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Abstract

The global amount of solid waste has dramatically increased as a result of rapid population growth, accelerated urbanization,
agricultural demand, and industrial development. The world's population is expected to reach 8.5 billion by 2030, while solid
waste production will reach 2.59 billion tons. This will deteriorate the already strained environment and climate situation.
Consequently, there is an urgent need for methods to recycle solid waste. Here, we review recent technologies to treat solid
waste, and we assess the economic feasibility of transforming waste into energy. We focus on municipal, agricultural, and
industrial waste. We found that methane captured from landfilled-municipal solid waste in Delhi could supply 8—18 million
houses with electricity and generate 7140 gigawatt-hour, with a prospected potential of 31,346 and 77,748 gigawatt-hour by
2030 and 2060, respectively. Valorization of agricultural solid waste and food waste by anaerobic digestion systems could
replace 61.46% of natural gas and 38.54% of coal use in the United Kingdom, and could reduce land use of 1.8 million hec-
tares if provided as animal feeds. We also estimated a levelized cost of landfill solid and anaerobic digestion waste-to-energy
technologies of $0.04/kilowatt-hour and $0.07/kilowatt-hour, with a payback time of 0.73—1.86 years and 1.17-2.37 years,
respectively. Nonetheless, current landfill waste treatment methods are still inefficient, in particular for treating food waste

containing over 60% water.

Keywords Solid waste - Value added - Economic feasibility - Sustainable development - Waste to energy

Introduction

Waste is a byproduct of population increase, urbanization,
and economic growth (Kaza et al. 2018). Approximately
2.59 billion tons of waste will be generated globally in 2030,
which is predicted to reach 3.4 billion tons by 2050, dou-
bling from 2016 and tripling by 2100 (Abdollahi Saadatlu
et al. 2022).

The principles of waste classification are diverse, such
as classification according to material, state, or source. This
review discusses three types of waste that use the source of
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waste as a classification principle: municipal solid waste,
agricultural solid waste, and industrial solid waste. Munici-
pal solid waste is one of the most significant byproducts of
the urban lifestyle and is growing faster than urbanization
(Tun and Juchelkova 2018; Tawfik et al. 2022). Municipal
solid waste typically includes similar waste from house-
holds, businesses and trade, office buildings, institutions, and
small companies (Sipra et al. 2018). According to Mandal
(2019), about 4.3 billion people are estimated to live in cities
by 2025, producing 1.42 kg of municipal solid trash per per-
son per day. Azam et al. (2019) pointed out that the disposal
of domestic waste in the atmosphere can cause severe health
and environmental problems.

Moreover, with a dramatic increase in population, food
production will face severe challenges in the coming years
(Myers et al. 2017). To meet the food needs of millions of
people, livestock and crop production has increased signifi-
cantly with intensive rearing and cultivation systems. How-
ever, this has further led to large amounts of agricultural
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waste (Tripathi et al. 2019). Agricultural solid waste mainly
includes spoiled food waste from crops, orchards, vineyards,
dairies, feedlots, farms, agricultural residues, and hazardous
waste (Akinrinmade 2020). In contrast, improper disposal of
agricultural waste generates greenhouse gases such as car-
bon dioxide, nitrous oxide, and methane, threatening humans
and the natural environment (Kaab et al. 2019).

In addition, worldwide industrial solid waste genera-
tion is vast, with an increasing trend to meet humans' daily
needs (Tyagi et al. 2018). Industrial solid waste usually com-
prises steel slag, tailings, fly ash, red mud, waste tire, rub-
ber, and special wastes generated by industries, in addition
to wastes from light and heavy manufacturing, fabrication,
construction sites, power plants, and chemical plants (Li
et al. 2021a). These wastes contain a large number of heavy
metals and other hazardous substances, and if dumped or
landfilled indiscriminately, will have a severe impact on the
ecological environment; meanwhile, the dumping of these
industrial solid wastes takes up a large number of scarce land
resources (Kulkarni 2020).

Solid waste management approaches include waste iden-
tification, reduction, recycling, storage, collection, transfer
and transportation, effective treatment and disposal, and
reuse (Anand 2010; Saja et al. 2021). Among several man-
agement options, landfill is the most common waste dis-
posal route globally due to the ease of implementation (Das
et al. 2019). However, landfills take up many land resources
and produce leachate and landfill gas that still negatively
affect the atmosphere. About 3-4% of global greenhouse
gases are generated due to irrational waste disposal (Abdol-
lahi Saadatlu et al. 2022; Chen and Lo 2016; Mrozik et al.
2021). Landfilled-solid waste can be valorized and effec-
tively utilized for value-added products (Dlamini et al.
2019). For instance, one ton of recycled mobile phones may
typically provide 0.347 kg of gold, or 80% of the material's

Fig.1 Valorization of solid
wastes. Several solid wastes,
including municipal, agricul-
tural, and industrial, can be
reused and recycled for many

value (Dumlao-Tan and Halog 2017). Velvizhi et al. (2020)
argued that most solid waste fractions could be converted
into resources rather than polluting elements through value-
added technologies, which can reduce resource consump-
tion, protect the environment, and ease the pressure on waste
disposal.

However, due to the lack of economic feasibility analysis
of value-added technologies, many solid waste valorization
technologies have not yet been fully promoted. They are
still in the laboratory research stage. In addition, because
of the different value-added technologies, application direc-
tions, fundamental factors, and parameters involved in vari-
ous solid wastes, the same economic feasibility assessment
method cannot be applied even for the same solid waste
applications. This paper assesses the economic feasibility
of value addition and application of municipal, agricul-
tural and industrial solid waste in an attempt, as shown in
Fig. 1, to (i) Promote the complete application of value-
added reliable waste technologies to relieve pressure on solid
waste disposal; (ii) Encourage recycling and reuse of solid
waste; (iii) Mitigate the adverse environmental impacts of
solid waste; (iv) Conserve natural resources and expedite
the achievement of the 3R strategy—Reduce, Recycle, and
Reuse. This review first summarizes the directions of value-
added technologies and applications for municipal, agricul-
tural and industrial solid wastes; analyses the environmental,
economic and social impacts of their practical application
through case studies; summarizes the methods for assessing
the economic viability of solid wastes; and finally presents
limitations and future perspectives on solid waste value addi-
tion and applications, economic viability and solid waste
pretreatment.

Municipal, agricultural and
industrial solid waste
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Municipal solid waste

Global urbanization increases the growth and complexity
of municipal solid waste plastics, electronics, and related
derivatives (Khan et al. 2022a). Municipal solid waste gen-
erally refers to products that are no longer useful and origi-
nate from the domestic and commercial sectors (Vergara
and Tchobanoglous 2012). Differences in urbanization and
cultural practices result in more complex content and com-
position of municipal solid waste (Zhu et al. 2021; Mian
et al. 2017). Surveys in coastal China report that nearly half
of the municipal solid waste typically disposed of in China
goes to landfills and is incinerated, with only 3% being used
for composting technology (Khan et al. 2022a), and that the
efficiency of municipal solid waste use is much lower than in
developed countries (Khan et al. 2022a). Therefore, improv-
ing municipal solid waste management systems and explor-
ing more environmentally friendly, efficient, and affordable
waste reuse technologies is essential.

The waste pyramid and integrated waste management are
widely used as guiding principles for waste management
(Vergara and Tchobanoglous 2012). A proper waste manage-
ment system can reduce environmental pollution and solve
energy issues, a worldwide challenge. Given the decisive
status of today's ecological worldwide problems, reduc-
ing municipal solid waste generation at source is the most
direct and effective means of doing so (Williams 2005). The
conversion of municipal solid waste into alternative energy

sources, such as waste-to-energy, is an inevitable route to
waste applications (Huang and Fooladi 2021; Gopikumar
et al. 2021). However, statistics show that reducing munici-
pal solid waste is a challenge.

Figure 2 shows possible application directions for munici-
pal solid waste in energy, electricity production, and ferti-
lizer. In addition, the most recent examples of municipal
solid waste applications under the above application direc-
tions, particularly in the waste-to-energy generation, which
is the leading waste application direction for municipal solid
waste, and the economic, environmental, and social impacts
are summarized in Table 1.

