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Abstract
Water pollution and the unsustainable use of fossil fuel derivatives require advanced catalytic methods to clean waters and to 
produce fine chemicals from modern biomass. Classical homogeneous catalysts such as sulfuric, phosphoric, and hydrochloric 
acid are highly corrosive and non-recyclable, whereas heterogeneous catalysts appear promising for lignocellulosic waste 
depolymerization, pollutant degradation, and membrane antifouling. Here, we review the use of sulfonated graphene and 
sulfonated graphene oxide nanomaterials for improving membranes, pollutant adsorption and degradation, depolymeriza-
tion of lignocellulosic waste, liquefaction of biomass, and production of fine chemicals. We also discuss the economy of oil 
production from biomass. Sulfonated graphene and sulfonated graphene oxide display an unusual large theoretical specific 
surface area of 2630 m2/g, allowing the reactants to easily enter the internal surface of graphene nanosheets and to reach active 
acid sites. Sulfonated graphene oxide is hydrophobic and has hydrophilic groups, such as hydroxyl, carboxyl, and epoxy, 
thus creating cavities on the graphene nanosheet’s surface. The adsorption capacity approached 2.3–2.4 mmol per gram for 
naphthalene and 1-naphthol. Concerning membranes, we observe an improvement of hydrophilicity, salt rejection, water 
flux, antifouling properties, and pollutant removal. The nanomaterials can be reused several times without losing catalytic 
activity due to the high stability originating from the stable carbon–sulfur bond between graphene and the sulfonic group.
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Introduction

Acid catalysts are very important for various chemical and 
material production processes in the industry (Tawfik et al. 
2022a, b). These catalysts can be categorized into homog-
enous such as sulfuric, hydrochloric, and hydrofluoric acid 
and heterogeneous acid catalysts. Graphene and its deriva-
tives are common examples of heterogeneous acid catalysts. 
The major distinction between homogeneous and heteroge-
neous acid catalysts is that in homogeneous, the reactant 
and product phases are the same, but in heterogeneous, they 
are different (Bohlouli and Mahdavian 2021). Developing 
heterogeneous acid catalysts with high catalytic activity has 
recently become a priority for environmental applications 
(Clark 2002; Farghaly et al. 2017). Graphene nanosheets 
have exceptional and distinctive mechanical properties, a 
large surface area and a distinctive two-dimensional struc-
ture (Dürkop et al. 2004), which could be easily anchored 
with highly acidic functional groups (Tawfik et al. 2021b). 
Hara group attempted the first trial for the treatment of 
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microcrystalline cellulose with sulfuric acid to synthe-
size graphene-like amorphous carbon-bearing functional 
groups of sulfonic (–SO3H), hydroxyl (–OH), and carboxyl 
(–COOH) with unusual catalytic activity required for the 
cellulose dehydration into glucose (Kitano et al. 2009).

Sulfonated graphene is graphene with numerous sulfonic 
groups (–SO3H) attached to its surface and sheet edges. 
The sulfonated graphene has the ability to increase the 
electron-withdrawing from the carboxylic group (–COOH) 
by increasing the electron density between the sulfur and 
carbon atoms, enhancing the catalyst stability under severe 
reaction conditions. Besides, the sulfonic functional group 
acts as a proton carrier, indicating the material’s high density 
and potential use as a proton conductor (Hara et al. 2004). 
The sulfonated graphene oxide catalytic activity is 9.1 times 
greater than that of other solid acid catalysts and traditional 
sulfuric acid (Tawfik et al. 2022e, f). This high catalytic 
reactivity is attributable to the formation of hydrophobic 
cavities on the surface of sulfonated graphene oxide as a 
result of the combination of graphene nanosheets and oxy-
gen-containing groups, which facilitate the catalyst activ-
ity to anchor with substrate/reactants and highly promote 
the protons' attack (Tawfik et al. 2021a). Several chemical 
applications have been reported by utilizing graphene and 
its derivatives. Sugars, such as hexose, glucose, and fruc-
tose, were decomposed into levulinic acid using a graphene 
oxide-based catalyst containing a sulfonic group (–SO3H) 
(Upare et al. 2013). For example, Liu et al. (2012) found 
that sulfated graphene is highly recyclable for the hydration 
of propylene oxide. Figure 1 illustrates the properties and 
applications of sulfonated graphene.

Therefore, this review focuses on the application of sul-
fonated graphene and sulfonated graphene oxide for biomass 
valorization, wastewater adsorption, and degradation. The 
catalyst's role in enhancing the hydrophilicity, salt rejection, 
water flux, and antifouling properties of membrane units, 
as well as the proton exchange membrane's performance in 
fuel cells, was discussed. Photocatalyst degradation of cati-
onic dye and lignocellulosic material conversion to useful 
by-products were assessed. The economic value of bio-oil 
derived from the liquefaction of biomass by sulfonated gra-
phene was also evaluated.

Synthesis

Structurally, graphene is hexagonal or honeycomb 
sp2-hybridized two-dimensional carbon sheet with a thick-
ness of one carbon. The physical and chemical properties of 
graphene have aroused the world's interest in its applications 
(Tawfik et al. 2021b). Graphene is prepared by reducing gra-
phene oxide and increasing sp3-hybridized carbon atoms 
(Tawfik et al. 2022d). The sp3 bonding is less stable than 
sp2; therefore, the attachment of oxygen-containing func-
tion groups on the graphene oxide to the organic solvents is 
variable (Elreedy et al. 2017). The electrical conductivity 
of the graphene oxide increases with the removal of these 
functional groups (Lu et al. 2009; Ray et al. 2015).

Graphene is prepared by the reduction of graphene oxide, 
which was synthesized for the first time in 1859 by Bro-
die’s method through the oxidative exfoliation of graphite 
with potassium chlorate (in a ratio of 3:1) with fuming nitric 

Fig. 1   Properties and applica-
tions of sulfonated graphene. 
The surfaces of the sulfonated 
graphene oxide nanosheets 
are modified with carboxylic 
(–COOH), hydroxyl (–OH), 
oxygen (–O–), and sulfonic (–
SO3H) functional groups. These 
groups increase the catalytic 
activity, chemical stability, and 
adsorption capacity, making sul-
fonated graphene an excellent 
carrier material. Sulfonated gra-
phene has various applications, 
e.g., membrane technology, pol-
lutants adsorption, photocataly-
sis of anionic and cationic dyes, 
as well as biomass conversion 
into value-added products
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acid at 60 °C. The reaction takes 3–4 days (Brodie 1860). 
Staudenmaier (1899) used sulfuric acid instead of two-thirds 
of fuming nitric acid and designed a simple method with a 
short reaction time. However, the common method for pre-
paring graphene oxide that is still in use was discovered 
in 1958 (Hummers and Offeman 1958). Simply, hummer’s 
method used 50 g of sodium nitrate, 2.3 L of sulfuric acid 
and 300 g of potassium permanganate to oxidize 50 g of 
graphite powder. Permanganate and sodium nitrate were 
used instead of potassium chlorate and nitric acid fumes, 
respectively, to prevent explosion during the reaction. Hum-
mer’s method occurs in in a few hours and is more efficient 
(Zaaba et al. 2017). Although several modifications were 
reported, Hummer’s method is still common for graphene 
oxide preparation (Fig. 2).

Sulfonated graphene (oxide) is a graphene derivative and 
heterogeneous catalyst, which has the merit of being more 
sustainable and widely utilized in chemical industries and 
biology (Mostafa et al. 2016a, b; Tondro et al. 2020). Sul-
fonated graphene is prepared from the sulfonation of the 
graphene oxide. Various sulfonating agents such as sulfuric 
acid, chlorosulfuric acid, 2-chloroethane sulfonic acid, and 
4-diazobenzenesulfonic acid were involved in the sulfonated 
graphene preparation (Oger et al. 2016). Oger et al. (2016) 
described eight preparation routes for sulfonated graphene, 
as shown in Fig. 2. Briefly, the routes used different oxi-
dizing and sulfonating agents to form sulfonated graphene 
oxide from graphite and then the reduction reaction to form 
sulfonated graphene. Sulfonic group -SO3H loading was 
changed for each route. Table 1 summarizes the chemicals 
utilized in all routes of preparation of sulfonated graphene 
(oxide) from graphite and the loading of the sulfonic group.

In conclusion, graphene oxide has more sp3-hybridized 
carbon atoms than graphene; therefore, the attachment of 
oxygen-containing function groups on the graphene oxide to 
the organic solvents is variable. The electrical conductivity 
of the graphene oxide increases with the removal of these 
functional groups. Graphene is prepared by the reduction 
of graphene oxide, synthesized from the oxidative exfolia-
tion of graphite. Sulfonated graphene (oxide) is prepared 
from the oxidation and sulfonation of graphite powder. The 
chemical properties of the sulfonated graphene and graphene 
oxide were affected by the oxidizing and sulfonating agents.

