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Abstract
Microplastic pollution is a recently discovered threat to ecosystems requiring the development of new analytical methods. 
Here, we review classical and advanced methods for microplastic analysis. Methods include visual analysis, laser diffraction 
particle, dynamic light scattering, scanning electron microscopy, Fourier-transform infrared spectroscopy, Raman spectros-
copy, thermal analysis, mass spectrometry, aptamer and in vitro selection, and flow cytometry.

Keywords  Microplastics analysis · Physical characterization · Chemical composition identification · Quantitative analysis

Introduction

Plastics have been widely used in numerous fields such 
as agriculture, industry, medicine, military, daily necessi-
ties and aerospace. However, with the wide use of plastic 
products, a large number of waste plastics have entered the 
ecological environment without any treatment (Geyer et al. 
2017). And microplastics dominate these waste plastics (Van 
Cauwenberghe et al. 2013). Microplastics are plastic par-
ticles less than 5 mm in diameter (Thompson et al. 2004). 
In recent years, the problem of microplastic pollution has 
become increasingly serious and it is urgent to control the 
increasingly serious microplastic pollution.

The analysis of microplastics is of great significance for 
the traceability analysis of microplastics and the evaluation 
of the removal efficiency of microplastics in the environ-
ment (Zhang et al. 2018). Therefore, microplastic analysis 
is an important prerequisite and foundation for the treat-
ment of microplastic pollution. Nowadays, many techniques 
(Table 1) for microplastic analysis have been developed. But 
the information on microplastics obtained through these 
detection methods is usually disorderly and inconsistent. In 
view of this, we divide microplastic analysis into physical 
characterization, chemical composition identification and 

quantitative analysis in this review. We will introduce some 
microplastic analysis techniques and their applications from 
these three aspects in this review. We hope that this review 
will contribute to the development of novel and efficient 
microplastic detection techniques and biosensors.

Classification and hazards of microplastics

According to the source of microplastics, microplastics are 
divided into primary microplastics and secondary microplas-
tics. Primary microplastics are plastic particles discharged 
into the water environment through rivers and sewage treat-
ment plants. Secondary microplastics are plastic particles 
formed by the fragmentation and volume reduction in large 
plastic waste through physical, chemical and biological 
processes (Guo and Wang, 2019). Microplastics come in 
a variety of shapes, mainly including fragments, granules, 
fibers, and films (Cózar et al. 2014; Guo et al. 2020; Huang 
et al. 2019).

Microplastics pose serious hazards to the environment 
and organisms. Firstly, microplastics are relatively stable 
in the environment and are not easy to be degraded, caus-
ing serious harm to the environment and organisms (Guo 
et al., 2020; Mu et al. 2022; Queiroz et al. 2020; Wang et al. 
2019b). In addition, a series of changes may occur to micro-
plastics in the environment, resulting in the release of some 
plastic additives with biotoxicity into the environment and 
the formation of secondary pollutants (Liu et al. 2020). Fur-
thermore, microplastics are highly likely to be carriers of 
other pollutants in the environment due to the large specific 
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surface area of microplastics, which may cause more serious 
damage to ecosystems (Li et al. 2018; Naqash et al. 2020; 
Padervand et al. 2020).

Last but not least, microplastics have a strong ability to 
migrate in the environment due to the small particle size of 
microplastics. As early as 1972, Carpenter et al. (Carpenter 
and Smith, 1972) discovered the distribution of plastic parti-
cles with a particle size from 2.5 mm to 5 mm in the Atlantic 
Ocean. Nowadays, microplastics, a new type of persistent 
pollutants, have been widely distributed in the ecological 
environment (Barnes et al. 2009; Imhof et al. 2017; John 
et al. 2022; Lusher et al. 2015; Peeken et al. 2018; Zhang 
et al. 2020b) and have entered a variety of organisms through 
the food chain (De-la-Torre, 2020; Egbeocha et al. 2018; 
Mercogliano et al. 2020).

Treatment of microplastic pollution

Nowadays, some composite materials have been synthe-
sized recently to catalyze the degradation of microplastics 
or to synthesize degradable and environmentally friendly 
polymers. For example, Zhou et al. used non-noble metal 
cobalt–nickel phosphide as a bifunctional electrocatalyst to 
convert waste polyethylene terephthalate into high value-
added products including terephthalic acid, potassium difor-
mate and H2 (Zhou et al. 2021). Besides, Shi et al. used a Pd-
modified nickel foam catalyst to upgrade waste polyethylene 
glycol terephthalate into high value-added chemicals such as 
terephthalate and carbonate (Shi et al. 2021).