Table 1 confirms the viability of municipal solid waste
for different applications by summarizing and quantifying
the economic, environmental, and social impacts. Waste
recovery targeting municipal solid waste can provide the
impetus for value addition and reuse of municipal solid
waste. It significantly reduces greenhouse gas emissions,
replaces traditional fossil energy sources, uses waste to pro-
duce methane for power generation and liquid fertilizer pro-
duction, improves power generation efficiency and fertilizer
production efficiency, reduces costs, effectively reduces total
municipal solid waste, makes cleaner energy, and advances
renewable energy development and clean energy recovery
application options. This demonstrates the feasibility and
effectiveness of adding value to and applying municipal
solid waste management policy.

Municipal solid waste value-added applications

Energy and

electricity
production k Hydrogen
- 7
= Electricity Hydrogen
= Plant production
o - g = ) %

Fertilizer Fertilizer Extraction Liquid fertilizers
application

1t

Landfill soil

Fig.2 Municipal solid waste value-added applications. There are
numerous uses for municipal solid waste, including energy, power
generation, and fertilizer. Municipal solid waste can be converted
into methane, which can then be used to generate electricity. Addi-

tionally, electricity generated from municipal solid waste can be used
to produce hydrogen, a source of clean energy. The organic carbon
from municipal solid waste can be extracted and used as fertilizers to
improve soil fertility or buried to strengthen the soil
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Municipal solid waste for energy and electricity
production

Using municipal solid waste for waste-to-energy pathway is
necessary for waste management and disposal (Jabeen et al.
2022). Landfill gas and anaerobic digestion are the primary
methods for producing energy from municipal solid waste
(Mlaik et al. 2019).

Landfill gas technology is one of the oldest and most
commonly used technologies for electricity generation (Cud-
joe et al. 2021a; Timilsina 2021). The landfill gas process for
electricity generation comprises approximately 40% carbon
dioxide and 60% methane with a high electrical and ther-
mal energy content (Ayodele et al. 2017). Fei et al. (2019)
found a maximum landfill gas value of 3.3 billion Nm? over
30 years in China, generating up to 7.5 billion kilowatt-hours
of electricity. The minimum cost of landfill gas technology
for electricity generation in Turkey is only $0.05/kilowatt-
hour (Kale and Gokgek 2020).

Anaerobic digestion is capable of recovering high-quality
methane, converting organic waste from municipal solid
waste into electricity (Uddin et al. 2021) and high levels
of heat (Ayodele et al. 2017), and solving energy problems
while also obtaining compost and humus (Mlaik et al. 2019;
Diaz et al. 2011). Not only is the waste recycling phase sim-
plified (Khanal et al. 2021) and the landfill process simpli-
fied (Chen et al. 2010; Sikarwar et al. 2021), but it can also
have a higher power generation capacity while producing
fertilizer (Mlaik et al. 2019) and biogas (Fei et al. 2019) as
a derivative. Farghali et al. (2022) estimated that using the
anaerobic digestion of affordable wastes for biogas genera-
tion has the potential to decrease greenhouse gas emissions
by approximately 4.36 gigatons of carbon dioxide equiva-
lent, or 13% of worldwide greenhouse gas emissions from
deforestation, evaded emissions management, crop burning,
landfill gas, and fertilizer synthesis emissions.

Conversion of municipal solid waste to energy through
a waste-to-energy pathway can produce renewable energy
by capturing methane. For instance, Ghosh et al. (2018)
showed that captured methane from Delhi landfills sup-
plied 8—18 million houses with power in 2015. Similarly,
Zhou and Zhang (2022) found that a waste-to-energy plant
in Taiwan, China, generated 1.33% of local electricity con-
sumption, with expected electricity production efficiency of
30%, corresponding to 31,346 and 77,748 gigawatt-hours by
2030 and 2060, respectively. Furthermore, Cao et al. (2022)
suggested combined cogeneration of hydrogen from elec-
trolysis and power from the anaerobic digestion process. In
addition to renewable energy production, waste-to-energy
generation has the potential to reduce greenhouse gas emis-
sions (Huang and Fooladi 2021; Mavridis and Voudrias
2021; Osman et al. 2022a). Ayodele et al. (2017) reported
the environmental performance of hybrid and landfill gas

@ Springer

blending methods in the Nigerian region, with greenhouse
emission reduction rates of 76-93% and 75-85%, respec-
tively. In addition, using the waste-to-energy concept can
save on fossil fuel combustion and significantly reduce the
cost of electricity generation (Olujobi et al. 2022; Breunig
et al. 2022). The minimum price of electricity generation is
only $0.054/kilowatt-hour compared to $0.133/kilowatt-hour
for landfill gas (Kale and Gokgek 2020), with a significant
reduction in the total amount of disposed waste (Zhou and
Zhang 2022). In addition, the waste-to-energy concept pro-
vides a way to recycle, reuse, and add value to waste (Fei
et al. 2019; Patel et al. 2021), provides an alternative to clean
energy recovery (Kale and Gokgek 2020), and facilitates the
sustainable development of alternatives to fossil fuel com-
bustion (Gil and Management 2022).

Both anaerobic digestion and landfill gas technologies
have good environmental, economic, and social performance
for electricity generation. However, Cudjoe et al. (2020)
showed that anaerobic digestion has a higher and more eco-
nomic potential for electricity generation than landfill gas in
the study area (Cudjoe et al. 2020; Ogunjuyigbe et al. 2017).
Huang and Fooladi (2021) investigated the power generation
potential of landfill gas and anaerobic digestion technologies
in Tehran and Beijing over 20 years. They found that the
technologies generated 45.2% and 41.9% more electricity
than landfill gas technologies in Tehran and Beijing, respec-
tively, and that anaerobic digestion had the most substantial
potential to mitigate global warming (Caiardi et al. 2022).
Thus, anaerobic digestion has tremendous potential for pro-
ducing power from municipal solid waste (Longsheng et al.
2022).

Landfill waste treatment methods currently face the chal-
lenge of inefficiency, particularly when treating food waste
comprising over 60% of the water content (Zhou and Zhang
2022). One approach to solving this issue is by reducing
the food waste content of waste incineration; for example,
reducing the waste’s water content by 9-44% significantly
increased calorific value and, therefore, improved power
generation efficiency (Yang et al. 2012).

In conclusion, using waste-to-energy is the best way to
dispose of and add value to waste to meet the growing world
population and the increasing volume of municipal solid
waste. At the same time, the production of clean renewable
energy as an alternative to fossil fuels creates a virtuous
cycle in economic, environmental, and social terms, contrib-
uting to the development of sustainable cities and a global
green future.

Municipal solid waste for fertilizer application
Uses of inorganic nitrogen comprise about 50% of current

agricultural production (Chehade and Dincer 2021); how-
ever, the heavy use of inorganic fertilizers poses climate and
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environmental concerns. For example, inorganic fertilizers
contribute to large amounts of greenhouse gas emissions
(Bhattacharyya et al. 2012; Wang et al. 2022) and eutrophi-
cation of the water environment (Walling and Vaneeckhaute
2020; Liu et al. 2021). On the other hand, organic fertiliz-
ers can improve organic carbon in the soil while providing
sufficient nutrients to plants (Sharma et al. 2019). There-
fore, replacing inorganic fertilizers with organic fertilizers
is urgently needed to address current environmental issues.

Municipal solid waste can be used either to produce
high-quality liquid fertilizers from organic waste or extract
soil-like materials from organic waste for landfill and ferti-
lizer use. Several recent studies have shown the possibili-
ties of producing organic fertilizers from municipal waste
(Yong et al. 2021; Rashid and Shahzad 2021; Roman et al.
2021). For example, Ferndndez-Delgado et al. (2020) pro-
posed the extraction of organic carbon from municipal solid
waste compost technology to produce 200 L of liquid fer-
tilizer at €1/liter per 100 kg of dry compost. Campuzano
and Gonzalez-Martinez (2017) confirmed the possibility
of extracting soluble organic substances from municipal
solid waste's organic fraction and accelerating methane
production.