Membranes

Membrane technology has recently become popular in water 
purification, wastewater treatment, seawater desalination, 
food, and medicine. The technology is simple with high 
efficacy, cost-effectiveness, eco-friendly nature, and insig-
nificant chemical consumption (Kang et al. 2019; Tawfik 
et al. 2022a). However, the membrane still suffered from 

various problems for applications that could be overcome by 
the addition of nanocomposite materials as follows,

Hydrophilicity, salt rejection, water flux 
and antifouling properties

The nanofiltration process is widely used for water treat-
ment processes. The technology is efficient for heavy metal 
removal, virus elimination, and metal recovery from waste-
water. The nanofiltration produces demineralized water at 
low pressure (Shon et al. 2013; Zhang et al. 2015; Zhao 
et al. 2015a). Adding nanoparticles to active polyamide lay-
ers could improve the efficiency of the nanofiltration mem-
brane (Ismail et al. 2015; Lau et al. 2015; Hegab et al. 2017). 
This is an innovative approach to solving the main techni-
cal obstacles due to the unusual and unique nanomaterial 
properties. Hydrophilic nanomaterials, such as zeolite (Dong 
et al. 2015), cerium oxide (Lakhotia et al. 2018), and carbon 
nanotubes (Ghanbari et al. 2015), have been successfully 
embedded in polyamide of nanofiltration membrane layer 
to improve its performance.

Graphene oxide was used to improve the nanofiltration 
membranes. The presence of oxygen functional groups 
(hydroxyl, carboxyl, and epoxy) in two-dimensional gra-
phene sheets and their derivatives are unique materials for 
improving the hydrophilicity of membranes (Choi et al. 
2013; Bano et al. 2015). Incorporating graphene oxide with 
the polyamide layer of the membrane would improve the 
water flux and rejection process. Nevertheless, the main 
problem with graphene oxide nanosheet application in 
membranes is the difficulty of homogeneously dispersing 
them in the membrane matrix. Agglomeration of graphene 
oxide nanosheets easily occurs at high concentrations, and 
membrane performance is subsequently suffered from a 
reduction of hydrophilicity and water flux (Mahmoudi et al. 
2015). Accordingly, the agglomeration of graphene oxide 
nanosheets could be reduced by incorporating different extra 
functional groups in the nanofiltration membrane surface 
(Liu et al. 2017).

Graphene oxide was functionalized with a sulfonic acid 
group resulting in sulfonated graphene oxide to improve the 
negative charge and anti-agglomeration of nanofiltration 
membrane as well as hydrophilicity enhancement (Ayyaru 
and Ahn 2017; Kang et al. 2019). The sulfonated graphene 
oxide enhanced the zeta potential, cross-linking hydrophilic-
ity, salt rejection, pure water flux, and antifouling properties 
of the thin film nanocomposite membranes. The negative 
charges of the membrane surface and hydrophilicity were 
improved by oxygen-containing functional groups of sul-
fonated graphene oxide, where water flux increased from 
6.3 L per square meter per hour in thin film nanocomposite 
membrane to 11.8 L per square meter per hour in 30 weight 
percent sulfonated graphene oxide thin film nanocomposite 
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membrane. Thin film nanocomposite membranes can highly 
attract water molecules and facilitate them to pass quickly 
via the membrane matrix (Zhao et al. 2013). The dispersed, 
non-uniformly, and excessive dosage of sulfonated gra-
phene oxide highly reduced the water uptake and flux by 

a membrane (Bano et al. 2015; Wang et al. 2016). Further-
more, the antifouling property of the membrane was sub-
stantially improved by incorporating sulfonated graphene 
oxide into the polyamide layer, where the sulfonated gra-
phene oxide hydrophilic functional groups increased the 

Fig. 2   Preparation routes of graphene derivatives, i.e., sulfonated gra-
phene (oxide) (Oger et al. 2016). Natural sources of rich carbon could 
be utilized to synthesize sulfonated graphene oxide. The modified sul-
fonation and Hummer’s methods are used to prepare and synthesize 
solid acid catalysts of graphene oxide and sulfonated graphene oxide 

nanosheets. Carboxylic, hydroxyl, oxygen, and sulfonic functional 
groups are introduced onto the surfaces of the graphene nanosheets. 
The synthesized sulfonated graphene catalysts are efficient for glyco-
sidic bond hydrolysis and Fischer esterification
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hydrophilicity of the nanofiltration membrane. The hydro-
philicity surface would highly reduce the adsorption of 
hydrophobic foulants on the surface of the membrane; thus, 
high hydrophilicity surface would have better antifouling 
performance (Choudhury et al. 2018).

In conclusion, supplementing an appropriate quantity of 
sulfonated graphene oxide to the membrane highly improved 
the hydrophilicity, salt rejection, water flux, and antifoul-
ing properties. Furthermore, the antifouling property of the 
membrane is improved by incorporating sulfonated gra-
phene oxide into the polyamide layer, where the sulfonated 
graphene oxide hydrophilic functional groups increase the 
hydrophilicity of the nanofiltration membrane.

Reduced biofouling in polymeric membranes

Developing polymeric materials would improve membrane 
performance regarding hydrophilicity, permeability, and 
separation (Gzara et al. 2016). However, membrane bio-
fouling represents a big barrier to such technology's eco-
nomic and technological application. Simply, biofouling 
is the accumulation of foulants (bacterial cells and pro-
teins) present in feeding water on the membrane surface, 
resulting in deposition, attachment, and metabolites in 
biofilm formation. Further, biofouling causes solute con-
centration and nutrient deposits on the membrane (Hum-
mers and Offeman 1958; Tondro et al. 2021), leading to 
blockage of the pore membrane. This causes salt rejection 
reduction, dropping permeate flux, and increased pressure 

trans-membrane, which requires high energy for water fil-
tration (Neelakandan et al. 2016). Therefore, membrane 
fabrication modification is necessary to maximize anti-
biofouling (Zhao et al. 2015b).

Hydrophilicity and morphology of the membrane are 
the key parameters for overcoming biofouling phenomena 
(Banerjee et al. 2011). Cellulose acetate is an employed 
polymer in fabricating membranes for water treatment. Cel-
lulose acetate has high potential flux and biocompatibility 
but moderate hydrophilicity. Furthermore, cellulose acetate 
has poor resistance to fouling processes (Mohan et al. 2015; 
El-Ghaffar et al. 2020). Biofouling is mainly preferred on 
polymeric membranes that enjoy a hydrophobic nature. This 
membrane type has high hydrophobic–hydrophobic interac-
tions with proteins. Thus, improving the morphological and 
hydrophilicity of a membrane is an innovative approach to 
the mitigation of biofouling (Rana and Matsuura 2010).

Nanomaterial addition would improve membranes' mag-
netic, mechanical, morphological, thermal, anti-biofouling, 
and hydrophilic properties (Madaeni et al. 2011; Vatanpour 
et al. 2012; Zinadini et al. 2017). Alumina, titanium diox-
ide, zinc oxide, silica, graphene oxide nanosheets, sulfonated 
graphene oxide, carbon nanotubes, magnetite, zirconia, and 
clay nanoparticles were efficiently utilized for the polymer 
membrane modifications (Liang et al. 2012; Derbali et al. 
2017; Tamiji and Ameri 2017; Lim et al. 2020). However, 
the nanoparticles with a low specific surface area are not 
preferable due to agglomeration causing the formation of 
an imperfect pore in the membranes.

Table 1   Chemicals involved in sulfonated graphene preparation from graphite and the sulfonic group loading value (Oger et al. 2016)

Potassium permanganate and sulfuric acid are the main oxidizing agents for sulfonated graphene oxide synthesis. 4-diazoniobenzenesulfonate 
and sodium nitrite are used as sulfonating agents for preparation of sulfonated graphene oxide. Hydrazine and 4-diazoniobenzenesulfonate and 
hypo-phosphorous acid are used as reducing agents. The sulfonic group loading controls the acidity and reaction activity of the catalyst

Route Oxidizing agents Sulfonating agents Reducing agents Sulfonic 
group loading 
(mmol/g)

1 Potassium permanganate and sulfuric 
acid

4-diazoniobenzenesulfonate and 
sodium nitrite

Hydrazine 0.55

2 Potassium persulfate and phosphorus 
pentoxide

4-diazoniobenzenesulfonate and 
sodium nitrite

Hydrazine 0.7

3 Potassium persulfate and phosphorus 
pentoxide

Chlorosulfuric acid Hydrazine 0.68

4 Potassium permanganate and sulfuric 
acid

Hydrazine 4-diazoniobenzenesulfonate and 
sodium nitrite

1.21

5 Potassium persulfate and phosphorus 
pentoxide

Hydrazine 4-diazoniobenzenesulfonate and 
sodium nitrite

1.79

6 Potassium persulfate and phosphorus 
pentoxide

Hydrazine 4-diazoniobenzenesulfonate and hypo-
phosphorous acid

0.8

7 Potassium persulfate and phosphorus 
pentoxide

Sodium borohydride and hydrazine 4-diazoniobenzenesulfonate and 
sodium nitrite

 < 0.1

8 Not applicable 4-diazoniobenzenesulfonate and 
sodium nitrite

not applicable 0
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The selection of high specific surface area nanoparticles 
is required, but the low additive dosage is very important 
(Zhang et al. 2013; Ayyaru and Ahn 2017). The hydrophilic 
nature of graphene oxide, due to the abundance of oxygen 
functional groups (carbonyl, hydroxyl, carboxyl, and epoxy), 
makes the material suitable for membrane modifications 
(Zhao et al. 2014). The best features of graphene oxide are 
its easy surface functionalization, high strength, low den-
sity and unique planar structure. However, graphene oxide's 
water uptake ability or hydrophilicity needs improvement 
(Beydaghi et al. 2014) to mitigate the adsorption/attach-
ment of hydrophobic protein pollutants onto the membrane 
surface. Microbes and proteins are highly hydrophobic in 
nature; thus, increasing the hydrophilicity of the membranes 
would enhance resistance against biofouling (Vatanpour 
et al. 2011).