Furthermore, Wang et al. developed some composites 
with related performance including tourmaline-modified 
FeMnTiOx (Wang et al. 2019a) and a novel clay supported 
cobalt-based catalyst through a coprecipitation-reduction 
method (Wang et al. 2021). Additionally, they identified Zr 
promotion effects in atomic scale for Co-based catalysts in 
Fischer–Tropsch synthesis through multiple technologies 
(Piao et al. 2020). What’s more, they used a microwave 
hydrothermal method to synthesize a pangolin-like compos-
ites made of 3–4 atomic layers of MoS2 nanosheets depos-
ited on tourmaline. This composite material has broad appli-
cation prospects in photocatalytic degradation of organic 
pollutants (Hao et al. 2021).

Additionally, electrocatalytic degradation of microplas-
tics may have broad application prospects. Inspired by this, 
Yuvaraj et al. synthesized FeS2/MoS2 composites inter-
twined on reduced graphene oxide nanosheets. This mate-
rial can be used as a high-performance anode material for 
sodium-ion battery (Yuvaraj et al. 2020). It is believed that 
these catalysts have great potential in the degradation of 
microplastics or the synthesis of new degradable polymers, 
which are of great benefit to the treatment of microplastic 
pollution.

Sampling of microplastics

It is worth noting that the analysis results of microplas-
tics are easily affected by the sampling methods of micro-
plastics (Razeghi et al. 2021a). Therefore, the sampling 
of microplastics is an important basis for the analysis of 
microplastics. Based on this, before introducing the analy-
sis techniques of microplastics, we will briefly introduce 
some typical sampling methods of microplastics. At pre-
sent, the methods commonly used to extract microplas-
tics in the environment include visual inspection (manual 
sorting), density separation, flotation, sieving or filtration 
(size separation), digestion method, biological removal 
and ingestion, chemical treatments and so on (Fu et al. 
2020; Mai et al. 2018; Padervand et al. 2020).

In spite of this, the extraction of microplastics in the 
actual environment needs to consider the environmental 
media in which the microplastics are located (Fu et al. 
2020). For instance, manta trawls are the main sampling 
tool for microplastic separation from surface water, 
whereas shovel, trowel, spade, scoop and spatula are 
commonly used to extract microplastics from sediments. 
And Van Veen grab is common for deep sediment sam-
pling (Razeghi et al. 2021b). In the density separation 
method, sodium chloride is the most prevalent salt used in 
extracting microplastics from freshwater. In the digestion 
method, hydrogen peroxide and Fenton’s reagent are most 
frequently used in digestion of organic materials (Razeghi 
et al. 2021a).

Among numerous methods for extracting microplas-
tics from the environment, flotation method (Fig. 1) will 
play an important role in extracting microplastics in the 
environment (Jiang et al. 2020). For instance, Grbic et al. 
modified the surface of iron nanoparticles with silane to 
make the surface of iron nanoparticles hydrophobic. Then, 
these surface-hydrophobic iron nanoparticles were used 
to magnetize microplastics. Finally, iron nanoparticles 
adsorbed with microplastics were adsorbed to the liquid 
surface through a magnet, achieving magnetic separation 
of microplastics with a particle size of 15 μm (Grbic et al. 
2019).

Besides, some metal–organic framework-based mate-
rials (Chen et al. 2020a) and some artificial magnetite 
nanoparticle (Chen et al. 2022) also can be used for the 
sampling of microplastics. These methods of separating 
microplastics also provide technical support for the analy-
sis and recycling of microplastics.
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Reviews on microplastic analysis

Currently, many review articles with the focus on the ana-
lytical techniques of microplastics have been published. For 
instance, Hanvey et al. systematically summarized and elab-
orated the sampling methods, microplastic separation meth-
ods and analytical techniques for measuring microplastics 
in sediment. They advocated for the development of strong 
quality assurance/quality control procedures to be adopted 
like other fields of analytical chemistry (Hanvey et al. 2017). 
Besides, Wirnkor et al. also elaborated some typical analyti-
cal techniques for detecting and quantifying microplastics 
(Wirnkor et al. 2019). Silva et al. also discussed numerous 
issues associated with the analysis of microplastics sam-
pling, sample handling, the identification and quantification 
of microplastics and analytical quality control and quality 
assurance. They also presented the current challenges within 
this field of research and possible routes to overcome such 
limitations (Silva et al. 2018). These review articles provide 
references and ideas for people to develop new plasticity 
analysis techniques.