Extraction technologies of high-value organic fertilizer
from municipal solid waste are received more attention and
innovation at a lower cost (Ferndndez-Delgado et al. 2022).
Conventional solvent and microwave-assisted extraction
are common for liquid fertilizers (Monda et al. 2017). The
extraction of liquid fertilizers by alkaline traditional solvent
extraction techniques is a simple, efficient, and environ-
mentally friendly method (Fernandez-Delgado et al. 2022;
Gravert et al. 2021). In addition, traditional solvent extrac-
tion is a less energy-required intensive method, with a sell-
ing cost of €1/liter (Ferndndez-Delgado et al. 2022), and the
fertilizer yield is ten times higher than that of water-based
extraction (Yan et al. 2022).

Microwave-assisted extraction is considered a more
environmentally friendly and green technology than con-
ventional solvent extraction (Arpia et al. 2021). However,
microwave-assisted extraction requires more complex condi-
tions during the extraction process, such as higher tempera-
tures, power, and limitations in the dielectric properties of
solid materials (Kostas et al. 2017; Picot-Allain et al. 2021).
Microwave-assisted extraction is comparable to conventional
solvent extraction techniques when increasing the operating
temperature and reducing the reaction time (Dao et al. 2020).

In general, the liquid fertilizers produced from municipal
solid waste have much higher total macronutrients (sodium,
phosphorus, potassium) than those specified for organic
fertilizers, improve soil water-holding capacity (Leno et al.
2021), increase porosity (Khosravi et al. 2022), and ben-
efit plant and crop growth (Kumar and Gupta 2021). The
new thermal digestion is a new type of digestion that has

been developed to make the application of organic fertilizers
from the organic fraction of solid waste more efficient and
environmentally friendly, hence achieving maximum weight
loss of waste and optimum nutrient retention of fertilizer
with minimal energy consumption within 135 min at 150 °C
(Kumar and Gupta 2021).

In addition, soil-like material from municipal solid waste
piles can be used as fill for road embankments and low-lying
areas (Datta et al. 2021), compost for horticulture, and other
non-agricultural applications (Sadeghi et al. 2022).

Through the adoption of this technology, the total amount
of waste in landfills is significantly reduced, reducing the
need for fresh soil and saving on landfill costs and waste
management and disposal costs (Saravanan et al. 2022).
Considering the possible presence of heavy metal ions in
soil-like materials in waste piles (Gujre et al. 2021), their
use for non-edible crops can reduce their risk and hazard
while enhancing the nutrient content of virgin soil for non-
agricultural applications (Datta et al. 2021; Bernat et al.
2022; Singh et al. 2021).

Although the feasibility of organic extraction from the
municipal solid waste application has been verified, the tech-
nology's reliability and the liquid fertilizer quality still need
to be supported by a lot of research data (Norouzi and Dutta
2022). In addition, applying municipal solid waste to extract
organic liquid fertilizers still needs much exploration. Using
other organic residues as raw materials also be explored as
a breakthrough in advanced technology (Thanigaivel et al.
2022).

In conclusion, using more advanced technologies to
extract high-quality liquid fertilizers from the organic frac-
tion of municipal solid waste and using soil-like materi-
als from municipal solid waste as compost for landfill and
non-agricultural applications are excellent methods for the
valorization of municipal solid waste. Such an approach in
the direction of fertilizer applications provides a novel con-
cept, innovative technology, and a reliable pool of examples
for the clean and sustainable management of solid organic
waste.

This section explains the latest directions in applying
municipal solid waste in energy, electricity production, and
fertilizer and demonstrates system feasibility. The reuse of
municipal solid waste is not only outstanding for generating
electricity from waste but also for the significant mitigation
of the greenhouse effect and the production and substitution
of new energy sources at a lower cost. In addition, municipal
solid waste also performs well in the preparation of liquid
fertilizers. Technological innovations have been applied to
achieve minimal energy consumption to achieve maximum
waste consumption and optimum nutrient retention, reduce
production costs and increase the efficiency of fertilizer
production. Furthermore, treated waste in landfill reduces
the total amount of waste, reduce the use of fresh soil, and
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improve soil nutrients. It offers innovative solutions for clean
energy recovery and renewable energy development appli-
cations, providing the latest technology and inexhaustible
power for value-adding and application of municipal solid
waste.

Agricultural solid waste

Today's agricultural development is growing at a rapid
pace due to the explosion of population growth worldwide
(Otsuka and Fan 2021). Based on consumption patterns over
the last 30 years, crop and food production must increase by
more than 50% by 2050 and is expected to reach approxi-
mately 12 billion tons (Porter 2016). Agricultural production
is no longer limited to feeding the population but is involved
in producing livestock and industry (Helliwell and Burton
2021) and should consider conserving natural resources (Li
et al. 2021b). As a result, it is anticipated that the demand
for and production of agricultural products will continue to
increase over time.

The rapid growth of agriculture and the higher demand
for agricultural products is stressing and threatening the
environment, climate, ecosystems, and human health
(Duque-Acevedo et al. 2020; Cai et al. 2021). According to
recent statistics, the world produces about 1 billion tons of
agricultural waste yearly, and agriculture contributes about
one-fifth of greenhouse gas emissions (Kari¢ et al. 2022).
The United Nations has echoed the global call for people
to reduce fossil fuel use and greenhouse gas emissions and

Fig.3 Value-added applica-
tion scope of agricultural

solid waste. This figure shows
agricultural solid waste that can
be valorized for industrial pro-
duction, plant growth, animal
feed production, soil improve-
ment, and biosorbents. Bio-oil
is representative of the leading
industrial production directions.
Through the production of
biosorbents, organic carbon can
be extracted and used for soil
improvement. This facilitates
the improvement of plant
growth and the improvement of
animal feed. Using treated agri-
cultural waste as animal feed
would assist in solving current
high feed prices

)

-
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Plant
growth

improvement

move toward zero solid waste (Duque-Acevedo et al. 2020;
Commission 2012). In addition, the world is facing increas-
ing energy scarcity today (Zhao et al. 2022; Pandey and Asif
2022). Applying agricultural waste to developing and using
alternative energy sources is crucial for researchers in sus-
tainable energy and green development (Chen et al. 2022).

Therefore, as shown in Fig. 3, the application directions
for agricultural solid waste are summarized as industrial
production, plant growth, soil improvement, animal feed,
and biosorbents. Table 2 summarizes the latest examples of
applications and technologies and the economic, environ-
mental, and social impacts of the applications.

This table confirms the feasibility of reusing agricultural
solid waste by quantifying the economic, environmental,
and social aspects in different application directions. Valor-
izing agricultural solid waste strongly mitigates the global
greenhouse effect, contributes to alternative energy sources,
saves investment costs, increases crop yields and improves
crop quality, and significantly contributes to innovation and
development in managing agricultural solid waste and waste
utilization technologies. This demonstrates the feasibility
and needs for value addition and application of agricultural
solid waste.

Agricultural waste in industrial production

Bio-oil from rapid pyrolysis of agricultural waste and meth-
ane from anaerobic digestion is a critical resource used in
industrial processes. Fast pyrolysis is the rapid thermal
decomposition of organic matter without oxygen, resulting

-

Bio-oil

Industrial
production

Agricultural

. solid waste
Soil

Biochar
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in charcoal, bio-oil, and gaseous co-products (Kostas et al.
2020). Kostas et al. (2020) stated that the pyrolysis of agri-
cultural residues at temperatures 450-500 °C resulted in
condensable gaseous volatiles, which were rapidly cooled
to obtain bio-oil. Dried agricultural residues can yield up
to 80% bio-oil after pyrolysis (Bharathiraja et al. 2018).
Anaerobic digestion is defined by Ighalo et al. (2022) as a
process that speeds up the breakdown of organic matter in
manure into simple organic matter and biogas products. The
anaerobic reactor provides essential temperature conditions
for the decomposition and digestion of agricultural residues
to ensure bacterial activity and gas production (Singh et al.
2019a, b). Biomethane obtained from the anaerobic diges-
tion of agricultural waste (for example, animal manure and
straw) can substitute diesel fuel engines (Bisaglia et al.
2018). Waste disposal policies using biomethane increase
resource demand (Patrizio et al. 2015; Scarlat et al. 2018). In
addition, Bisaglia et al. (2018) demonstrated through com-
parative experiments between diesel and methane engines
that the methane engine performs similarly to diesel engines
under stable conditions.

