,>~, and nitrogen to NO;~ and/or NH," ions, and a part
of N is removed from the solution as in the form of nitro-
gen-containing gaseous products (Antonin et al. 2015).
The oxidation of azo dyes leads to the formation of various
intermediates. For example, a total of 21 aromatic interme-
diates and 13 hydroxylated derivatives, including diazo,
monoazo, biphenyl, benzene, naphthalene and phthalic acid,
were identified as intermediate products formed during the
electrochemical oxidation of Congo Red dye (Solano et al.
2015). Tartaric, tartronic, acetic, oxalic and oxamic acids
were identified as end-products. Like in the case of Congo
Red oxidation, electrochemical oxidations of Evans blue
diazo dye led to the formation of 19 aromatic intermediates
and 16 hydroxylated derivatives, including diazo, monoazo,
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biphenyl, benzene, naphthalic, and phthalic acids (Antonin
et al. 2015).

Both aromatic fragments and nontoxic carboxylic acids,
such as maleic, fumaric, formic, and oxalic ones, were iden-
tified as products of electrochemical oxidation of the Methyl
Orange using various methods (Mérquez et al. 2020). The
detection of ascorbic, benzoic, and citric acids, as well as
hydroquinone and 1,4-benzoquinone, was also reported upon
Methyl Orange oxidation using BDD as an anode (Guivarch
et al. 2003; Isarain-Chavez et al. 2013). Various aromatic
compounds and carboxylic acids are the primary intermedi-
ates during Acid Orange 7 dye oxidation (Table 6). Carbox-
ylic acids such as maleic, tartronic, acetic, formic, oxalic,
and oxamic were identified as products of Acid Orange 10
electrochemical oxidation, while ammonium and sulfate
were the main inorganic ions (EI-Ghenymy et al. 2014).

Up to 15 aromatic structures and carboxylic acids, includ-
ing oxalic and formic acids, were identified as end products
of Acid Red 14 electrochemical oxidation. Nitrates and sul-
fates were the main ions formed during carmoisine minerali-
zation (Thiam et al. 2015¢). Analysis of the products of Acid
Red 27 oxidation by high-performance liquid chromatogra-
phy coupled with mass spectroscopy showed the presence of
naphthalenediol isomers in the solution of primary amines
(Zhang et al. 2009). The resulting amines underwent further
degradation, and phthalic acid, phthalic anhydride, benzoic
acid, and phenol were found in the solution (Fig. 4). The
next step involved ‘OH electrophilic addition to the aromatic
ring to form phenolic hydroxyl derivatives, which could be
converted to aliphatic intermediates by opening the aromatic
ring (Zhang et al. 2009).

During Acid Yellow 36 electrochemical degradation,
oxalic, maleic, formic, fumaric and other carboxylic acids
form as main end-products before mineralization (Ruiz
et al. 2011). In another work, maleic and acetic acids were
reported as the end-products of electrochemical oxidation,
and the accumulation of SO,*~, NO;~ and NH," ions has
also been revealed (Aguilar et al. 2017). It was reported that
Methyl Red solution decolorization and carboxylic acid
degradation occur on Si/BDD and Pb/PbO, anodes (Santos
et al. 2020b, a). Two intermediate compounds, 2-aminoben-
zoic acid and N,N'-dimethyl-p-phenylenediamine, are the
main intermediate products of the first stage of Methyl Red
oxidation due to breaking of the azo bond. Both aromatic
compounds are colorless, upon subsequent degradation by
hydroxylation and ring opening; they form aliphatic primary
and secondary amines (Santos et al. 2020b, a). An analysis
of inorganic ions that form during Methyl Red electrochemi-
cal oxidation shows that NO;~ and NO, ™ ions are resulted
from the splitting of the chromophore group (Morais et al.
2013). Evaluation of phyto-toxicity of the Methyl Red solu-
tion after electro-oxidation for 10 min shows 100% germina-
tion of Vigna radiata samples (Sathishkumar et al. 2017).
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Table 6 Intermediates of Acid Orange 7 degradation products formed during electrochemical processes and identified by various analytical
methods