In this review, we summarize these reviews and summa-
rize some classic microplastic analysis techniques according 
to the characteristics of the obtained microplastic informa-
tion. Besides, the application, advantages and shortcomings 
of these methods are also elaborated in this review. Moreo-
ver, the futural prospects of the study on the analytical meth-
ods of microplastics are proposed.

Physical characterization

Physical characterization analysis of microplastics can pre-
liminarily determine the particle size, color, shape, morphol-
ogy, preliminary typing, corrosion degree and aging degree 
of microplastics (Hidalgo-Ruz et al., 2012). Here, we briefly 
introduce some main physical characteristics analysis tech-
niques of microplastics including visual analysis (Karlsson 
et al. 2020), dynamic light scattering analysis (Sorasan et al. 
2021) and laser diffraction particle size analysis.

Visual analysis

Visual analysis is one of the most widely used methods 
for the physical characterization analysis of microplastics 
(Karlsson et al. 2020). The main operation process of vis-
ual analysis method is to observe the pretreated samples 
with the naked eyes or microscopes, and then the micro-
plastics can be roughly classified and counted according to 
the color, shape and size of the microplastics. Finally, the 
microplastics are picked out with tweezers (Cluzard et al. 
2015; Dris et al., 2015).

Visual analysis method has the advantages of simple 
operation, low cost, and little chemical hazard during opera-
tion (von Moos et al., 2012). Nevertheless, visual analysis 
can’t provide information on the chemical component of 
microplastics (Lavers et al. 2016). Besides, visual analy-
sis method is time-consuming and laborious. Additionally, 
the accuracy and efficiency of visual analysis method are 
relatively low because the experimental results are easily 
affected by various factors such as environmental media, 
other impurities in samples, the color, shape, structure of 
microplastics, as well as individual subjective judgments 
(Dekiff et al. 2014; Lavers et al. 2016). For example, when 
the particle size of microplastics is too small or environmen-
tal samples contain other particle impurities, visual analysis 
method is no longer applicable (Hidalgo-Ruz et al. 2012; 
Shim et al. 2017; Song et al. 2015a). Accordingly, visual 
analysis method is usually only used as an auxiliary method 
for the analysis of microplastics, rather than an independent 
microplastic analysis method. Visual analysis can be divided 
into naked eye analysis and microscopic analysis.

Naked eye can only be used for the preliminary iden-
tification of microplastics with a particle size of 1–5 mm 
(Shim et al., 2017) while microscopic analysis can be used 
to identify microplastics with particle sizes of hundreds of 
microns and above (Cluzard et al. 2015; Dris et al. 2015). 
Microscopy generally includes optical microscopy and 
electron microscopy.

Optical microscopy is a convenient and economical 
analysis method (von Moos et al. 2012). Nevertheless, the 

Fig. 1   Microplastic flotation. The flotation method allows separating 
microplastics based on the difference of wettability of microplastics. 
The main principle of the floatation method is that the hydrophilic-
ity and hydrophobicity of microplastic surface can be regulated by 
various methods. In the flotation process, the microplastics with 
hydrophilic surface sink to the bottom of the flotation column while 
the microplastics with hydrophobic surface are taken out of the flota-
tion column by bubbles, thereby realizing the flotation separation of 
different types of microplastics. Floatation method can be used as a 
separation method for microplastics with similar density and charging 
properties. Floatation method has the advantages of high separation 
efficiency, high separation purity, simple equipment structure, strong 
separation selectivity and low cost
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accuracy of optical microscopes for identifying micro-
plastics is still relatively low. For example, the error 
rate for identifying microplastics is still over 20% under 
ordinary light microscopy (Hidalgo-Ruz et  al., 2012) 
and the error rate exceeds 70% when microplastics are 
transparent (Song et al. 2015a). Moreover, it is difficult 
to analyze and identify microplastics with particle size 
less than 100 μm (Hidalgo-Ruz et al. 2012; Song et al. 
2015a). Therefore, optical microscopy is often combined 
with electron microscopy to reduce the error rate of iden-
tifying microplastics.