This means that bio-oil and biomethane can be intro-
duced into industrial production in large quantities, par-
tially replacing fossil energy sources and reducing fuel costs.
However, the quality needs from bio-oil to be improved (Xiu
and Shahbazi 2012). Furthermore, the design of methane-
depending engines is still in its infancy, as the performance
of the engine equipment is more suited to diesel fuels, which
may result in methane fuels not being well performed (Bisa-
glia et al. 2018). Hence, further exploration and research
are needed.

Agricultural waste for plant growth

Root-knot nematodes affect almost all crops worldwide,
causing significant yield losses and reducing fruit quality
(Forghani and Hajihassani 2020). However, the continued
use of chemical nematicides increases environmental pol-
lution and exacerbates human health problems (Khan et al.
2022b). Asif et al. (2017) verified the effectiveness of agri-
cultural waste in controlling root-knot nematode. They found
that eggplant treated with a combination of chitosan and
mint showed a significant increase in yield, pollen fertility,
and length. The root-knot nematode population of the treated
plants was only one-third of the untreated plants.

Similarly, Khan et al. (2022b) suggested that using mint
and onion enhanced the release of alkaloid metabolites, pro-
viding the plant with a defense against pathogens. In addi-
tion, Maleita et al. (2017) noted that the significant content
of biocide naphthoquinone-based products in walnut shells,
the main component of biocides against root-knot nema-
todes, resulting in a repellent effect of dried walnut shells,
reducing nematode root penetration but not affecting plant

reproduction. Thus, the biological role of agricultural waste
in plant breeding for pest control can effectively avoid nega-
tive impacts on the environment and humans (Brigde and
Starr 2007; Fabiyi et al. 2018).

In general, onion, mint, and walnut shells from agricul-
tural waste are active and effective in controlling root-knot
nematode damage to crops, preventing the quality and yield
of fruit from negatively affecting the pest. Using agricultural
waste as a biopesticide reduces the cost of cultivating plants
and soil and water pollution by chemical pesticides, resulting
in green agriculture (Campos et al. 2019).

Agricultural waste for animal feed

In the United Kingdom, 234 kg of food is wasted per per-
son annually, generating approximately 15 million tons of
food waste per year (WRAP 2015). The conventional dis-
posal of food waste can be very damaging and burdensome
to the environment. For example, landfills and composting
generate large amounts of greenhouse gases and lead to the
eutrophication and acidification of ecosystems (Arafat et al.
2015; Moult et al. 2018). Therefore, there is an urgent need
for more development and innovation in managing and dis-
posal of food waste from agricultural solid waste. World-
wide, food waste can be used as animal feed, for example,
in modern pig farming systems (Fausto-Castro et al. 2020).
Approximately 42.5% and 35.9% of food waste are recycled
as feed in Korea and Japan, respectively (Zu Ermgassen
et al. 2016). Similarly, Salemdeeb et al. (2017) showed that
using treated food waste as pig feed could support 20% of
pork production in the European Union, thereby reducing
land use by 1.8 million hectares.

In addition, the use of food waste from agricultural solid
waste for the preparation of animal feeds is an outstand-
ing contribution in terms of environmental and economic
terms. For example, using food waste as animal feed can
effectively reduce the total amount of food waste (Georganas
et al. 2020) and significantly reduce the carbon emissions
associated with food waste disposal in traditional landfills
(Dorward 2012; Lee et al. 2017). The use of waste for ani-
mal feed preparation is an update and advancement in the
management and disposal of agricultural solid waste, with
implications for social hygiene (Eriksson et al. 2015), farm-
ers' profitability (Filimonau et al. 2022), and livestock devel-
opment (Singh and Kumari 2019) are of great importance.
Thus, animal feed practitioners unanimously favor food
waste as a research area for sustainable animal nutrition to
advance animal husbandry (Mourad 2016).

On the other hand, using food waste in anaerobic diges-
tion for biomethane production could replace 61.46% of nat-
ural gas and 38.54% of coal in the United Kingdom (Salem-
deeb et al. 2017). However, using food waste for animal feed
is more significant in terms of carbon dioxide reduction than
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composting and anaerobic digestion due to eliminating the
cumbersome production phase of traditional feed (Awasthi
et al. 2021a).

Although the preparation of animal feed from food waste
in agricultural solids has been explored and confirmed with
several environmental and public health benefits, its applica-
tion's feasibility is currently not legalized (Yang et al. 2019;
Rajeh et al. 2021). Scarce nations such as South Korea and
Japan collected food waste and used it for animal feed pro-
duction (Chen et al. 2015; Torok et al. 2021). Thus, legal-
izing the use of food waste as feed in animal husbandry
requires local government and policy support (Zu Ermgas-
sen et al. 2016). In addition to the political and infrastruc-
tural concerns, public concerns about using safe food waste
as animal feed are still of particular concern (Shurson 2020).
The food waste freshness and operational complexity of
separate collection from other waste also hinder using food
waste from agricultural solid waste for animal feed produc-
tion (Salemdeeb et al. 2017). Therefore, separating food
waste according to the animal feed grads and feedstocks for
composting or anaerobic digestion can overcome poor qual-
ity or incomplete separation of collected food waste (Keng
et al. 2020).

In conclusion, applying agricultural solid waste for ani-
mal feed production positively impacts environmental and
social benefits. In particular, valorizing animal wastes as
feed stands out regarding economic costs and is environmen-
tally friendly. Several benefits can also be attained, such as
low carbon, healthy animal feed at a lower production cost,
indirectly reducing land use, considered waste resources,
managing agricultural solid waste, and realizing value added
from the waste.

Agricultural waste for soil amendment

The management and collection of agricultural solid wastes
and their amendment to soil is another development direc-
tion for the value-added solid waste application. Microor-
ganisms' genetic engineering and bioremediation to improve
soil are considered ecologically adaptive, non-toxic, envi-
ronmentally friendly, and rational practices today (Santos
et al. 2019). This practice does not cause secondary damage
to the ecosystem (M. Tahat et al. 2020). The highly biode-
gradable nature of agricultural solid waste is favored waste
recycling (Kainthola et al. 2019).

Application of peel waste from agricultural solid waste
to soil can effectively improve soil fertility by increasing
organic carbon content, improving porosity, increasing ion
exchange capacity, increasing soil nutrients, and promoting
bacterial activity in the soil (Weber et al. 2007; Mr et al.
2022; Almendro-Candel et al. 2018; Murtaza et al. 2019).
In addition, using agricultural solid waste as an alternative
to conventional fertilizers in soil amendment applications

@ Springer

can significantly reduce greenhouse gas emissions of nitrous
oxide and carbon dioxide (Rittl et al. 2018). For instance,
Anastopoulos et al. (2019) investigated that applying organic
waste of orange, mandarin, and banana peel resulted in
5.3-10.2 times lower nitrous oxide emissions than using
ammonium nitrate in the soil. Numerous agricultural solid
wastes have proven their technical feasibility in soil improve-
ment (Wainaina et al. 2020; Duan et al. 2020). In addition,
the agricultural solid waste amendment to soil significantly
reduced conventional fertilizers’ need and use (Kizito et al.
2019), thereby reducing costs, toxicity, and damage to eco-
systems (Bekchanov and Mirzabaev 2018).

However, applying chemical fertilizers and pesticides is
inevitable to meet the rapid global population growth and the
massive demand for agricultural production (Yaashikaa and
Kumar 2022). Therefore, the immediate improvement of the
soil environment, nutrient enrichment, and increased crop
yields through the widespread substitution of agricultural
solid waste for traditional feedstuffs is currently unattain-
able. Hence, governments and relevant authorities must sup-
port agricultural solid waste application policy (Duan et al.
2020). More innovative exploration and technological appli-
cations for reusing agriculture waste to replace fertilizers as
much as possible for soil improvement are needed (Usmani
et al. 2020) to increase yields and productivity and to main-
tain the well-being of global human health and safety.