Molecular for- Name Structure Electroly-  Electrolysis character-  Detection Refer-
mula sis time istics method ences
C,oHoNO 1-Amino-2-naph-
O 2
OH
C¢H;NO;S 4-Aminobenzene- 10-30 Fe-PbO, electrode Gas chro- Xia et al.
sulfonic acid H2N SO3 H [Dye],=25-200 mg/L, matogra- 2020
0.02-0.3 M phy—mass
) Na,SO,, pH=3-11, spectrometry
C,oHg0, Naph'thalene 1, =10-40 mA/cm?
3-diol
OH
C,oHg04 Naphthalene-1, 2,
4-triol
HO O OH
OH
C¢HgO, p-Dihydroxyben-
zene HO O
C,H,OH 2-Naphthalenol HO 30 Granular activated Gas chro- Zhao et al.
carbon electrode matogra- 2010
[Dye],=300 mg/L, phy—mass
0.02M spectrometry
C,H,0, 2-Hydroxybenzal- OH 30
dehyde ©i'
O
C¢H,0, p-Benzoquinone 60 Na,SO,, pH=3.0

.
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Table 6 (continued)

Molecular for- Name Structure Electroly-  Electrolysis character-  Detection Refer-
mula sis time istics method ences
C;H,0; Salicylic acid O OH 120
OH
C,H,,0, Enanthic acid O 180
OH
C¢H,,0, Hexanoic acid CHj;(CH,),COOH 180
H,NC, H,OH 1-Amino 2-naph- :[\H—I2 60
tol | OH
C,0HsO, 1,2-naphtoquinone 0 30 Boron-doped diamond ~ High-perfor- ~ Hammami
anode mance liquid  etal.
O [Dye]y=175 mg/L, chromatog- 2008
0.05 M Na,SO,, raphy
0.10 mM Fe?*,
pH=3.0,/=60 mA
C¢H;NO;S Sulfanilic acid 10
HO,S NH,
HOC¢H,SO;H 4-hydroxybenzen- 5-10
sulfonate
CgHO, Phthalic acid 50

HO

QSOOH
0
OH
0

The presence of residual total organic carbon in acid
azo dye solutions after electrolysis is associated with the
formation of low molecular weight carboxylic acids, such
as maleic, and amber acids, as intermediate and end oxida-
tion products (Li et al. 2013a). Besides maleic acids, vari-
ous aromatic compounds form as intermediate products
of oxidation of acid azo dyes, which undergo degrada-
tion during further electrolysis. For example, 11 aromatic
intermediates, 15 hydroxylated compounds, 13 desul-
fonated derivatives and 7 short linear carboxylic acids
were identified as intermediates in AR1 oxidation using
anodic oxidation-H,0,, electro-Fenton, and photo-electro-
Fenton processes on Pt and BDD (Florenza et al. 2014).
Ultimately, the complete mineralization of acid dyes led
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to the formation of various inorganic ions such as NH,*