Compared with optical microscopy, electron micros-
copy can distinguish microplastics from particulate impuri-
ties due to their higher magnification and clearer imaging 
(Shim et al., 2017; Wagner et al., 2017). For example, the 
resolution of scanning electron microscope, one of the most 
commonly used electron microscopes, can reach 0.1 μm 
(Wagner et al., 2017). Scanning electron microscopy can 
be used to identify the microplastics with the particle size 
as low as 1 nm (Shim et al., 2017). However, scanning elec-
tron microscopy images can’t be used to analyze color and 
chemical composition of microplastics (Eriksen et al. 2013). 
Therefore, scanning electron microscopy is often combined 
with other techniques to get more information on micro-
plastics. Furthermore, transmission electron microscopy can 
be used to observe fine structures smaller than 0.2 μm that 
cannot be observed under optical microscopy. For instance, 
Gigault et al. used dynamic light scattering and transmis-
sion electron microscopy to observe the presence of plas-
tics at the nanoscale in water due to ultraviolet degradation 
(Gigault et al. 2016).

Last but not least, in order to improve the accuracy of 
identifying microplastics by visual analysis, fluorescence 
staining, as an important auxiliary technique for visual anal-
ysis of microplastics, has been widely applied (Maes et al., 
2017). The main process of fluorescence staining is to use 
hydrophobic fluorescent dye to dye microplastics. And then 
these samples are irradiated with some specific light beams 
under a fluorescent microscope or confocal laser scanning 
microscope to make microplastics emit fluorescence. Finally, 
these fluorescent particles can be identified and counted 
through image analysis (Maes et al. 2017). For example, 
Anthony et al. used Nile red, a kind of lipophilic colorant, 
to help the identification of microplastics (Andrady, 2011).

However, the application of fluorescent microscopy and 
confocal laser scanning microscopy is limited because fluo-
rescent dyes often need to be excited by specific wavelengths 
of excitation light to emit emission light. For example, when 
Nile red was dissolved in dimethyl sulfoxide, the excitation 
wavelength of the solution was 530 nm and the emission 
wavelength was 575 nm (Chen et al. 2009). Besides, fluo-
rescence staining may produce false-positive results because 
some bioorganics in samples may also be stained with these 

hydrophobic fluorescent dyes. But so far, there is no effec-
tive method to completely remove these organics from envi-
ronmental samples (Jee et al. 2009). Furthermore, some 
environmental samples may also have natural fluorescence 
properties (Shim et al. 2016). This may cause great interfer-
ence to the analysis results. In short, the development of new 
fluorescent dyes that can recognize specific microplastics 
is likely to become important development directions for 
microplastics analysis in the future.

Laser diffraction particle size analysis

With the rapid development of material science, numerous 
advanced instruments have been developed. Laser diffraction 
particle size analysis a fast, reliable and automated method, 
can be used for the analysis of soil and sediment particle size 
distribution (Bittelli et al. 2022). The experimental results 
are detailed, highly resolved and high-precision. The tech-
nique is essentially non-destructive and critical samples can 
be recovered (Blott et al. 2004). This method can be used to 
analyze particles in the size range 0.04 μm–2000 μm (Blott 
et al. 2004). But some impurities in environmental samples 
may interfere with the experimental results. Besides, the 
premise of the application of this technology is to separate 
and extract the microplastics in the environment.

Although this method has not been widely used in micro-
plastic particle size distribution, it will eventually play an 
important role in the detection of particle size distribution of 
microplastics with the improvement of technology.

Dynamic light scattering

Nanoplastics refer to plastic particles with a particle size of 
less than 1 μm (Li et al. 2021a). Dynamic Light Scattering 
analysis has great potential in the analysis of nanoplastics. 
For example, Sorasan et al. found through dynamic light 
scattering analysis that solar photochemical aging can make 
secondary microplastics produce nanoplastics (Sorasan et al. 
2021). Nevertheless, similar to laser diffraction particle size 
analysis, some impurities in environmental samples may 
interfere with the experimental results.