The most common problem of using graphene oxide 
is the poor homogenous dispersion inside the membrane 
matrix, resulting in high agglomeration. This highly reduces 
the water flux, hydrophilicity and, subsequently, membrane 
efficiency. Therefore, the functionalization of graphene 
oxide with other nanoparticles will minimize the agglomera-
tion problems on the membrane surface (Kang et al. 2019). 
Cellulose acetate was highly blended and incorporated 
with sulfonated graphene oxide nanomaterials to improve 
wastewater treatment's hydrophilicity and antifouling prop-
erties (Zahid et al. 2021). The measurement of the contact 
angle determines the hydrophilicity of the membrane sur-
face. The contact angle of 70° was recorded for a cellu-
lose acetate membrane that was highly reduced up to 50° 
after supplementation of hydrophilic sulfonated graphene 
nanofillers indicating better hydrophilicity and water affin-
ity of the membrane. This is linked to the membranes rich 
with water retention sulfonic acid, carboxylic and hydroxyl 
moieties on the surface and inside the matrix resulting in 
hybrid membrane technology. However, the hydrophilic-
ity is highly dependent on the concentration of sulfonated 
graphene oxide. The addition of sulfonated graphene oxide 
increased the water flux from 50 for pristine cellulose acetate 
membranes to 152 L per square meter per hour per hydro-
lytic pressure for cellulose acetate sulfonated graphene oxide 
blended membranes.

The presence of sulfonic groups on graphene oxide holds 
and provides a water-thick layer and subsequently increases 
the water flow flux. Sulfonated graphene oxide nanofillers 
reduce the contact angle, positively affecting water perme-
ability (Ayyaru and Ahn 2017). The water flux was slightly 
decreased at high sulfonated graphene oxide content of 1.4 
weight percent, causing agglomeration and pore blockage 
of the fabricated membranes. The results also showed that 
the antibacterial activity was increased with increasing 
sulfonated graphene oxide in the cellulose acetate mem-
brane, indicating the minimization of the fouling process. 

The cellulose acetate sulfonated graphene oxide composite 
surface of the membrane exhibits a negative charge due to 
the presence of hydrophilic functional groups of sulfonated 
graphene oxide (sulfonic, carboxylic, and hydroxyl groups) 
that create highly electrostatic repulsion between the mem-
brane and microbes (Zinadini et al. 2017).

In summary, incorporating sulfonated graphene oxide 
nanosheets with cellulose acetate polymer decreased the 
contact angle and hence increased the hydrophilicity, the 
water flux, and the antifouling properties. The negative 
charge of the sulfonated graphene oxide function groups cre-
ates highly electrostatic repulsion between the membrane 
and microbes. Therefore, the sulfonated graphene cellulose 
acetate membrane showed antibacterial activity.

Enhancement of proton exchange membrane in fuel 
cells

Developing countries prioritize saving renewable energy 
from natural sources (Tawfik et al. 2022c). Proton exchange 
membrane fuel cells are a good electricity generation tech-
nology and have recently received great attention (Eraky 
et al. 2022). This technology enjoys low cost, environmental 
friendliness and high power efficiency (Huang et al. 2016). 
The proton exchange membranes are the backbone of that 
fuel cell (Kraytsberg and Ein-Eli 2014). They are mainly uti-
lized for protons' conducting, isolating negative and positive 
electrodes. Further, the proton exchange membranes must 
have high hydration ability and unique mechanical proper-
ties to avoid conduction proton reduction and water deple-
tion. The non-fluorinated acid ionomer and fluorinated pro-
ton exchange membranes have been recently developed, such 
as sulfonated polyimide-based membranes, polystyrene-
based membranes, polybenzimidazole-based membranes, 
sulfonated aromatic polymer membranes, and polyphosp-
hazene-based membranes (Neburchilov et al. 2007).

Unfortunately, these membranes are not efficient practi-
cally due to the deficiency of hydrophilic functional groups 
and/or the lack of polymer hydrolysis stability (Kumar et al. 
2014). The proton exchange membranes must have proper 
and unique proton conductivity, thermal and chemical sta-
bility (Kim et al. 2009). Sulfonated poly(ether ether ketone) 
has recently gained high attention for application in proton 
exchange membranes due to its superior chemical stability, 
low cost, and excellent alcohol resistance (Liu et al. 2015). 
The presence of a sulfonic acid group (–SO3H) in the sul-
fonated poly(ether ketone) molecules exhibited a low fuel 
permeability (Zhang et al. 2008). The degree of sulfona-
tion controls the efficiency and performance of the proton 
exchange membranes. Proton conductivity is increased with 
an increasing degree of sulfonation. Nevertheless, this pro-
vided high permeation of the liquid fuel, reducing the proton 
exchange membrane structure stability. Inorganic fillers were 
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proposed to overcome this defect, avoiding the reduction of 
proton conductivity.

Graphene oxide nanosheets are two-dimensional with 
high mechanical properties and surface area. Graphene 
oxide contains oxygen functional groups (hydroxyl, car-
boxyl, epoxy) (Beydaghi and Javanbakht 2015; Tang et al. 
2016) that make graphene oxide sheets hydrophobic. Fortu-
nately, sulfonated graphene was reported to be an excellent 
inorganic filler of the proton exchange membranes (Gahlot 
et al. 2014). Graphene oxide sheets lack groups of protons 
conducting. However, combining those sheets with the sul-
fonic acid group will highly increase the channels of proton 
conducting in the membrane matrix and the water retention 
time of the composite membranes (Xu et al. 2011).

Furthermore, the sulfonic acid group surface in sul-
fonated poly(ether ether ketone) and sulfonated gra-
phene nanosheets containing oxygen functional groups 
provides strong interfacial hydrogen bond interaction, 
reducing the methanol permeability, weakening the mem-
brane expansion, and improving the thermal stability of 
the proton exchange membranes composite (Fig. 3). Cao 
et al. (2018) found that increasing the sulfonated gra-
phene in proton exchange membrane provided excellent 
proton conductivity and electrochemical properties. The 
2.0 weight percent of sulfonated graphene loading in the 

sulfonated graphene/sulfonated poly(ether ether ketone) 
composite membrane achieved proton conductivities of 
0.063 Siemens per centimeter at a temperature of 54 °C. 
This value was 1.54 times higher than that of the classical 
sulfonated poly(ether ether ketone) (0.041 Siemens per 
centimeter) membranes. Similarly, the methanol perme-
ability of sulfonated graphene/sulfonated poly(ether ether 
ketone) was 1.834 × 10–9 cm square per second compared 
to 4.537 × 10–9 cm square per second in conventional sul-
fonated poly(ether ether ketone) membranes. The com-
posite membranes of the sulfonated graphene/sulfonated 
poly(ether ether ketone) provided better water uptake and 
thermal stability than the proton exchange membranes.

In summary, the sulfonated graphene/sulfonated poly 
(ether ether ketone) composite membranes are novel and 
exhibit excellent proton conductivity, chemical and ther-
mal stability. Thus, the sulfonated graphene/sulfonated 
poly(ether ether ketone) composite has great potential 
application for proton exchange membranes. The sul-
fonated graphene/sulfonated poly(ether ether ketone) could 
be widely applied as a new efficient membrane proton 
exchange in fuel cells. Therefore, a novel proton exchange 
membrane sulfonated graphene/sulfonated poly(ether ether 
ketone)-based composite membrane has promising appli-
cations from a commercial point of view.

Fig. 3   Proton exchange membrane in fuel cells. Proton exchange 
membrane fuel cell is a good electricity generation technology and 
has recently received great attention. These membranes are not practi-
cally efficient due to the deficiency of hydrophilic functional groups 
and/or the lack of polymer hydrolysis stability. Sulfonated poly(ether 
ether ketone) has recently gained greater attention for application in 

proton exchange membranes. The presence of sulfonic acid group 
(–SO3H) in the sulfonated poly(ether ether ketone) molecules exhib-
ited a low fuel permeability. Nevertheless, the degree of sulfonation 
controls the efficiency and performance of the proton exchange mem-
branes. Proton conductivity is increased with an increasing degree of 
sulfonation
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Pollutants adsorption

Heavy metals and dyes

Recently, various synthetic dyes containing heavy met-
als have been produced by the most metallurgic indus-
tries (Wu et  al. 2016), such as printing (Delval et  al. 
2006), textile (González et  al. 2015) and other indus-
tries (Pan et al. 2008; Tawfik et al. 2021c). Adsorption 
of dyes and heavy metals from the wastewater industry 
has been recently attracted for environmental protection 
(Allam et al. 2015). So far, conventional absorbent mate-
rials such as activated carbon silica, polymer resins, and 
metal oxides are not efficient (Ismail and Tawfik 2016). 
Those adsorbents suffered from low removal efficiency 
and adsorption capacity (Madadrang et al. 2012) due to 
less active sites, narrow pore diameter, low surface area, 
and thermal instability (Nguyen-Le and Lee 2015). Gra-
phene oxide's use to remove such pollutants has attracted 
great attention (Tawfik et al. 2022d). Graphene oxide has 
various carboxylic acid, epoxide and hydroxyl groups 
(Wen et al. 2013), which play a role in the contaminants' 
removal from wastewater (Tan et al. 2015b). However, it 
is difficult to separate those oxides from the bulking water 
phase due to high dispersibility (Bai et al. 2015). The 
functionalization of graphene oxide is usually carried out 
to overcome the drawbacks of using these nanoparticles 
for wastewater treatment. Cui et al. (2015) functionalized 
ethylene diamine tetraacetic acid with magnetic graphene 
oxide for the adsorption of lead, mercury, and copper from 
water. Vadahanambi et al. (2013) successfully used three-
dimensional graphene and carbon nanotube iron oxide 
composites to remove arsenic from contaminated water. 