The conversion of agricultural waste to biochar for soil
improvement is a hot topic today (Osman et al. 2022b). Bio-
char can be produced from the thermochemical conversion
of waste using pyrolysis, hydrothermal carbonization, and
gasification in an anoxic environment (Osman et al. 2022b).
Biochar can be generated at 300-900 °C pyrolysis condi-
tions at different time ranges (Osman et al. 2022b), while
the hydrothermal carbonization technology converts waste
biomass into hydrochar at 150-375 °C with a residence time
of 30 min (Peng et al. 2016; Sharma et al. 2020). Biochar
improves the soil's physical properties in terms of perme-
ability, swelling, shrinkage, water-holding capacity, aeration,
nutrient fixation, and soil preparation workability response
to ambient temperature changes (Osman et al. 2022b). Bio-
char also reduces drought by increasing soil water content
and reducing soil erosion (Oni et al. 2019; Sohi et al. 2010).
Additionally, biochar prompts methane production during
the anaerobic digestion of organic waste (Xiao et al. 2021).

In summary, increasing research is dedicated to techno-
logical advances and innovations in applying agricultural
solid waste to soil improvement. Combining the manage-
ment and application of agricultural solid waste in bioen-
gineering reduces costs, improves soil fertility, and signifi-
cantly mitigates the greenhouse effect and carbon emissions,
contributing to sustainable and environmentally friendly
agriculture development and advancement.
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Agricultural waste for biosorbents preparation

Treated agricultural solid waste can be used as biosorbents
to treat wastewater (De Gisi et al. 2016) and contaminated
soil (Abedinzadeh et al. 2020). The adsorption capacity
of biosorbents is determined by the adsorbent's material
composition, chemical properties, and activation capacity
(Bernal et al. 2018). The ideal biosorbents should have high
selectivity, high biosorption rates, increased storage capac-
ity, and low cost (Crini and Lichtfouse 2018). Some of the
peelings, husks, wood, and roots of plants from agricultural
waste are commonly applied as raw materials for biosorb-
ents to add value to agricultural waste (Kari¢ et al. 2022).
Specific example includes potatoes peels, citrus fruits, and
bananas (El-Azazy et al. 2019; Meneguzzo et al. 2019),
coconut husks and waste (Obeng et al. 2020), maize cobs
(Luo et al. 2018), rice husks of rice straw (Shamsollahi and
Partovinia 2019), and peanut hulls (Banerjee et al. 2019),
among others. Thus, using effective biomass from agricul-
tural waste to prepare novel biosorbents is a new direction of
research to address water and soil pollution from an ecologi-
cal perspective (Dai et al. 2018).

The main methods currently used to prepare biosorbents
are high-temperature physical pyrolysis (Rosales et al. 2017)
and hybrid processes by adding chemical reagents at lower
temperatures (Janyasuthiwong et al. 2015). El-Azazy et al.
(2019) used potato peel as a raw material to carbonize acti-
vated carbon at 500 °C for 30 min. Similarly, Lu and Guo
(2019) used composite carbonized walnut shells to prepare
biosorbents by combining a chemical activation reaction
with immersion in concentrated sulfuric acid for 12 h and
then exposure to temperatures below 55 °C.

Using agricultural solid waste for biosorbents preparation
can effectively reduce greenhouse gas emissions in the air
(Saad et al. 2010; Gwenzi et al. 2015) and achieve carbon
capture and sequestration (Gwenzi et al. 2015). In addition,
waste-based biosorbents in soils can significantly increase
plant productivity. Biochar can be considered as a biosorb-
ent to enhance soil water retention by increasing porosity
(Van Nguyen et al. 2022), reducing soil acidity (Afroze et al.
2018), providing pH stability for plant growth, and replen-
ishing metal elements (Van Nguyen et al. 2022; Schwantes
et al. 2022). Thus, the recycling of agricultural solid waste
for the preparation of biosorbents promotes agricultural pro-
duction, contributes to the resilience of farmland, effectively
increases farmers' profitability, and demonstrates outstand-
ing environmental friendliness. Waste-based biosorbents
have been used as cost-effective (Deniz and Kepekci 2016)
biosorbents for heavy metal ions, uranium, various metal
cations, and synthetic dyes from wastewater (Yelatontsev
2023; Moharm et al. 2022). Yelatontsev (2023) found that
the preparation of biosorbents from walnut shells and apricot
kernels was 75-85% cheaper than the direct treatment of

agricultural solid waste and that the preparation of biosor-
bents resulted in the production of liquid fertilizer as a
byproduct (Ververi et al. 2019), effectively increasing the
growth intensity of crops such as wheat.

Although current biosorption from agricultural solid
waste has better environmental and economic benefits and
performance than conventional adsorbents on the market, the
raw biosorption capacity of biosorbents is lower than that of
commercial synthetic sorbents (Karic et al. 2022). However,
pretreatment of agricultural solid waste under appropriate
conditions can effectively improve the adsorption perfor-
mance of biomass (Enaime et al. 2020). For example, adjust-
ment of effluent pH can change the adsorption efficiency
for anions and cations (Singh et al. 2015) or the tailoring
and design of functional groups according to the affinity of
the target pollutant (Godinho et al. 2019). Although further
technological developments and research breakthroughs are
still needed, efficient biosorbents based on agricultural solid
waste can gain attention and widespread promotion on the
road to a sustainable future.

In conclusion, the appropriate treatment of agricultural
solid waste can be used to prepare biosorbents to treat waste-
water and remediate contaminated soil with biochar. Moreo-
ver, this application direction of biosorbents is becoming
increasingly mature, with better adsorption and waste treat-
ment properties, higher environmental friendliness, lower
prices, and longer-term social sustainability.

This section explains the feasibility of using agricultural
solid waste in five recent applications: industrial production,
plant growth, soil improvement, animal feed, and biosorb-
ents. The reuse of agricultural solid waste can achieve sev-
eral benefits. In economic terms, agricultural solid waste
can increase crop yields and reduces costs. Environmentally,
agricultural solid waste can replace fossil energy and reduces
greenhouse gas emissions. Finally, in social terms, agricul-
tural solid waste can promote and innovate the management
of agricultural solid waste. Thus, agricultural solid waste is
an impetus for new applications and technological updates
in waste reuse.

Industrial solid waste

With accelerated urbanization and industrialization, indus-
trial solid waste prevention and control is under pressure
worldwide. Industrial solid waste is not easily mobile and
diffuse, fluctuates poorly and causes long-term pollution and
damage to the ecological environment (Guan et al. 2019).
Therefore, more efforts are needed to explore ways to man-
age industrial solid waste (Cetrulo et al. 2018; He 2017). In
this paper, the reuse of industrial solid waste is classified
according to its application directions in plant cultivation,
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construction materials, and natural resource conservation,
as shown in Fig. 4.

The application directions of industrial solid waste and
specific examples are demonstrated in Table 3. Whereby the
application of industrial solid waste for plant cultivation can
be achieved in two main ways, building water storage sys-
tems for plant pots and partially replacing commercial ferti-
lizers for plant growth by increasing the nutrient content of
plant fruits. For construction materials, industrial solid waste
can be used as an additive to asphalt concrete and cement
supplement to achieve cost reductions in construction mate-
rials and greenhouse gas emissions. In addition, industrial
solid waste can be treated to make adsorbents, active agents,
and zeolites to remove harmful metals to help meet wastewa-
ter discharge standards and can be used as silane carriers to
treat soil and water bodies for spills to reduce the risk of oil.