Chemical characterization

Microplastics are usually mixtures of heterogeneous plas-
tic particles, with a wide variety and complex composi-
tions. The chemical composition identification of micro-
plastics refers to the use of some methods to determine the 
functional groups, molecular weight, structure and degree 
of polymerization of polymers in microplastics. The iden-
tification of chemical composition of microplastics is of 
great significance for the determination of the treatment 
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methods of microplastics and the traceability analysis of 
microplastics (Song et al., 2015b). Nowadays, the tech-
niques commonly used for the chemical characterization 
analysis of microplastics include scanning electron micro-
scope-energy-dispersive X-ray (Wagner et al., 2017), Fou-
rier transform infrared spectroscopy (Song et al. 2015b), 
Raman spectroscopy (Araujo et al. 2018), thermal analy-
sis (Majewsky et al. 2016), mass spectrometry (Weidner 
and Trimpin, 2010), etc. These typical methods and some 
promising tools such as aptamer will be introduced in this 
section.

Scanning electron microscope‑energy‑dispersive 
X‑ray

Scanning electron microscopy is one of the most impor-
tant methods for the analysis of the morphology of micro-
plastics (Wagner et al. 2017). In practical applications, 
scanning electron microscopy is usually combined with 
energy-dispersive X-ray technology. Energy-dispersive 
X-ray analysis is an important technique for analyzing the 
types and contents of constituent elements in micro-area of 
materials (Wagner et al. 2013; Zhao et al. 2017). Scanning 
electron microscope-energy-dispersive X-ray is a promis-
ing technique that can simultaneously analyze the surface 
morphology and elemental composition of microplastics 
(Eriksen et al. 2013; Fries et al. 2013; Van Cauwenberghe 
et al. 2013; Vianello et al. 2013).

However, there are still some shortcomings of scan-
ning electron microscope-energy-dispersive X-ray. First of 
all, one of the important prerequisites for using scanning 
electron microscope-energy-dispersive X-ray to analyze 
samples is that the samples must be conductive. But most 
microplastics are non-conductive. Therefore, complex pre-
treatment procedures such as gold plating are required to 
analyze microplastics using scanning electron microscope-
energy-dispersive X-ray (Fu et al., 2020). Besides, scan-
ning electron microscope-energy-dispersive X-ray can’t 
be used to analyze the color of microplastics (Wagner 
et al. 2017). Additionally, sometimes scanning electron 
microscope-energy-dispersive X-ray may be unable to 
identify microplastics due to technical limitations (Wag-
ner et al. 2017). In short, the analysis of microplastics 
using scanning electron microscope-energy-dispersive 
X-ray is costly, time-consuming and inefficient (Wagner 
et al. 2017).

At present, scanning electron microscope-energy-disper-
sive X-ray is usually only used for the analysis of specific 
microplastics. This means that the application of scanning 
electron microscope-energy-dispersive X-ray in the analysis 
of microplastics in actual samples is still limited and needs 
further development.

Fourier transform infrared spectroscopy

Fourier transform infrared spectroscopy is a vibrational 
spectroscopy technique that can provide information of 
chemical bonds and functional groups of samples (Araujo 
et al. 2018; Lˆder and Gerdts, 2014). When using Fourier 
transform infrared spectroscopy to identify the chemical 
component of microplastics, the changes of material dipole 
moment produce infrared spectra (Prata et al. 2019). Then, 
these infrared spectra are compared with known polymer 
standard spectra in spectral libraries to determine the 
chemical composition of the microplastics (Lˆder and 
Gerdts, 2014; Song et al. 2015b). There are three main 
modes of Fourier transform infrared spectroscopy: specu-
lar reflection, transmission and attenuated total reflection 
(Tagg et al. 2015). The operation mode can be flexibly 
selected according to the characteristics of the samples.

The specular reflection mode is usually used to analyze 
materials with a certain thickness or opaque. This mode is 
suitable for the analysis of microplastics in real samples. 
However, this mode has some disadvantages such as weak 
signal, large noise interference, low matching degree with 
standard maps and low accuracy (Wenning et al. 2002).

The transmission mode can provide high-quality images 
and the imaging effect is usually better than that of the 
specular reflection mode. However, if the thickness of 
samples is less than 5 μm, the accuracy of the transmis-
sion mode analysis decreases. Therefore, the transmission 
mode has high requirements on sample pretreatment and 
is usually only suitable for the analysis of transparent, suf-
ficiently light and not too thin materials (Prata et al. 2019; 
Qiu et al. 2015).