Yan et al. (2016) synthesized the chitosan and graphene 
oxide composite for water treatment.

Graphene oxide functionalization provided unique prop-
erties of the adsorbents, such as high adsorption capacity 
and efficiency (Liu et  al. 2014). The oxygen functional 
groups on graphene oxide sheets facilitate its functionaliza-
tion and dispersion in an aqueous solution (Qin et al. 2012). 
It is important to increase the graphene oxide adsorption 
capacity by functionalization (Shen and Chen 2015). Liu 
et al. removed organic dyes by functionalizing graphene 
sheets with beta-cyclodextrins (Liu et al. 2014). Madadrang 
et al. (2012) eliminated lead from contaminated water using 
ethylene diamine tetraacetic acid graphene oxide. However, 
graphene-based materials still suffer from low removal effi-
ciencies and adsorption capacities (Wang and Chen 2015).

Due to its highly rich adsorption sites, sulfonated gra-
phene oxide is an efficient adsorbing capacity material 
(Shen and Chen 2015). Sulfonated graphene provided a high 
adsorption capacity of 2850 mg per gram for methylene blue 
(Wei et al. 2018). The sulfonated graphene oxide electroneg-
ative groups are binding sites to adsorb methylene blue. Fur-
ther, the sulfonated graphene oxide adsorbed lead (415 mg 
per gram), copper (167.8 mg per gram), lead (209.3 mg per 
gram), and mercury (65.0 mg per gram) (Table 2). This is 
linked to the presence of multiple adsorption sites and the 
good dispersibility of the sulfonated graphene oxide.

The sulfonated graphene oxide adsorption capacity of the 
cationic dyes could be linked to the presence of oxygen-rich 
functional groups (hydroxyl, carboxyl, and sulfonyl), which 
change into oxidized forms in the aqueous solution medium. 
This will give an electrostatic effect for the adsorption of 
cationic dye by the ultrathin layer graphene oxide structure. 
The graphene contains π–π interactions, which can adsorb 
the cationic dye. The adsorption sites of sulfonated graphene 
oxide are 2.763 mmol per gram sulfonyl, 3.875 mmol per 

Table 2   Adsorption capacity 
of sulfonated graphene oxide 
for different pollutants. The 
absorption capacity of the 
sulfonated graphene oxide for 
dyes and heavy metals is quite 
high

The sulfonated graphene oxide adsorption capacity of the cationic days is linked to the presence of oxygen-
rich functional groups (hydroxyl, carboxyl, and sulfonyl). Incorporating sulfonic groups with graphene, 
forming sulfonated graphene, enhanced the adsorption capacity of aromatic pollutants. The main adsorp-
tion mechanism is the strong π–π interaction stacking between the sulfonated graphene oxide nanosheets 
and aromatic molecules

Pollutants Adsorbing capacity ( mil-
ligrams per gram)

Interaction type References

Methylene blue 2850 π–π interactions Wei et al. (2018)
Lead (II) 415 Electrostatic attraction Wei et al. (2018)
Copper (II) 167.8 Electrostatic attraction Wei et al. (2018)
Cadmium (II) 209.3 Electrostatic attraction Wei et al. (2018)
mercury (II) 65.0 Electrostatic attraction Wei et al. (2018)
Antimony (V) 158.6 Electrostatic attraction Wang and Chen (2015)
uranium (VI) 309.09 Electrostatic attraction Zhang et al. (2016)
1-naphthol 2.407 mmol per gram π–π interactions Zhao et al. (2011b)
Naphthalene 2.326 mmol per gram π–π interactions Zhao et al. (2011b)
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gram carboxyl, 5.592 mmol per gram hydroxyl with π–π 
interactions. Electrostatic attraction is the main mechanism 
for the adsorption of heavy metals. The adsorption capac-
ity is quite high for sulfonated graphene oxide due to the 
functional groups containing sp3-hybridized graphene edge 
(Sun et al. 2017).

In conclusion, the absorption capacity of the sulfonated 
graphene oxide for dyes and heavy metals (Table 2) was 
superior compared with other nanocomposite materials. 
The practical application of sulfonated graphene oxide 
adsorbents with high adsorption site capacities and simple 
preparation methods remains challenging. The sulfonated 
graphene oxide provided outstanding efficiency for removing 
cationic dyes and heavy metals and could have great poten-
tial applications for wastewater industry treatment shortly.

Aromatic compounds

The aromatic pollutants are persistent and generated in the 
environment by pharmaceuticals, pesticides, and dyestuffs 
industries (Abdel Maksoud et al. 2021). They are soluble 
in water; thus, it easily transports into the water ecosystem, 
causing health harm to the people. Due to its simplistic oper-
ation and good removal efficiency, the adsorption technique 
removes such pollutants from the wastewater industry. How-
ever, the adsorption capacities of classical materials are not 
so high to efficiently remove the highly persistent aromatic 
contaminants. The development of new adsorbents with high 
unusual adsorption capacities is needed to remove persistent 
organic pollutants from wastewater.

Theoretically, graphene has a unique specific surface 
area of 2630 m square per gram that is highly suitable for 
excellent adsorption of aromatic compounds from con-
taminated water (Liang et al. 2009; Su et al. 2009). Gra-
phene nanosheets removed naphthalene and 1-naphthol by 
2.3–2.4 mmol per gram (Zhao et al. 2011a). The 1-naph-
thol and naphthalene adsorption are due to the strong π–π 
interaction between graphene nanosheets and the aromatic 
pollutants molecules. Incorporating sulfonic groups with 
graphene-forming sulfonated graphene enhanced the adsorp-
tion capacity of 1-naphthol (Zhao et al. 2011b). The adsorp-
tion kinetic capacities of 1-naphthol on sulfonated graphene 
nanosheets were 2.3 mmol/g at 293.15 Kelvin and 6.4 mmol 
per gram at 313.15–333.15 Kelvin (Table 2). The strong 
π–π interaction stacking between the sulfonated graphene 
nanosheets and aromatic molecules greatly contributed to 
the adsorption of 1-naphthol adsorption (Sheng et al. 2010; 
Zhao et al. 2011a).

The planar aromatic molecules are highly inclined to 
stack on the sulfonated graphene nanosheet surface. Sul-
fonated graphene not only provided single but multi-layer 
adsorption of the 1-naphthol due to high dispersion in the 
reaction medium (Zhao et al. 2011a). Further, the adsorption 

of 1-naphthol on the sulfonated graphene increased at 
increasing temperatures, resulting in the highest adsorption 
capacity of 6.4 mmol per gram for 1-naphthol. The maxi-
mum adsorption capacities of sulfonated graphene were 
2.407 mmol per gram for 1-naphthol and 2.326 mmol per 
gram for naphthalene. This was due to the strong interaction 
π–π in the form of stacking face-to-face (Zhao et al. 2011a). 
However, the adsorption of naphthalene and 1-naphthol on 
sulfonated graphene sheets dropped as the pH in the reaction 
medium was increased. The sulfonated graphene surface is 
typically electron depleted at a low pH value, which makes 
Lewis acid adsorption dominant. Naphthalene/1-naphthol 
is mainly a Lewis base. Thus, the adsorption capacity of 
1-naphthol/naphthalene becomes stronger at decreasing pH 
due to more electron-depleted surface sites available on the 
sulfonated graphene. The 1-naphthol interacts with the sur-
face of sulfonated graphene electron depleted at high pH. 
The n–π electron donor–acceptor for oxygen electron pairs 
(π-electron donor) of 1-naphthol and the surface of the sul-
fonated graphene (π-electron acceptor) are proposed mecha-
nisms. This is highly enhanced when more hydroxyl groups 
are ionized into epoxy groups at high pH.

In conclusion, the sulfonated graphene (oxide) nanosheets 
would be promising nanocomposite materials for persistent 
aromatic chemical removal from large volumetric wastewa-
ter if these nanocomposite materials could be synthesized 
in huge quantities shortly.