NO;~, NO,™, and SO,*~ (Moreira et al. 2013; Thiam et al.
2015b; Afanga et al. 2021). Reactive Black 5 azo dye is
resistant to biochemical oxidation under aerobic condi-
tions, but can be removed under anaerobic conditions.
However, Reactive Black 5 splitting leads to the forma-
tion of aromatic amines, which can be more toxic than
the initial dye molecules (Yavuz and Shahbazi 2012). The
Reactive Black 5 oxidation products are mainly identified
using high-performance liquid chromatography and mass
spectrometry. Electrochemical oxidation of this azo dye
results in its gradual transformation into simpler molecules
such as alkylsulfonylphenol derivatives. Electrochemical
reduction and oxidation pathways of the Reactive Black 5
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Fig.4 The proposed decomposition pathway for the electrochemi-
cal oxidation of amaranth dye (from solutions containing 100 mg/L
analyte in 0.05 M K,SO, and adjusted to pH 12), using a boron-
doped diamond anode and under 35 mA/cm? current density for
5 h: (I) amaranth dye, m/z=535; (II) naphthalenediol, m/z=160;
(I) phthalic acid, m/z=166; (IV) phthalic anhydride, m/z=1358;
(V) benzoic acid, m/z=122; (VI) phenol, m/z=94; (VII) fumaric
acid, m/z=116; and (VIII) oxalic acid, m/z=90. Initially, the cleav-
age of the azo bond occurs with formation aromatic amines. In the
next step, there is the elimination of sulfonic acid groups, followed
by insertion of hydroxyl radical (OH), forming a mixture of isomers
(1,4 and/or 1,2-aminenaphtol). At this point occurs the NH, elimina-
tion followed by insertion of ‘'OH, undergoes the naphthalenediol (II),
this intermediate is in equilibrium keto-enolic (tautomers), and after
addition of ‘OH radical’s phthalic acid is formed (III). The phthalic
acid (III) converted into phthalic anhydride (IV) (internal cyclization)
and subsequently into the benzoic acid (V), after decarboxylation
and hydroxylation processes, and phenol (VI) is formed as a reactive
intermediate, and after the addition of -OH radicals, the fumaric acid
(VID) is identified. At the last stage, the aromatic ring opening occurs
and aliphatic acids, i.e., oxalic acid (VIII) is formation. Reprinted by
permission from Barros et al. (2014). Copyright 2014, Elsevier

dye are described in the previous work (Méndez-Martinez
et al. 2012).

Reactive azo dyes can contain azine rings, including
triazines, which can lead to the formation of oxidation-
resistant compounds during azo group destruction, in par-
ticular, cyanuric acid (2,4,6-tri-hydroxy-1,3,5 -triazine),
which is the end product of s-triazine oxidation (Goutailler
et al. 2001). A product with a chemical structure close to

2-amino-1,5-naphthalenedisulfonic acid formed as an inter-
mediate during the Reactive Orange 4 oxidation using Ti/
SnO,—Sb-Pt (del Rio et al. 2009, 2011). Electrochemical
oxidation of chlorotriazine azo dyes Reactive Red 2 and
Reactive Blue 81 using Ti/TiO,(70%)-Ru0,(30%) anode
under galvanostatic conditions led to the formation of sub-
stituted benzene rings, carboxylic acids, and hydrocarbons
(Kusmierek et al. 2011). 1-(3,6,8-Trihydroxy-1-naphthyl)
urea, nitrobenzene, 1,4-benzoquinone, (3,6,8-trihydroxy-
1-naphthyl) carbamic acid and phthalic acid were identi-
fied as intermediate products of Reactive Red 195 oxidation
using Ti/SnO,-Sb/PbO, (Song et al. 2010).

The mechanism of oxidation of reactive azo dyes, as well
as acid azo dyes, primarily involves breaking of the azo bond
that leads to the decolorization of solution and the forma-
tion of the dye aromatic fragments. BDD can be singled
out among the anode materials, which demonstrate good
efficiency in the oxidation of reactive azo dyes (Bedolla-
Guzman et al. 2017). During oxidation of Brilliant Yellow
X-6G using BDD, the total organic carbon decreases by
72.8% after 2 h of electrolysis (Tang et al. 2020). Carbox-
ylic acids are the main end products. For example, during
the oxidation of Reactive Yellow 160 by anodic oxidation
with generation of H,O,, electro-Fenton and photo-electro-
Fenton processes, formation of maleic, fumaric, tartronic,
acetic, oxalic, oxamic and formic acids was identified. These
carboxylic acids were then completely oxidized until min-
eralization along with the formation of chloride, sulfate
ions, ammonium ions, and, to a lesser extent, nitrate ions
(Bedolla-Guzman et al. 2016).