The attenuated total reflectance mode can provide high-
quality imaging spectra with high accuracy. Besides, this 
mode is less susceptible to interference from impurities in 
samples. Thus, this mode has relatively low requirements for 
sample pretreatment. This mode is applicable to the analysis 
of irregular microplastics or microplastics with extremely 
small particle size. However, the cost of this mode is rela-
tively expensive. Thus, this mode is not very suitable for 
large-scale analysis of microplastics (Prata et al. 2019; Ren-
ner et al. 2017).

Moreover, Fourier transform infrared spectroscopy has 
numerous advantages in the analysis of microplastics. 
Firstly, Fourier transform infrared spectroscopy, a non-inva-
sive analysis method, is less destructive to environmental 
samples (Akhbarizadeh et al. 2020; Birch et al. 2020; Sana 
et al. 2020; Scopetani et al. 2020). Besides, the pretreat-
ment procedure of Fourier transform infrared spectroscopy 
is relatively simple. Additionally, Fourier transform infrared 
spectroscopy is less susceptible to interference from auto-
fluorescence from other substances in samples. Furthermore, 
Fourier transform infrared spectroscopy has the advantages 



389Environmental Chemistry Letters (2023) 21:383–401	

1 3

of high-throughput screening possibility and environmental 
friendliness (Araujo et al. 2018).

At present, Fourier transform infrared spectroscopy has 
been widely used in the quantitative detection and chemi-
cal component analysis of microplastics (Hahn et al. 2019; 
Jakubowicz et al. 2020; Primpke et al. 2020b; Sarijan et al. 
2020; Shabaka et al. 2020; Zhang et al. 2020a). But samples 
must be dried thoroughly before Fourier transform infra-
red spectroscopy analysis because moisture in samples may 
interfere with the identification.

However, there are still some shortcomings in the analysis 
of microplastics by Fourier transform infrared spectroscopy. 
First of all, Fourier transform infrared spectroscopy can 
only identify microplastics with a particle size above 20 μm 
because the spatial resolution of Fourier transform infrared 
spectroscopy spectrum is 10–20 μm (Araujo et al. 2018; 
Prata et al. 2019; Schymanski et al. 2018). Besides, Fourier 
transform infrared spectroscopy is susceptible to various fac-
tors including heterogeneity of microplastics, aging degree 
of microplastics and other organic matter in the environ-
ment. For example, it is difficult to analyze opaque or black 
microplastics by Fourier transform infrared spectroscopy 
(Elert et al. 2017). Therefore, Jesús J. Ojeda et al. devel-
oped a method called focal plane array-Fourier transform 
infrared spectroscopy, which had great application potential 
for large-area and high-efficiency detection of microplastics 
(Tagg et al. 2015). In short, Fourier transform infrared spec-
troscopy still needs further improvement for better analysis 
of microplastics in real environmental samples.

Raman spectroscopy

When the excited light irradiates on samples, the molecules 
and atoms in samples vibrate. Then, different frequencies of 
scattered light appear due to the different structures of dif-
ferent molecules and atoms in samples, resulting in Raman 
shift (Löder and Gerdts, 2015). Raman spectra, a kind of 
fingerprint with the characteristic properties of the sub-
stances to be measured, are produced due to the change of 
the polarizability of molecular chemical bonds (Löder and 
Gerdts, 2015). Raman spectroscopy is another vibrational 
spectroscopy technique based on inelastic scattering of light 
(Araujo et al. 2018). Raman spectroscopy and Fourier trans-
form infrared spectroscopy can complement each other in 
the detection of microplastics because infrared activity and 
Raman activity of some substances are mutually exclusive 
(Käppler et al. 2016; Prata et al. 2019; Wright et al. 2019).

Raman spectroscopy has many advantages including 
low damage to samples (Araujo et al. 2018), small sample 
amount needed (Collard et al. 2015; Van Cauwenberghe 
et al. 2013), high-throughput screening possibility (Araujo 
et al. 2018) and environmental friendliness (Araujo et al. 
2018). Besides, the spatial resolution of Raman spectrum 

is as low as 1 μm. Furthermore, compared with Fourier 
transform infrared spectroscopy, Raman spectroscopy has 
the advantages of wider spectral coverage, lower signal-to-
noise ratio and narrower spectral bands (Wright et al. 2019). 
Additionally, Raman spectroscopy can be used to identify 
microplastics with a particle size below 20 μm (Prata et al. 
2019). Fischer et al. found that Raman spectroscopy can 
even identify particles down to 500 nm in size (Fischer et al. 
2015). Last but not least, samples don’t need to be dried and 
dehydrated before detection because compared with Fou-
rier transform infrared spectroscopy, Raman spectroscopy 
is more responsive to non-polar functional groups (Araujo 
et al. 2018).