Photocatalytic oxidation of dyes

The semiconductor photocatalyst titanium dioxide with light 
has the advantage of degrading recalcitrant toxic compounds 
(Gar Alalm et al. 2016, 2017). Graphene/semiconductor 
composite could improve the photocatalytic efficiency by 
increasing the electron transfer and the light absorption 
enhancement band range (Zhou et al. 2013; Zhang et al. 
2014). Noble metal nanoparticles significantly improved the 
photocatalytic efficiency of graphene titanium dioxide due 
to an increase in the ability of light absorption in the visible 
region (Zhou et al. 2013). These composite materials over-
come the electron–hole pair’s recombination by transporting 
photogenerated electrons into the noble metal (Wang et al. 
2014b). Nevertheless, graphene/graphene oxide titanium 
dioxide nanocomposites were destroyed and defected under 
alkaline operating conditions due to the damage and loss of 
the interaction between titanium dioxide and graphene/gra-
phene oxide nanosheets (Gao and Sun 2014). This deficiency 
and drawbacks were overcome in sulfonated graphene/tita-
nium dioxide/silver nanocomposite, which enhanced the 
stability of graphene, creating electron acceptor, transport 
channels, and working efficiently in a wide range of pH 
(Alamelu and Jaffar Ali 2020a).
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Sulfonated graphene/titanium dioxide/silver nanocompos-
ite was synthesized and utilized for the photodegradation 
of anionic dyes such as methyl orange, cationic dyes such 
as rhodamine B, and 4-nitrophenol. Sulfonated graphene/
titanium dioxide/silver could remove 98% of anionic dye 
(methyl orange) and cationic dye (rhodamine B and 4-nitro-
phenol) at pH values ranging from 3–7. The photodegrada-
tion kinetics of sulfonated graphene/titanium dioxide/silver 
for all pollutants was four–ninefold higher than titanium 
dioxide. This is linked to sulfonated graphene/titanium diox-
ide/silver that extended the capability of light absorption 
in the relevant visible region, the ability of electron trans-
port and interfacial electron transfer. The maximum pho-
tocatalytic degradation of methyl orange (anionic dye) by 
sulfonated graphene/titanium dioxide/silver occurred at pH 
(3) and dropped with increasing pH value. The sulfonated 
graphene/titanium dioxide/silver catalyst surface under 
acidic pH will bear a positive charge, thus able to adsorb 
anionic dyes and enhance the fast degradation (Yang et al. 
2014). This was not the case for cationic dye rhodamine B 
removal by sulfonated graphene/titanium dioxide/silver cata-
lyst where the photocatalyst was maximum at pH 7. This is 
due to the formation of a negative charge on the sulfonated 
graphene/titanium dioxide/silver catalyst at this pH value.

Photocatalytic oxidation of 4-nitrophenol was conducted 
by sulfonated graphene/titanium dioxide/silver catalyst at a 
pH range of 3–10. The photodegradation of 4-nitrophenol 
(97%) occurred at pH (6.5). However, the photocatalysis 
efficiency of 4-nitrophenol was highly reduced at increas-
ing pH values from 6.5 to 10 due to H2O2 instability. The 
quantity of hydroxyl radicals is decreased with increasing 
superoxide scavenger radicals (Subbulekshmi and Subrama-
nian 2017). Irradiating sulfonated graphene/titanium diox-
ide/silver by sunlight, the generated electrons in the valance 
band of titanium dioxide are highly excited to the conduction 
band, leaving enormous holes in the valance band (Fig. 4). 
The electrons of titanium dioxide quickly transfer from the 
conduction band into the sheets of sulfonated graphene and 
silver nanoparticles (Tan et al. 2015a). This creates elec-
tron–hole pairs required for the photocatalysis process. The 
generated electrons react with oxygen molecules and reduce 
them further into superoxide anion radicals that react with 
protons and electrons to form hydroxyl radicals. Photogen-
erated holes oxidize water molecules to generate reactive 
hydroxide radicals. These radicals facilitate the photodeg-
radation of recalcitrant compounds. The synergistic effect 
of silver, titanium dioxide, and sulfonated graphene highly 
improved the photocatalytic activity of toxic compounds.

Fig. 4   Mechanism of photoexcited electrons and holes transfer among 
titanium dioxide and noble metals nanoparticles such as gold, silver 
or platinum and sulfonated graphene. Incorporating noble nanoparti-
cles into the sulfonated graphene provided more holes and electron 
generation, which can easily participate in the oxidation/reduction 
process, improving the photocatalytic pursuance of recalcitrant toxic 
compounds. Irradiating sulfonated graphene/titanium dioxide/silver 
by sunlight, the electrons generated in the valance band of titanium 

dioxide are highly excited to the conduction band, leaving enormous 
holes in the valance band. The electrons of titanium dioxide quickly 
transfer from the conduction band into the sheets of sulfonated gra-
phene and silver nanoparticles. This creates electron–hole pairs 
required for the photocatalysis process. The generated electrons react 
with oxygen molecules and are reduced further into superoxide anion 
radicals that react with proton and electrons to highly form hydroxyl 
radicals
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Sulfonated graphene not only served as the supporting 
material but also provided a uniform distribution of silver 
nanoparticles, overcoming aggregation and thus achieving 
high photocatalytic efficiency. Gold nanoparticles were dec-
orated with sulfonated graphene titanium dioxide nanocom-
posites to remove p-nitrophenol, rhodamine B, and methyl 
orange under sunlight irradiation (Alamelu and Jaffar Ali 
2020b). Gold/sulfonated graphene oxide titanium dioxide 
catalyst exhibited 3.2-fold higher than the performance of 
the pristine titanium dioxide system. This is due to the syn-
ergistic effect of raising interfacial electron transfer between 
composites, reducing the recombination rate of photoexcited 
holes and electrons and the plasmatic positive effect of gold 
nanoparticles.

In summary, the sulfonated graphene/titanium dioxide/
silver nanocomposite is highly stable for catalytic oxidation 
of pollutants under a wide range of pH values and could be 
easily reused several cycles without loss of catalytic activity. 
Moreover, incorporating silver nanoparticles into the sul-
fonated graphene provided more holes and electron genera-
tion, which can easily participate in the oxidation/reduction 
process, improving the photocatalytic pursuance of recalci-
trant toxic compounds. This renders sulfonated graphene/
titanium dioxide/silver a universal and efficient photocata-
lyst that can be effectively exploited for wastewater industry 
treatment in real applications.

Biomass conversion

Acid hydrolysis of lignocellulosic wastes is efficient and 
produces chemical by-products (Osman et al. 2021a). The 
breakdown route of lignocellulosic materials by acidification 
is presented in Fig. 5. The hemicellulose is hydrolyzed by 
acid into xylose and terminated with alkyl levulinic acid. 
Likely, cellulose is converted into glucose and/or fructose 
that are ended with alkyl levulinic acid by-product.

Transformation of fructose into levulinic acid

Biomass, particularly lignocellulosic wastes, is a renewable 
resource which could be easily exploited to generate high 
value-added by-products, such as 5-hydroxymethylfurfural, 
alcohol, formic acid, furfural, and levulinic acid (Mascal 
and Nikitin 2010; Upare et al. 2013) (Fig. 6). Production 
of levulinic acid is a priority that can be further utilized to 
generate resins, succinic acid, polymers, pharmaceuticals, 
herbicides, flavoring agents, anti-freeze agents, solvents, 
biofuels, oxygenated fuel additives, and plasticizers (Braden 
et al. 2011; Axelsson et al. 2012). Biomass conversion into 
levulinic acid takes place by multiple steps such as cellu-
lose hydrolysis into glucose, isomerization of glucose into 
fructose, fructose dehydration into 5-hydroxymethylfurfural, 
and more hydrolysis to highly form equimolar levulinic acid 
and formic acid (Alonso et al. 2013). These processes are 
carried out via enzymatic or chemical routes. The chemical 
route is preferred for commercial levulinic acid production 
(Son et al. 2012; Pileidis and Titirici 2016). Homogeneous 
sulfuric, phosphoric, and hydrochloric acid catalysts were 

Fig. 5   Acid hydrolysis of 
lignocellulosic wastes. The 
cellulose and hemicellulose are 
easily acidified and converted 
into various intermediates 
chemicals. These chemical by-
products could be easily utilized 
for various applications in the 
chemical industry
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used for levulinic acid production because of their low resist-
ance to mass transfer (Li et al. 2018). Those acidic catalysts 
are highly corrosive and non-recyclable (Zhao et al. 2016). 
The grafting of sulfonic groups provided the most catalytic 
activity providing a high levulinic acid yield due to the high 
acidity of the catalyst (Pizzolitto et al. 2020).

Graphene oxide is a porous catalyst with a high surface 
area and functional groups of carboxyl and hydroxyl (Wang 
et al. 2014a; Farghaly et al. 2016; Mostafa et al. 2016b; 
Upare et al. 2019). Sulfonated graphene oxide is the most 
powerful acid catalyst for the conversion of biomass (Taw-
fik and El-Qelish 2014; Zhu et al. 2015). Grafting sulfonic 
acid onto the two-dimensional structure of graphene oxide 
created an accessible active site that aided in the conversion 
of biomass into value-added chemicals like levulinic acid 
and its derivatives. A sulfonated graphene oxide catalyst 
was synthesized and prepared from petrochemical waste 
oil (Lawagon et al. 2021). Because of its high mesoporos-
ity and the presence of 2.4 mmol per gram sulfonic groups 
grafted onto its surface, the prepared sulfonated graphene 
oxide has a high specific surface area (246.2 m square per 
gram). The sulfonated graphene was successfully used to 
convert fructose into levulinic acid. The levulinic acid yield 
was 61.2 mol percent at a temperature of 160 °C for one hour 
and fructose-to-sulfonated graphene weight ratio of 6.0 g per 
gram. Fortunately, sulfonated graphene can be reused five 
times with no severe loss of catalytic activity.