Reactors used for dye degradation

The electrochemical oxidation of azo dyes was carried
out in various types of reactors and under various operat-
ing conditions. Details about the design of reactors for
the electrochemical oxidation of organic compounds,
particularly azo dyes, using a BDD anode are given in
the review article authored by Cornejo et al. (2021). For
electrochemical oxidation of Acid Red 27, reactors with
a wide range of designs are used. Reactor design consti-
tutes one of the aspects of increasing the performance of
electrochemical processes (Fu et al. 2010; Pogacean et al.
2018; Chang et al. 2020). The use of traditional single-
chamber electrolysis requires significant energy consump-
tion, which depends on the anode material, current density
and wastewater pH (Radha et al. 2009; Aquino et al. 2011).
The use of BDD as the anode in electrochemical reactors
for treating wastewater containing azo dyes leads to the
maximum chemical oxygen demand removal. However,
energy consumption for this electrode is higher, which is
due to the oxidation of azo dyes at high anode potentials.
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Reducing the inter-electrode space to 50 um can improve
the operating costs (about 1 €/m?) and total organic car-
bon removal during wastewater treatment without adding a
background electrode when BDD is used as the anode (Ma
et al. 2018). The presence of chloride ions in the solution
and the formation of hydroxyl radicals during the electro-
Fenton process can lead to a decrease in energy consump-
tion with the same efficiency of chemical oxygen demand
reduction (Kaur et al. 2019). Energy consumption for tex-
tile industry wastewater treatment was reduced by 25-40%
by carrying out the process in a two-chamber electrolyzer
and oxidizing dyes using the anode and cathode chambers
(Raghu et al. 2009). In this type of reactors, hypochlorite
ions forms in the anode chambers, and hydrogen peroxide
forms in the cathode chamber (Bhaskar Raju et al. 2009).

In the case of indirect (mediated) oxidation, the azo
dye removal occurs due to the formation of active chlorine
(Szpyrkowicz et al. 2000). Research results showed that
the solar photo-electro-Fenton process is the most eco-
nomical for wastewater treatment (Salazar et al. 2019).
Combining methods also makes it possible to reduce
energy consumption for wastewater treatment. The elec-
trochemical reactors type for photo-stimulation electro-
chemical oxidation has been reported in various works
(Zainal et al. 2007; Aravind et al. 2018). Energy consump-
tion in this case was about 29.8 and 39.5 Wh/g of chemi-
cal oxygen demand removed during photo-stimulated
electrochemical oxidation and electrochemical oxidation,
respectively (Aravind et al. 2018). Different research
groups (Zhu et al. 2011; Basha et al. 2011) have carried
out experimental studies on wastewater containing azo
dyes by combining electrochemical and biological meth-
ods using bio-electrochemical reactor. Biochemical oxida-
tion can be used either as pretreatment or post-treatment
of the electrochemical processing. The use of additional
treatment, such as biological, with electrochemical oxida-
tion provides a more complete mineralization and removal
of toxicity for the treatment of azo dyes wastewater. An
up-flow membrane-less bio-electrochemical system inte-
grated with bio-contact oxidation was developed for deg-
radation and/or mineralization of the Acid Orange 7 in
wastewater (Pan et al. 2017). The schematic diagram of
bio-electrochemical system integrated with bio-contact
oxidation reactor is given in Fig. 5A.

Reactors for anodic oxidation processes with an electro-
chemical generation of H,O, (anodic oxidation-H,0,) were
used for the oxidation of azo dyes (Peralta-Herndndez and
Godinez 2014; Ramirez-Pereda et al. 2019). Xu et al. (Xu
et al. 2008) studied the oxidation of AO7 with electro-gen-
eration of hydrogen peroxide in a three-dimensional reactor
(Fig. 5B). Granular activated carbon was used as the anode,
and activated carbon fiber was used as the cathode in elec-
trochemical reactors, which contributed to a higher hydrogen
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peroxide production yield. In the same way, Ramirez et al.
(2016) used a carbon fabric cathode in the electrochemical
reactor for the generation of H,0,. In reactors of this type,
chemical oxygen demand removal up to 80%, total organic
carbon removal up to 72%, and almost complete decoloriza-
tion of the dye were achieved after 180 min of electrolysis.
The use of granular activated carbon as the electrode led to
the formation of aromatic intermediates at the initial stage
of electrolysis. Then, these intermediates undertake ring-
opening reactions and finally mineralized to CO,, H,0O and
inorganic ions (Zhao et al. 2010; Li et al. 2017b).