Table 3 confirms the feasibility of reusing industrial solid
waste by analyzing examples of different applications and
summarizing the economic and environmental impacts. The
new products obtained through the technical processing of
raw industrial solid waste can be used for the conserva-
tion of natural resources, the cultivation of plants, and the
preparation of construction materials, reducing the pollu-
tion and harm caused by industrial solid waste to the natu-
ral environment, reducing the cost of construction materi-
als and improving the yield and quality of plant cultivation.
In the direction of plant cultivation, industrial solid waste
plastic sheets, tires, Acacia sawdust, beech sawdust, and
dairy sludge contribute directly to the plant growth process
through general assembly and simple treatment. In con-
struction materials, industrial solid waste fly ash fibers and
self-combusting gangue powder are added to the concrete
as supplementary materials. In the area of natural resource
conservation, industrial solid waste blast furnace sludge,
slag, soot fly ash, black liquor lignin, red mud, old brown

Fig.4 Value-added applica-
tion of industrial solid waste.
This figure demonstrates that
industrial solid waste benefits
value-added plant cultivation,
construction materials, and

cardboard, oil plant waste, and lithium silica fines are used
in different technologies to achieve the goal of mitigating
water and soil pollution.

Industrial waste for plant growth

In the context of plant cultivation, the reuse of industrial
solid waste is mainly reflected in the construction of irriga-
tion systems and the provision of fertilizer feedstock. Water
is a limiting factor for desert plant survival (Zhou et al.
2017). In Kuwait, based on value engineering guidance and
the serious challenge of severe water scarcity, an irrigation
model similar to waterboxx but more cost-effective, using
recycled plastic sheets and old tires as the primary materials,
was proposed and implemented by researchers. Waterboxx is
a self-irrigation system that collects and stores water and is
also insulated from the natural environment and pests, ensur-
ing that plants can grow properly in harsh desert environ-
ments (Haqq-Misra et al. 2022; Schotting 2009). Addition-
ally, Al-Anzi (2022) conducted three years of plant rising
tests to investigate how tire tanks compared to waterboxx
regarding plant quality traits, microbial environment, and
project costs. Tire tank also has a higher positive impact on
creating a microenvironment for plants.

Most importantly, the project costs of the two irrigation
systems in the test showed a significant difference, with the
cost of the equipment being only a quarter of that of the
waterboxx, despite the same inputs of seedlings, fertilizer,
water, and labor. Suppose the tire water tank is put into the
planting of desert plants. In that case, the superiority of the
tire water tank will be evident in terms of equipment input
alone, considering its durability and low cost. Notably, a
limitation of the experiment was that it did not focus on the
value of reusing waste tires for the environment, which could

B

Industrial solid waste

A

natural environment protec- [
tion. Industrial solid waste
improves the soil environment
and enhances plant cultivation.
The waste can also improve

the performance of concrete
materials. The protection of the
natural environment is mainly
applied in the treatment of pol-
luted wastewater

Plant cultivation

@ Cultivating plants for
pest treatment and water
storage

® Cultivating edible
mushrooms

® Helping bacteria to grow
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Construction materials

Natural resource conservation

® Added to concrete as L Replacement of
an organic binding commercial adsorbents

agent partly to remove
hazardous metals from
® Can replace cement wastewater
® Waste surfactants can
remove heavy metals
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Table 3 (continued)

References

Application impact

Application exam-

ples

Application direc-

tion

Technology

Country or region Waste

Type of waste

Environmental

Economic

Conservation of Removal of diva- Reduced plant After 3 cycles of (Pu et al. 2020)

Preparation of

Industrial waste

Industrial solid

zeolite adsorption
and desorption,
the number of

copper ions

wastewater treat-

lent copper ions
ment costs

(Cu (ID)) from

lithium silicon NaP zeolite from natural resources
lithium silica

powder

waste

aqueous solutions
with synthetic
NaP zeolite

powder by a one-

step hydrothermal

process

adsorbed can

reach 77.1 mg/g,
reducing the

number of copper
ions in water

resources

also potentially build savings for governments to dispose of
them. Furthermore, chemical fertilizers have been shown
to cause radiological hazards (Elnagmy et al. 2018). Solid
waste from industrial production can be used as organic fer-
tilizer to grow mushrooms that produce protein for human
consumption. Pardo-Giménez et al. (2020) noted that crude
protein reached 15% and more dry weight in mushrooms
grown using Acacia sawdust and beech sawdust as ferti-
lizer. It is difficult to ignore that 60% of sludge from dairies
can assist in the rapid growth of rhizobia, which delivers
nitrogen to legumes to meet the growing needs of the crop
(Ahmad et al. 2019). Using industrial solid waste as fertilizer
will improve the edible value of mushrooms and the growth
of legumes, reduce the cost of fertilizer, and provide a way
to dispose of industrial solid waste.

Opverall, industrial solid waste such as tire tanks and Aca-
cia sawdust can contribute to the cultivation of plants in
terms of water supply and auxiliary nutrient delivery, ena-
bling the reuse of waste. At the same time, the use of tire
water tanks contributes to the transformation of deserts into
oases, and the use of Acacia sawdust achieves the goal of
increasing the nutritional value of crops.

Industrial waste for construction materials

Using industrial solid waste in construction materials is also
a typical application. Asphalt concrete is the most common
material used in pavement construction. Still, the durabil-
ity of traditional asphalt concrete declines as the intensity
of traffic and the frequency of extreme weather increases
(Al-Osta et al. 2016). However, industrial solid waste fly
ash fibers appear to improve this problem. For example,
Bieliatynskyi et al. (2022) investigated the effect of fly ash
fibers from thermal power plants in China on asphalt. They
compared the fly ash fibers to conventional asphalt concrete
without the additional fibers. The authors noted that using
fly ash fibers as a component of an organic binder produced
a chemical effect, which resulted in improved properties
and structure of the asphalt. Experiments have shown that
when fly ash fibers from thermal power plants are included
in asphalt concrete at 4%, the strength, shear resistance, and
coating roughness of the mixture are the best indicators in
controlled experiments (Bieliatynskyi et al. 2022). As for
concrete's greenhouse gas emissions, including industrial
solid waste self-combusting gangue powder can also effec-
tively mitigate the problem. Sun et al. (2021) mentioned that
self-combusting gangue powder and recycled concrete pow-
der could be used as supplementary materials to partially
replace cement to reduce the cost of concrete preparation
and reduce the carbon dioxide emissions of concrete to the
atmosphere by 22%.

Overall, adding industrial solid waste-fly ash fibers
and self-combusting gangue powder to the concrete as
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supplementary materials increases service life and reduces
the preparation cost of the concrete. In addition, they reduce
environmental hazards and achieve the reuse of industrial
solid waste in construction materials.

Industrial waste for natural resource conservation

Due to global water shortages caused by climate change,
treating contaminated water sources has become a scorching
topic (Wang and Yang 2016). Importantly, protecting water
resources is also an essential direction for reusing industrial
solid waste. Removal of heavy metals from wastewater is a
means to protect water resources and is a necessary step in
meeting discharge standards for wastewater. Several adsor-
bents derived from blast furnace sludge, slag, soot, fly ash,
black liquor lignin, and red mud, as well as NaP zeolites
prepared from lithium silica powder and biosurfactants syn-
thesized from petroleum plant waste-rich in lipids and other
sustainable carbon source nutrients are effective in removing
toxic heavy metals such as copper, lead, zinc, chromium,
and cadmium from wastewater (Md Badrul Hisham et al.
2019; Sharma et al. 2021). In addition, silanes from old
brown cardboard can also treat oil spills in oil-contaminated
water bodies and soils to avoid further pollution of natural
resources (Bayik and Altin 2018). This means that many
commercial sorbents will be replaced, and the cost of treat-
ing the effluent will decrease.

In summary, industrial solid waste-based adsorbents
and surfactants effectively remove toxic heavy metals from
wastewater. Industrial solid waste-based silanes can also
adsorb leaked oil, both of which conserve natural resources
and realize the value-added and application of industrial
solid waste.

This section demonstrates that the reuse of industrial
solid waste not only reduces the cost of waste disposal but
also allows for the efficient use of its residual value for reuse.
The above examples only summarize the reuse of industrial
solid waste in agriculture, construction, and the conser-
vation of natural resources. However, there is still a need
for much research and study on more reuse directions and
technologies.