The conversion of 97.0% fructose into levulinic acid was 
achieved by adding sulfonated graphene (0.2 g) catalyst at 
a temperature of 200 °C and a substrate concentration of 
4.5 g. 5-hydroxymethylfurfural (1.2%) and 26.9% levulinic 
acid were yielded after 10 min. Complete degradation of 
fructose into 38.5% levulinic acid occurred by increasing the 
reaction time to 60 min, and 5-hydroxymethylfurfural was 
not detected. Nevertheless, levulinic acid and formic acid 

were decreased after 120 min, indicating that 5-hydroxym-
ethylfurfural could form humin via hydroxyl and aldehyde 
reactive sites (Choudhary et al. 2013; El-Bery et al. 2013; 
Hu et al. 2015).

Sulfonated graphene oxide nanosheets exhibited high 
mesoporosity, offering a high specific surface area of 
246.2 m square per gram. These results show excellent inter-
action conditions between fructose and catalyst active sites. 
The presence of oxygen-rich groups would enhance sul-
fonated graphene oxide surface hydrophilicity, which could 
be beneficial for the conversion of fructose (Qi et al. 2015). 
Furthermore, sulfonic groups (2.4 mmol per gram) on the 
catalyst surface highly enhanced the fructose conversion to 
levulinic. At a sulfonated graphene catalyst loading of 0.1 g, 
100% fructose was transformed into 28.4% of 5-hydroxy-
methylfurfural and 17.7% of levulinic acid. The sulfonated 
graphene oxide catalyst of 0.2 g increased the levulinic acid 
up to 41.2% with a low yield of 5-hydroxymethylfurfural.

Nevertheless, further increases in the sulfonated gra-
phene oxide catalyst loading exerted only a slight increase 
in the yield of levulinic acid, 5-hydroxymethylfurfural and 
formic acid. High acidity content can boost the hydrolysis 
of 5-hydroxymethylfurfural into levulinic acid (Tawfik and 
Salem 2012; Jung et al. 2021). Nevertheless, excessive sul-
fonated graphene oxide catalyst loading would promote not 
only fructose dehydration into levulinic acid but also the 
degradation of 5-hydroxymethylfurfural and levulinic acid 
into other unwanted by-products, like humins (Fachri et al. 
2015; Velaga et al. 2019). The optimal ratio of fructose to 
the catalyst sulfonated graphene oxide was 22.5 g/gram, 
which provided the highest levulinic acid productivity.

In conclusion, the sulfonated graphene oxide derived 
from petrochemical waste oil is an environmentally benign 
catalyst for producing levulinic acid from fructose and other 
classical biomass derivatives.

Fig. 6   Sulfonated graphene oxide promotes the conversion of the lig-
nocellulosic biomass into levulinic acid, which can be used in mak-
ing numerous value-added products. Levulinic acid can be converted 
into fuel, solvents, monomers, plasticizers, agrochemicals and phar-
maceuticals. Biomass conversion into levulinic acid is taken place in 

multiple steps. Cellulose is hydrolyzed into glucose, isomerization 
of glucose into fructose, fructose dehydration into 5-hydroxymethyl-
furfural, and more hydrolysis to highly form equimolar levulinic acid 
and formic acid. These processes are carried out via enzymatic or 
chemical routes
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Dehydration of xylose into furfural

Furfural is mainly derived from hemicellulose degrada-
tion and is used as an intermediate for several industrial 
applications such as pharmaceuticals and polymers (Xing 
et al. 2010). Nafion, a sulfonated tetrafluoroethylene, was 
proven an efficient and reusable catalyst for converting 
xylose into furfural. Nevertheless, this solid acid cata-
lyst uses organic solvents such as toluene and dimethyl 
sulfoxide, making it complex for industrial application 
and difficult to separate furfural. Further, those catalysts 
lose their activity of acidic sites in water. The need for 
homogenous acid catalysts is urgently important to avoid 
corrosive chemicals and neutralization prior to disposal. 
The development of an economical catalyst enjoying high 
thermal stability and applicable for xylose dehydration 
into furfural in water is a novel approach. Moreover, the 
catalyst should be reusable to reduce potential high costs 
and capital investment.

Carbonaceous materials have recently become very 
effective for producing solid acid catalysts due to their 
high chemical and thermal stability and low production 
costs (Lu and Love 2005; Zhang et al. 2010). Sugar mole-
cules are carbonized in an acid medium to form sulfonate-
functionalized carbon nanoparticles. Sulfonated graphene 
is a water-stabilized catalyst utilized for ethyl acetate 
hydrolysis (Ji et al. 2011). Graphene oxide, graphene, 
sulfonated graphene oxide, and sulfonated graphene were 
synthesized, prepared, characterized, and examined for 
the dehydration of xylose into furfural in an aqueous solu-
tion (El-Gohary et al. 2009; Lam et al. 2012).

The surface area of graphene oxide (318 m square 
per gram), sulfonated graphene oxide (680  m square 
per gram), and sulfonated graphene (634.0 m square per 
gram) were lower than the theoretical specific surface 
area of graphene (2600 m square per gram) (Stankovich 
et al. 2006). Sulfonic acid anchored mobile composition 
of matter number 41 (mesoporous material) was an effec-
tive catalyst for the D-xylose dehydration into furfural 
(Dias et al. 2005). Furfural is converted into formic acid 
(Antal et al. 1991).

In summary, the graphene and its derivatives' catalytic 
performance with reusability for the synthesis of furfural 
from dehydration of xylose is a novel process. Sulfonated 
graphene oxide is a robust and reusable catalyst that can 
be repeated several times for xylose dehydration without 
losing its high catalytic activity. Sulfonic acid groups and 
carboxylic acids in sulfonated graphene oxide catalysts 
are potentially highly active sites for the dehydration of 
xylose. Sulfonic acid groups are thermally stable and have 
active acidic sites for producing furfural from xylose in 
water.

Cleavage of the glycosidic bonds of cellobiose

The catalytic hydrolysis of cellobiose by sulfonated gra-
phene oxide and other acid catalysts was investigated by 
Wei et al. (2014). The cellobiose conversion and glucose 
yields were 40.5–37.2%, respectively. The sulfonated gra-
phene could be reused several times without losing its cata-
lytic activity due to its high stability that originates from 
the stable carbon–sulfur bond between the graphene and 
the sulfonic group. Further sulfonic groups are too hard to 
be dissolved in the substrate or removed from the graphene 
nanosheets.

The graphene oxide and sulfonated graphene oxide cat-
alysts have an unusual theoretical specific surface area of 
2630 m square per gram (Dürkop et al. 2004). Most sulfonic 
groups are uniformly distributed and bound to the external 
and internal surfaces of the graphene nanosheets. This is due 
to sufficient graphene nanosheet oxidation and large spaces 
between their layers. This will allow the reactants to eas-
ily enter the internal surface of graphene nanosheets and 
further facilitate contact with active acid sites. Sulfonated 
graphene oxide is hydrophobic and has hydrophilic groups 
(hydroxyl, carboxyl, and epoxy), creating cavities on the 
graphene nanosheet surface. Amouri and Gargouri (2006) 
found that the hydroxyl groups on carbon nanomaterials 
effectively bond with the oxygen atoms through a glycosidic 
bond within hydrogen bonding to adsorb cellobiose.

Sulfonated graphene contains both hydrophobic gra-
phene sheets and hydrophilic oxygen-rich groups (car-
boxyl, hydroxyl and sulfonic) that produce an adsorbent 
site to affinity with reactants. This reaction is divided into 
the following steps, as shown in Fig. 7. The hydrophobic 
graphene nanosheets of sulfonated graphene provide hydro-
phobic cavities to the target reactants on the catalyst surface. 
The hydrophobic portion of the reactants (the carbon ring of 
the cellobiose molecule) is eventually attracted by the gra-
phene nanoskeleton, and the hydrophilic portion (hydroxyl 
and epoxy groups) forms hydrogen bonds with the oxygen-
rich groups on the graphene surface. Thus, the reactant 
concentrations around the acid sites of sulfonic groups are 
increased (Kitano et al. 2009), and the reactive site can be 
attached by protons and increase the reaction rate and selec-
tivity. A proton ionized from sulfonic groups easily attacks 
the glycosidic bond to catalyze the cellobiose. Finally, the 
glycosidic bond of cellobiose is broken and hydrolyzed. The 
hydrolyzed by-product is subsequently desorbed on the cata-
lyst surface.

Hydrolysis of microcrystalline cellulose

Cellulose is the main component of lignocellulosic biomass 
and has thousands of glucose molecules linked by β-1, 4 
glycosidic bonds that could be easily depolymerized into 



1106	 Environmental Chemistry Letters (2023) 21:1093–1116

1 3

glucose monomers via catalytic hydrolysis (Lai et al. 2011; 
Osman et al. 2022). The solid carbonaceous acids could be 
prepared by hydrothermal carbonization of unwanted bio-
mass as an efficient carbon precursor, followed by surface 
functionalization of sulfonated acid groups (Ngaosuwan 
et al. 2016; Shen et al. 2018). Water-dispersible sulfonated 
graphene oxide is a highly active heterogeneous catalyst for 
biomass hydrolysis due to its layered structure and abun-
dance of functional groups (hydroxyls, carboxyl, carbonyls, 
epoxy, and sulfonic).