Comparative degradation of the industrial azo dye Blue
BR has been studied by the anodic oxidation, electro-Fen-
ton and photo-electro-Fenton process using BDD anode in
a laboratory stirred tank reactor. Based on chemical oxygen
demand removal rate, an increasing relative oxidation power
was established as follows: anodic oxidation < electro-Fen-
ton < photo-electro-Fenton in agreement with their decol-
orization trend (Alcocer et al. 2018). The electrochemical
oxidation of azo dye Acid Violet 7 was investigated using
planar disk electrodes placed in an inlet—outlet (I-O) cylin-
drical reaction chamber. Two different I-O configurations
were studied, one parallel and the other perpendicular to
the electrodes. The effect of cell design on the hydrody-
namic characteristics and efficiency of the reactors in terms
of color and chemical oxygen demand removal was studied.
The degradation results indicated that the color elimination
was quite efficient regardless of the type of reactor used and
its complete removal could be reached in less than 80 min at
an applied current density of 30 mA/cm? and above. How-
ever, higher chemical oxygen demand removal efficiency
was always achieved in the parallel I-O flow cell compared
to perpendicular I-O flow reactor at all of the current den-
sities studied, which can be attributed to the possibility of
some stagnation in the lateral regions of the electrodes (Brito
et al. 2018a).

Conclusion

The use of electrochemical oxidation makes it possible to
completely mineralize azo dyes of various classes. Efficient
removal of azo dyes using electrochemical oxidation is
achieved in many cases due to the formation of highly reac-
tive hydroxyl radicals. Boron-doped diamond and PbO, can
be noted as non-active anode materials with high oxygen
over-potential and high rate of the formation of heterogene-
ous hydroxyl radicals. In this aspect, preparation and study
of new highly efficient anode materials for azo dye removal
from wastewater are directions for future research. The use
of indirect electrochemical oxidation due to the generation
of hypochlorite ion, O3, H,0,, and other oxidizing agents
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Fig.5 A Up-flow membrane-
less bio-electrochemical system
integrated with bio-contact oxi-
dation reactor. The integrated
bio-electrochemical system
integrated with bio-contact
oxidation reactor consists of
two units, a bio-electrochemical
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Biofilm
system (BES) unit in the lower carriers
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part. The bio-cathodes and the lfr::)li “s
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Anode

also attracts several researchers. The most promising pro-
cesses for the degradation of azo dyes are electro-Fenton and
photoelectro-Fenton processes, which can be implemented
at relatively low energy consumption and have a high rate
of COD and TOC removal efficiencies. In most cases, dur-
ing electrochemical oxidation of azo dyes, low molecular
weight organic compounds, particularly short-chain carbox-
ylic acids, form as end-products. In some cases, complete

Cathode

GAC particle
electrodes

Compressed air

——| T

Compressed air
L

Micropore plate

®)

mineralization to inorganic compounds occurs depending on
the anode materials and the method of electrochemical oxi-
dation. The combination of the methods of electrochemical
oxidation with other methods for removing azo dyes, such as
biological treatment, adsorption, membrane filtration, photo-
catalysis, constitutes one of the promising research areas in
the field of removing azo dyes from wastewater. Unfortu-
nately, most of the studies on the electrochemical oxidation
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of azo dyes were carried out in laboratory conditions using
various azo dyes as model compounds. The effect of the azo
dye structure on the efficiency of electrochemical oxidation
using various approaches remains unclear. Therefore, the
study on the mechanism of electrochemical oxidation of azo
dyes depending on their structures is a challenging task. The
combination of electrochemical oxidation with the genera-
tion of electric power is also one of the directions for further
research, as this will allow to create an energy-independent
technologies for wastewater treatment.
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