Economic feasibility and valuation method
of value-added solid waste

A value assessment must accompany advanced and efficient
solid waste application technologies to verify their value-
added economic viability (Awasthi et al. 2021b; Razzaq
et al. 2021; de S4 Moreira et al. 2022). This can provide
a value assessment method and strong evidence support
for government, authorities, and enterprises in solid waste

@ Springer

management and reuse (Shah et al. 2022; Chaianong and
Pharino 2022). Therefore, a methodological description
and case studies on the value assessment of solid waste and
economic feasibility analysis are discussed in this section.
Table 4 summarizes the different economic parameters indi-
cators, definitions, and calculation formulas used to estimate
the economic effects of solid waste application technologies.
While Table 5 lists the other economic parameters involved
in evaluating the economic feasibility of solid waste in the
cases of varying application directions, costs, estimates
of revenues, and critical information about the economic
benefits.

This table provides decision-makers involved in solid
waste reuse with different economically viable options for
estimating costs and benefits by summarizing other eco-
nomic benefit methods and their calculation formulas. The
identification of some economic indicators, such as techno-
economic assessments, total life cycle cost, levelized cost of
energy, payback time, internal rate of return, and net present
value, could be the pointers to the sustainability, operability,
and economic feasibility of these capital projects for solid
waste recycling and disposal.

Tables 4 and 5 provide the methods used to measure the
value and economic benefits of different categories of solid
waste in various areas through a financial analysis of actual
study cases under different solid waste application direc-
tions, estimating and summarizing the capital costs and ben-
efit revenues of each case. This confirms the economic feasi-
bility of managing and reapplying solid waste in a way that
provides policymakers, project investors, and plant operators
with a recently updated data reference.

The feasibility and significance of solid waste manage-
ment and application need to be supported and validated
from economic feasibility (Gopalakrishnan et al. 2021).
According to Saqib et al. (2019), hydrothermal carboniza-
tion efficiently turns food waste from municipal solid waste
into energy. They estimated the minimum selling price of
hydrocarbon at $30, compared to the current market price
of $85.68/ton using techno-economic assessments. This
confirmed the energy recovery from food waste, and the
advantages of cost savings were demonstrated. Similarly,
Afroze et al. (2018) confirmed the effectiveness, economy,
and stability of waste-to-energy generation using landfill
gas technology to generate power from municipal solid
waste with a levelized cost of $0.23/kilowatt-hour and a
payback period of roughly 7 years. Compared to the pre-
vious system, Xue et al. (2022) created a revolutionary
compressed air energy storage system that combines a
waste-to-energy plant and a biogas plant. The system has
a net present value of $120,520 and a decreased invest-
ment cost of roughly $188,764.61. Therefore, the eco-
nomic and technical advantages of this technology can
be widely used in future projects. The levelized cost of
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energy for anaerobic digestion and landfill gas technol-
ogy for waste-to-energy is about $0.04/kilowatt-hour and
$0.07/kilowatt-hour, respectively, and the payback time
in Beijing is 0.73—1.86 years and 1.17-2.37 years, respec-
tively (Huang and Fooladi 2021). Therefore, landfill gas
and anaerobic digestion technologies are feasible technolo-
gies to obtain quick and stable benefits from waste reuse
and better environmental benefits (Ng et al. 2021; Mondal
et al. 2021). The study conducted by Fernandez-Delgado
et al. (2022) supported the viability of using the method to
manufacture liquid fertilizer from municipal solid waste.

With a lower total investment cost for construction and
production, a minimum production cost of €0.5/liter, a more
extensive spread between the minimum selling price and the
market price, and the ability to extract liquid fertilizers from
the organic fraction of municipal solid waste under potas-
sium hydroxide conditions, this method performs better on
the market. In addition, producing solid biofuels from wood
pellets of agricultural solid waste also stands out in value-
added waste (Nabavi et al. 2020; Abdulyekeen et al. 2021;
Abdullah et al. 2022). Nabavi et al. (2020) mentioned that
the minimum production cost of wood pellets for fuel pro-
duction at €104.29/ton and the internal rate of return could
reach 45-124%.

Agricultural solid waste can also be used as a biosorb-
ent to treat wastewater (Mishra et al. 2021). For example,
Praveen et al. (2021) found that the removal of dyes from
wastewater using peanut shells has the lowest cost of X0.91
has a high adsorption capacity, and the unloaded biochar can
be safely discharged into the environment because biochar
is stable (Guo et al. 2021). Furthermore, the construction
and demolition of waste from industrial solid waste can be
used for concrete block preparation (Abraham et al. 2022)
with a minimum life cycle cost of 1.14, demonstrating the
efficiency and sustainability of the material and reducing
the environmental impact caused by industrial solid waste.
Petrillo et al. (2022) also used life cycle cost to assess the
economic feasibility of using cement and industrial solid
waste to produce lightweight manufactured aggregates
with a minimum production cost of only $22, making light-
weight manufactured aggregates a sustainable environmental
option.

In the field of solid waste applications, environmental
impacts and economic factors have driven the development
of solid waste recovery and value-added technologies and
the exploration of new solid waste applications directions
in energy production, such as waste-to-energy (Afroze et al.
2018), thermodynamics (Mavridis and Voudrias 2021), and
hydrogen electrolysis (Cao et al. 2022). Economic assess-
ment methods can generally be used to calculate their finan-
cial indicators using payback time, levelized cost of energy,
net present value, and internal rate of return methods.

The average cost established for the energy source to pro-
vide zero net present value is known as the levelized cost
of energy (Pawel 2014). To be economically feasible, the
solution's net current value, which is the difference between
the project's cash inflows and outflows, must be positive
(Fernandez-Delgado et al. 2022; Afroze et al. 2018; Xue
et al. 2022; Nabavi et al. 2020). Generally, solid waste con-
version for energy production involves accounting costs,
including raw material costs, utility costs, and operating
labor costs (Saqib et al. 2019). Energy costs are estimated
assuming reliable historical financial data and determining
annual energy production (Rosa-Clot and Tina 2020). Addi-
tionally, a life cycle assessment, a technique to measure the
environmental advantages of solid waste management and
recycling operations, is frequently used in conjunction with
the net present value and internal rate of return approaches
(Pryshlakivsky and Searcy 2021). This technology has been
widely implemented in the technical field of waste manage-
ment and disposal. Examples include green waste manage-
ment (Talwar and Holden 2022) and the incineration indus-
try (Di Maria et al. 2021). Overall life cycle cost, which
accounts for the total cost of owning and managing the
project during the project’s specified life cycle, is a crucial
financial indicator for determining the economic sustain-
ability of investment projects (Afroze et al. 2018; Abraham
et al. 2022; Petrillo et al. 2022; Sharma and Chandel 2021).

Life cycle assessment and life cycle cost must be com-
bined as supporting tools for solid waste recovery and
management (Lu et al. 2021) to achieve sustainable green
development and promote a circular economy, especially in
developing countries (Ferronato et al. 2021). However, many
advanced application directions are still in the exploration
and development stage for solid waste value addition and
application. No complete database provides the annual per-
centage or tax rate or calculates the operating cost (Mahmud
et al. 2021; Kargbo et al. 2021). Therefore, for solid waste
application directions focusing on technological exploration,
only cost analysis is usually used to analyze their feasibility.
For example, the cost of preparing a biosorbent using peels
from agricultural waste, compared to the current market
price of powdered activated carbon (Petrillo et al. 2022).

This section explains the analysis of value assessment
methods and economic feasibility of solid waste in different
application directions, demonstrating the possibility, reli-
ability, and sustainable economic development of value-
added solid waste through different economic parameters
and aggregation of information on economic benefits. It
provides a reference for waste management and reuse prac-
titioners and the basis and inexhaustible motivation for the
value-added utilization of solid waste.
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Perspectives
Value addition and application of solid waste

The conversion of municipal food waste into value-added
products holds excellent promise. However, appropriate
technologies for effective conversion are still lacking, and
the technical barriers are mainly due to the heterogeneity
of the waste (Sindhu et al. 2019). Future researchers may
need to adopt alternative research methods to circumvent
the unreliable effects of waste heterogeneity. Pyrolysis units
for decomposing municipal solid waste are expensive and
require a lot of thermal energy. Hasan et al. (2021) sug-
gested that integration into the pyrolysis unit can minimize
this pyrolysis heating problem and make the system more
environmentally friendly and energy efficient.