The nettle-derived sulfonated graphene oxides were suc-
cessfully used to hydrolyze microcrystalline cellulose in 
water as a solvent. The nettle-derived sulfonated graphene 
oxide catalyst has a surface area of 354.9 m square per 
gram and acidity of 5.47 mmol per gram. The maximum 
glucose yield was attained at 72.8%, at the nettle-derived 
sulfonated graphene oxides concentration ratio of 1 g per 

gram, with a temperature of 160 °C for a time of 3.0 h (Ton-
dro et al. 2021). The microcrystalline cellulose conversion 
was increased from 8.3 to 42.6% as the temperature range 
from 130 to 180 °C. The glucose yield was 26.3% at 160 °C 
at 3 h. This is due to the temperature increase of the contact 
of β-1, 4-glycosidic bonds of cellulosic chains with the cata-
lyst (Liu et al. 2016). Increasing the temperature by 180 °C 
resulted in more sugar decomposition into other by-products 
(Guo et al. 2013).

Glucose dehydration into 5-hydroxymethylfurfural 
is one of the major by-products of cellulose hydrolysis 
(Elsayed et al. 2018). 5-hydroxymethylfurfural can rehy-
drate to produce levulinic, formic acid and humins. The 
glucose yield was increased from 13.5 to 29.4% as the 
nettle-derived sulfonated graphene oxide catalyst dose 
increased from 0.5 to 2.0 g per gram, respectively. The 
high catalytic activity is related to acidic strength and 

Fig. 7   Mechanism of hydrolysis activity of sulfonated graphene oxide 
toward cellobiose. The hydrophobic nanosheets of sulfonated gra-
phene oxide provide hydrophobic cavities to the target reactants on 
the catalyst surface. The hydrophobic portion of the reactants, which 
is the carbon ring of the cellobiose molecule, is eventually attracted 

into the hydrophobic cavity. The hydrophilic portion forms hydrogen 
bonds with the oxygen-rich groups on the graphene surface as well 
as the sulfonic group attack and breakdown the glycosidic bond. Glu-
cose is desorbed as a hydrolysis product from the catalyst surface
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available acidic sites required for the microcrystalline 
cellulose hydrolysis process (Shen et  al. 2014; Chen 
et al. 2019). The highest glucose yield was achieved at 
the nettle-derived sulfonated graphene oxides to micro-
crystalline cellulose ratio of 1 g/gram in 0.01 L water. At 
the nettle-derived sulfonated graphene oxides to micro-
crystalline cellulose ratio catalyst dose of 0.5 g per gram, 
the 5-hydroxymethylfurfural productivity was < 1% at 3 h. 
Increasing the catalyst loading from 1 to 2 g per gram, 
the 5-hydroxymethylfurfural yield dropped from 4.1 to 
3.3% due to the excess of acid active sites, which not only 
catalyze and dehydration of glucose into 5-hydroxymeth-
ylfurfural but also the further 5-hydroxymethylfurfural 
degradation into other by-products such as levulinic acid, 
furfural, and humins. Excessive solid acid catalyst pro-
vides excess active sites in the reaction medium, which 
accelerate not only the cellulose hydrolysis into reducing 
sugars but also the reducing sugars degradation of other 
by-products.

In conclusion, the optimal required dose of the net-
tle-derived sulfonated graphene oxides to microcrystal-
line cellulose for conversion of cellulose into sugars is 
1 g per gram, and a temperature of 160 °C, a reaction 
time of 3 h, resulting in glucose yield and selectivity of 
26.3–72.8% respectively. The nettle-derived sulfonated 
graphene oxides catalyst bears sulfonic, carboxyl, and 
hydroxyl groups and has a synergy of multilayered struc-
ture to facilitate the cleavage of a β-1,4-glycosidic bond of 
the cellulose into β-1, 4-glucan and glucose (Zhang et al. 
2017). The fresh nettle-derived sulfonated graphene oxides 
to microcrystalline cellulose have a 19.26% sulfonic acid 
content with a total acidity of 5.47 mmol per gram, which 
was reduced to 17.10% and 4.63 mmol per gram, respec-
tively, after the fourth reaction cycle at 160 °C for 3.0 h. 
This implied that the nettle-derived sulfonated graphene 

oxides to microcrystalline cellulose are not stable, and fur-
ther research is needed to stabilize the catalyst.

Crude rice straw liquefaction and transformation

Liquefaction of lignocellulosic wastes such as rice straw can 
be carried out using sulfonated graphene oxide. The latter 
disintegrates the straw into low molecular levels for further 
utilization in bioenergy productivity. The acid heterogene-
ous catalyst (zeolite) promotes the cellulose and hemicel-
lulose disintegration structures of the biomass into biofuel. 
The available acidic sites of the catalyst are either the Brön-
sted or Lewis acid types, which are highly responsible for 
enhancing hydrocarbon productivity instead of ester and 
ketone molecules.

The alkali heterogeneous catalyst mainly produces ester 
and ketone molecules, which should be avoided, particu-
larly for bioenergy productivity (Talukdar et al. 2001). The 
acid sites of the catalyst are further responsible for not only 
the hydrolysis of cellulosic biomass but also the deamina-
tion of the amino acids into fatty acids and glucose. The 
existence of acidic sites on graphene oxide promotes the 
cracking reaction of biomass (rice straw) (Browning et al. 
2016; Li et al. 2016). The acid sites on the catalyst promote 
isomerization reactions that transform the biomass compo-
sition's straight molecules into branched molecules with a 
higher tendency to be highly turned into soluble by-products 
(Soualah et al. 2008; Jörke et al. 2015). However, high cata-
lyst concentration produces unwanted by-products that plug 
the catalyst sites' pores, negatively affecting the catalytic 
and biofuel productivity processes. The sulfonated graphene 
oxide was used for the supercritical liquefaction of rice straw 
into ethanol (Echaroj et al. 2021).

Graphene oxide was thermally synthesized from humic 
acid and treated with sulfuric acid using the wet impregna-
tion method. Sulfuric acid exceeded 6.0 molar, causing a 

Fig. 8   Rice straw liquefaction 
by sulfonated graphene oxide 
catalysts. The supercritical 
liquefaction of rice straw takes 
place at 320 °C, with 6.0 molar 
sulfuric acid and 10 weight % 
catalyst producing biofuel and 
biomass, with increasing the 
temperature. The syngas and 
biochar are produced from the 
catalytic conversion of rice 
straw. The increasing sulfuric 
acid concentration increases the 
syngas and biochar yields from 
rice straw
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reduction in biofuel productivity. The biofuel productivity 
increased dramatically from 3.9% to 24.2% as the catalyst 
concentration increased from 5 to 10% weight. This is linked 
to an increase in the number of available active sites for 
the liquefaction of rice straw. The acidic active sites existed 
inside the catalytic, causing the breakdown of the ligno-
cellulosic matrix. However, further catalyst increases had 
no serious effect on biofuel productivity. The formation of 
other soluble by-products, such as phenols, was gradually 
increased as the catalyst concentration rose. Moreover, as 
shown in Fig. 8, the liquefaction reaction for biofuel gen-
eration was optimum at a temperature of 320 °C, 6.0 molar 
sulfuric acid, and 10 weight percent catalyst, resulting in 
biofuel productivity of 33.4%. The liquefaction of rice straw 
produced biofuel, biochar, residual biomass, and syngas, 
which can be calculated as follows,

where X is the percentage conversion of rice straw biomass, 
Mf is the rice straw weight, MR is the rice straw remaining 
weight after the reaction, MB is the biofuel productivity, and 
MC is the char weight.

In conclusion, the sulfonated graphene oxide catalyst can 
hydrolyze the lignocellulosic portion of the rice straw to 
produce biofuel, syngas, and biochar. The liquefaction pro-
cess occurs at 320 °C, with 6.0 molar sulfuric acid and 10 
weight percent catalyst. Increasing the temperature and/or 
the sulfuric acid concentration could increase syngas and 
biochar production.

Conversion of 5‑(hydroxymethyl)‑2‑furfural

The acid-cata lyzed react ion of  ethanol  wi th 
5-(hydroxymethyl)-2-furfural produces useful by-products 
of 5-(ethoxymethyl) furfural diethyl acetal, 5-ethoxym-
ethylfurfural, and/or ethyl levulinate. Reduced graphene 
oxides containing sulfonic acid groups and acid sites of 
carboxylic acids have superior catalytic efficiency for 
ethyl levulinate productivity compared to other acid cata-
lysts. This is linked to sulfonic acid content that provides 

(1)X =

(

Mf −MR

Mf

)

× 100

(2)Biofuel =

(

MB

Mf

)

× 100

(3)Char =

(

MC

Mf

)

× 100

(4)Gas =

(

Mf −MB −MC −MR

Mf

)

× 100

high-strength acidity. The acidic functionalities are highly 
bonded to the surface of sulfonated-reduced graphene 
oxide to increase catalytic reaction stability, allowing sul-
fonated-reduced graphene oxide’s efficient recycling and 
reuse. Sulfonated reduced graphene oxide (3.0-g catalyst 
per liter) achieved the highest ethyl levulinate yield of 94% 
with 100% 5-hydroxymethylfurfural conversion (Antunes 
et al. 2014). These results are correlated with the acid site 
quantities in the catalyst.

The partial modification of reduced graphene oxide by 
sulfuric acid treatment introduces surface sulfonic acid 
groups, resulting in sulfonated reduced graphene oxide 
with acid sites of 2.2 mmol per gram (carboxyl, sulfonic 
and hydroxyl). These functional groups exhibited high 
catalytic activity for transforming 5-(hydroxymethyl)-
2-furfural into 5-(ethoxymethyl) furfural diethyl acetal, 
5-ethoxymethylfurfural, and ethyl levulinate in the tem-
perature range of 110–140 °C. Further, sulfonated-reduced 
graphene oxide with solid acid Amberlyst-15 (4.3 mmol 
SO3H per gram) was superior to the modified carbon black 
and carbon nanotubes for catalytic activities. This could 
be explained by the unique cooperative effects of the vari-
ous acid sites and sulfonated reduced graphene oxide two-
dimensional structures. The sulfonated reduced graphene 
oxide acidic surface functionalities are stable and could be 
reused without losing their catalytic activities.

Conversion of lipids

Biodiesel production using reusable heterogonous acid 
catalysts is a novel and low-cost approach (Wang et al. 
2017; Elsamadony et al. 2021). Sulfonated graphene oxide 
is a suitable solid acid catalyst for cellulose hydrolysis 
and chemical reactions (Hara 2010). Solid acid catalysts, 
namely graphene oxide, sulfonated graphene, sulfonated 
graphene oxide, and sulfonated active carbon, were used 
for biodiesel productivity from lipids fractions of wet 
microalgae (Cheng et al. 2017). The better conversion effi-
ciency of lipids into fatty acid methyl esters was achieved 
by catalytic oxidation of sulfonated graphene oxide with 
84.6% of sulfuric acid. This is mainly due to the higher 
content of hydrophilic hydroxyl groups in the sulfonated 
graphene oxide catalyst. The latter achieved higher lipid 
conversion efficiency by 48.6% compared to sulfonated 
graphene. However, sulfonated graphene has a higher acid-
ity of 1.69 mmol per gram than that of sulfonated gra-
phene oxide (0.44 mmol per gram). The sulfonic group 
content was 0.38 mmol per gram in sulfonated graphene 
oxide, achieving a lipid conversion efficiency of 73.1%. 
Sulfonated active carbon provided the lowest lipid conver-
sion efficiency.
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Cellulose into chemical by‑products

Lignocellulosic wastes rich in carbohydrates are abundant 
in agricultural countries, causing environmental damage 
(Meier et al. 2020). Direct fermentation of these wastes 
for bioenergy productivity faces difficulties and challenges 
(Kumar et al. 2018). This is linked to the structure of ligno-
cellulose wastes, which have five and six polymerized car-
bon sugars in cellulose and hemicellulose layers embedded 
in the lignin matrix (Güell et al. 2015). The poor solubility in 
water and the crystalline structure of lignocellulosic wastes 
are considered the major obstacles to the slow hydrolysis 
of glycosidic linkages of the cellulosic chain. The cellulose 
layer has a partial crystalline shape structure chains contain-
ing glucose units with several β-1, 4-glycosidic linkages that 
are connected by hydrogen bonding (Altaner et al. 2014) 
(Fig. 9). These cellulosic layers need to be hydrolyzed into 
sugar monomers (pentoses and hexoses) before the fermen-
tation process, which could be carried out by the destruction 
of hydrogen bonds (Liu et al. 2016; Osman et al. 2021b).

Sulfonated graphene oxide catalyst is water dispersible 
and efficient for converting biomass into biofuels (Wei et al. 
2014). Sulfonated graphene oxide carries hydrophilic func-
tional groups and offers high chemical activity, high surface 
area, and thermal stability compared with other solid acid 
catalysts (Mission and Quitain 2017). The potential appli-
cation of sulfonated graphene oxide for cellulosic substrate 
hydrolysis followed by hydrogen fermentative productivity 
from the harvested hydrolysates using E. aerogenes was 
investigated by Tondro et al. (2020) and is presented in 
Fig. 9. Graphene oxide sulfonation was carried out using 
chlorosulfonic acid with an acid density of (4.63 mmol per 
gram). The glucose yield and total reducing sugars were 
454.4 ± 22.20 mg per gram and 682.6 ± 30.67 mg per gram 

at operational conditions of 150 °C, 3.0 h, and 250 mg of 
sulfonated graphene oxide. The maximum hydrogen pro-
ductivity was 150.0 ± 5.65 ml per gram which was 2.2-fold 
higher than that obtained from the sample without catalyst 
addition (67.3 ± 8.84 ml per gram).

The total reducing sugar productivity from cellulosic 
materials depends on the probability of collision between 
the target substrate and the catalyst acid sites (Shuai and 
Pan 2012; Elsamadony and Tawfik 2018). The solid acid 
catalytic reaction process occurs via the adsorption of the 
sugars via the hydrogen bonding interaction between func-
tional groups of sulfonic, carboxyl, and hydroxyl groups of 
the solid acid catalyst and the oxygen in a β-1, 4-glycosidic 
(Shen et al. 2018). Furthermore, sulfonated graphene oxide 
has a high hydrophilicity structure that tends to adsorb the 
sugars of cellulosic materials via hydrogen bonding.

In summary, the hydrolysis of cellulosic materials by 
solid acid catalytic reaction performs with great potential, 
and the resultant hydrolysates are converted by hydrogen 
producers into useful biofuel. The biohydrogen yield is 
153.9 mLg−1 with a hydrogen production rate of 7.70 ml 
per gram per hour from catalytic hydrolysis of cellulosic 
materials using sulfonated graphene oxide due to the release 
of the total reducing sugars of 732.0 mg per gram. There is a 
direct correlation between sugar concentration and hydrogen 
production.

Economy of oil production from biomass 
liquefaction

The estimated catalyst cost is a major factor affecting the 
decision to implement such a catalyst in industrial appli-
cations (Tondro et al. 2021). The price of raw materials, 

Fig. 9   Conversion route of 
catalytic oxidation of cellulosic 
materials into hydrogen energy. 
Breaking hydrogen bonds 
and glycosidic bonds resulted 
in the formation of reducing 
sugar. Afterwards, hydrogen is 
produced through the dark fer-
mentation of sugar by hydrog-
enophilic bacteria. Finally, the 
biohydrogen produced within 
the process could be used for 
multiple purposes
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production processes, chemical synthesis route, products and 
by-product yield, operational cost conditions, disposal, and 
waste treatment should be considered for economical cost 
calculations. The graphite price varied from 700 to 1800 
dollars per ton in 2019. The overall cost of synthesising gra-
phene oxide from 3.0 g flakes of graphite generates 5.5 g of 
products, which is estimated to be 4.57 dollars per gram. 
The total estimated cost for the production of graphene 
oxide is 4.574 dollars per gram in laboratory preparation, 
which should be lowered on an industrial scale (Tondro et al. 
2021). Reaction temperature of 320 °C, graphene oxide cata-
lyst (10%), and sulfuric concentration of 6.0 mol were used 
for biofuel production from the liquefaction of rice straw 
(Echaroj et al. 2021). The heating value of bio-oil was tested 
by protocol D4809. The bio-oil from the liquefaction of rice 
straw had a lower and higher heating value than classical 
gasoline. This is mainly due to the presence of molecules of 
lighter weight generated from the liquefaction reaction of 
rice straw. At high temperatures, the liquefaction reaction 
of rice straw produces cresol and phenol, which reduces the 
viscosity of the fuel. This indicates that the bio-oil (fuel) 
from rice straw liquefaction can be efficiently blended with 
gasoline for transportation services.

Conclusion

Sulfonated graphene (oxide) bears highly abundant func-
tional sulfonic groups of –SO3H that are synthesized by an 
affordable method. Sulfonated graphene (oxide) is a highly 
acceptable heterogeneous acid catalyst for the delignification 
of lignocellulosic wastes compared to traditional minerals 
and classical solid acid catalysts. The superior sulfonated 
graphene (oxide) catalytic performance is attributed to the 
synergistic combination of the water-tolerant, specific struc-
ture and the existing highly functional acidic sulfonic groups 
on its outer surface. These unique features are favorable, 
particularly the catalyst stability and high mass transfer in 
the medium reaction. Highly dispersed sulfonated graphene 
(oxide) sheets were efficient at effectively adsorbing per-
sistent aromatic pollutants from wastewater. Amorphous 
carbon nanoparticles bearing active sulfonic acid groups 
undoubtedly exhibit high catalytic efficiency performance 
for biodiesel productivity via fatty acid esterification and 
triglyceride transesterification of triglycerides and cellu-
lose hydrolysis. The highly efficient catalytic activity of the 
carbon material is attributed to the synergetic combination 
effect of the unique structure and the functional groups. 
Separable and reusable heterogeneous catalysts are the main 
superior features compared with homogeneous catalysts. 
However, the environmentally benign chemical productiv-
ity of active heterogeneous catalysts from biomass should be 
developed in the future, minimizing the synthesis reaction 

processes. Discovering more efficient and low-cost produc-
tion methods of sulfonated graphene oxide is needed, along 
with improvement of its catalytic stability and acid density.
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