According to Gonzalez et al. (2022), the high ash level
of agricultural solid waste soybean straw makes it difficult
for biomass furnaces to operate. However, the following
research may solve this issue by co-firing more biomass with
lower ash contents. In addition, pretreatment of agricultural
solid waste lignocellulose has the potential to produce a
large variety of chemical and biochemical compounds that
can be directly utilized as feedstock in the textile, materi-
als, biomedical, and pharmaceutical industries. However,
excessive water use, energy consumption, toxic reagents,
and lignocellulose collection, transport, and disposal must
be explored (Batista Meneses et al. 2022).

The waste generated from industrial processes has great
potential for recovery, and the extraction of rare precious
metals from waste is one of the ways to break the resource
bottleneck (Wu et al. 2022). However, in extracting valuable
metals from solid waste, care must be taken to avoid second-
ary contamination by controlling critical technical param-
eters, as many valuable metals might be lost, reducing newly
valuable waste (Wu et al. 2022). In addition, industrial waste
contributes significantly as a nutrient source for bacterial
media and is favored by biomedical companies and scien-
tists (Kadier et al. 2021). According to Haile et al. (2021),
paper mill waste may be used to create engineering materi-
als, including carbon fibers, bioplastics and fibers, cellulose
nanocrystals, and biocomposites, with the potential to be
crucial. Multifunctional bio-based goods for a wide range
of conventional, high-performance, and intelligent applica-
tions may also be made from biomass or biomass waste for
various engineering applications and biomaterials created
using appropriate and practical methods (Akor et al. 2021).

Overall, future value-added applications of munici-
pal solid waste will need to break through the limitations
of technology and develop integrated solar heating sys-
tems. Agricultural solid waste also needs to explore new
substances and technologies to avoid resource wastage in

value addition and application. In addition, the existing
value-added technology of industrial solid waste needs to
strengthen the parameter control, and the application in the
direction of bacterial culture needs to be studied.

Methods for the assessment of economic feasibility

Since many reuse technologies for waste are currently at the
development level, the technology readiness level assess-
ment method was introduced based on information from
policy implementers and developers to effectively assess
and compare the type and scale of waste reuse technologies
(Rybicka et al. 2016). For instance, Solis and Silveira (2020)
have analyzed nine technologies for the chemical recycling
of household plastics using a technology readiness assess-
ment methodology, ultimately identifying three technologies
based on significant research and development centers to
explore economies of scale. The authors concluded that the
technology readiness level assessment methodology might
be used in the future to evaluate municipal, agricultural, and
industrial solid waste reuse technologies as data for eco-
nomic feasibility analysis. In addition, investing economic
feasibility in value-added waste technologies can be deter-
mined by calculating the return on investment and net pre-
sent value. Marousek et al. (2020) estimated potato waste
management based on a payback period and net present val-
ues to make economic feasibility judgments and eventually
adjust to a technical setup close to the technical-economic
optimum.

In conclusion, this part suggests that assessment methods
such as technology readiness level, rate of return, and net
present value can be introduced to conduct a comprehensive
economic feasibility assessment of solid waste value addi-
tion and application.

Solid waste pretreatment

Recycling and sorting is the first and critical step in the
valorization and application of waste (Kaya 2016; Yang
et al. 2022). Policies and facilities should improve waste's
recovery rate and sorting accuracy (Khan et al. 2022a).
First, the policy section on waste recycling and sorting
should be as detailed as possible, down to the unit respon-
sible for implementing the policy and the rules and regu-
lations. The approach should also suit the characteristics
of the region where waste is implemented. Second, waste
recycling and sorting facilities should also consider the
operators' age and height to make the facilities universal,
simple, and efficient. In siting facilities, spatial analysis of
geographic information systems can be used to screen and
identify the most suitable areas or locations for recycling
facilities (Khan et al. 2018). At the same time, govern-
ments, non-governmental, and other organizations should
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Fig.5 Enhanced recycling and sorting techniques for solid waste
contribute to more efficient waste applications. In addition, there is
a need to expand other directions of value-added solid waste appli-
cations, which improve the application rate of waste and provide

focus on changing consumer waste behavior in the future
(Bhattacharya et al. 2021).

Publicize the negative economic, environmental and
social impacts of indiscriminate waste disposal and call for
and guide consumers to recycle and separate their waste
effectively. To achieve early results, consideration could also
be given to adding the requirement to recycle and separate
waste to the citizens' code of conduct to raise awareness of
citizens' ownership. In addition, the government can also
encourage businesses to develop recycling programs for
sold goods linked to consumers' waste recycling behavior.
Moreover, a detailed classification and characterization of
a specific type of industrial solid waste could be conducted.
Wiséniewska et al. (2022) indicated that green desulfuriza-
tion of scrap tires is in line with the circular economy, and
the production of rubber-based materials for high-value
end ground tires markets will be developed because of cur-
rent research trends. However, proper sorting and adequate
characterization of scrap rubber before use can significantly
improve the process reproducibility and the performance
properties of the obtained rubber recycling products. In
addition to this, Koskinopoulou et al. (2021) suggested that
perhaps in the future, the implementation of autonomous
robotic systems for waste recycling could be achieved with

@ Springer

Bacterial cultivation

Return on investment

Economic parameters

avenues for excess waste. Among the economic feasibility assessment
methods, the technology readiness level is considered a practical and
comprehensive evaluation, considering more economic parameters to
help decision-makers develop more effective cost analyses

automatic sorting and physical sorting of recyclables accord-
ing to material type. If artificial intelligence can be success-
fully spread to the waste recycling field, this will signifi-
cantly improve the efficiency and accuracy of recycling and
prepare the waste for reuse.

In conclusion, recycling sorting technology can improve
the recycling rate of waste. The help of a policy system
effectively facilitates the recycling of waste. Moreover, recy-
cling according to the nature of specific waste will increase
the accuracy of waste recycling.

This section summarizes the prospects for value-added
solid waste applications, as shown in Fig. 5. This graph llus-
trates the solid waste value-added opportunities in terms of
applications, economic feasibility assessment methods, and
the sorting direction of solid waste recycling. It is deter-
mined how sorting technology for waste recycling can be
improved. There is also a need to expand solid waste appli-
cations with added value. Some new evaluation methods and
economic parameters can be added to increase the chances
of economic viability.
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Conclusion

While accelerated global urbanization, technological innova-
tions in agriculture, and the expansion of industrial automa-
tion have contributed to human development and progress,
they have brought more solid waste, accelerating the envi-
ronmental crisis and energy problems. This review analyzes
and summarizes economically viable methods for valoriz-
ing solid waste from municipal, agricultural, and industrial
sources based on the latest reusing and value-added tech-
nologies. Landfills are no longer the primary method of solid
waste disposal; new ways of solid waste disposal have found
a way to comply with sustainable green development. For
instance, using solid waste as an alternative energy source
for power generation is one of the most common ways of
dealing with solid waste, achieving a positive impact on
global warming. In addition, solid wastes can be used for
fertilizer applications, plant breeding, construction mate-
rial production, bio-oil, biomethane for engine fuel, biochar
for soil remediation, biosorbents for wastewater treatment,
animal feed, materials for water storage systems, and con-
servative natural resources. Thus, energy or byproducts can
be obtained at a lower cost to maximize solid waste utiliza-
tion and protect human health, the environment, and natural
resources. More importantly, combining value assessment
and economic feasibility analysis is vital to optimizing the
economic benefits of solid waste reuse in different applica-
tion directions, technological innovation, and future sustain-
able development and providing a library of methods for
the economic assessment of participants in the field of solid
waste.

Despite the significance of recycling waste to realize
value, current policies and facilities for recycling and utili-
zation of waste are not well developed, and there are signifi-
cant limitations in the measures taken to reuse solid waste
in several countries. Therefore, there will be more room for
advancement in the future in the exploration of applications
and technological innovation in solid waste recycling to
maximize the value added and utilization of solid waste.
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