However, Raman spectroscopy also has some shortcom-
ings in the detection of microplastics (Rocha-Santos and 
Duarte, 2015). Firstly, Raman spectroscopy can’t be used to 
detect samples with fluorescence, which limits the applica-
tion of Raman spectroscopy in the analysis of microplas-
tics in real samples (Prata et al. 2019; Sullivan et al. 2020). 
Besides, Raman spectra generated by the additives in micro-
plastics and contaminants adsorbed on the surface of micro-
plastics may overlap with the Raman spectra of polymers, 
thereby interfering with the identification of microplastics 
(Oßmann et al. 2018; Van Cauwenberghe et al. 2013). This 
also limits the application of Raman spectroscopy in the 
analysis of microplastics in real environmental samples. In 
addition, monochromatic laser light sources in Raman spec-
trometers may cause photodegradation or thermal decom-
position of polymers in microplastics, thereby affecting the 
analysis of microplastics (Löder and Gerdts, 2015; Prata 
et al. 2019; Sullivan et al. 2020). Finally, the detection time 
of Raman spectroscopy is relatively long because Raman 
spectroscopy includes manual spot selection and imaging 
(Araujo et al. 2018).

In short, the efficiency of using Raman spectroscopy to 
detect microplastics needs to be further improved. Very 
recently, a series of improvements to Raman spectroscopy 
have been made. For example, Catarina F. Araujo et al. 
combined the optimized software with Raman spectroscopy 
technology, realizing the automatic detection of microplas-
tics with a particle size of 1 μm–500 μm, which significantly 
improved the effect of Raman spectroscopy to detect micro-
plastics (Araujo et al. 2018). Raman spectroscopy will play 
an important role in the analysis of microplastics in real 
samples in the future.

Thermal analysis

The properties of materials vary with temperature and time. 
Thermal analysis is an important technique to analyze mate-
rials by studying the functional relationship of this change 
(Majewsky et al. 2016). When analyzing microplastics using 
thermal analysis, environment samples are first heated. With 
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the increase in temperature, the microplastics absorb a lot 
of heat, which makes the polymers in microplastics change 
from solid state to liquid or gas state gradually. Then, an 
endothermic peak appears at a specific temperature (Majew-
sky et al. 2016). The composition and type of microplastics 
and their additives can be analyzed according to the charac-
teristic thermograms of polymers because different types of 
polymers have different thermal stability (Majewsky et al. 
2016).

The classical thermogravimetric analysis methods cur-
rently used to analyze microplastics mainly include dif-
ferential scanning calorimetry (Tsukame et al. 1997), ther-
mogravimetric analysis-differential scanning calorimetry 
(Majewsky et al. 2016), thermogravimetric analysis-Fou-
rier transformation infrared spectroscopy (Yu et al. 2019), 
pyrolysis gas chromatography-mass spectrometry (Fries 
et al. 2013; Hendrickson et al. 2018) and thermal extrac-
tion desorption gas chromatography-mass spectrometry 
(Duemichen et al. 2019), etc. Among these methods, pyrol-
ysis gas chromatography–mass spectrometry and thermal 
extraction desorption gas chromatography–mass spectrom-
etry will be introduced in the section of mass spectrometry. 
Differential scanning calorimetry, thermogravimetric analy-
sis-differential scanning calorimetry and thermogravimetric 
analysis-Fourier transformation infrared spectroscopy will 
be introduced in this section.

Differential scanning calorimetry is an effective method 
for analyzing samples by studying the thermal properties 
of polymers (Tsukame et al. 1997). Nowadays, differential 
scanning calorimetry has been widely used to detect pri-
mary microplastics such as polyethylene in the environment 
(Castañeda et al. 2014). However, the scope of application 
of differential scanning calorimetry is relatively narrow. For 
this reason, differential scanning calorimetry is often used 
in conjunction with other techniques.

Thermogravimetric analysis-differential scanning calo-
rimetry is an important method to analyze the purity of 
microplastics by studying the relationship between tem-
perature difference and temperature during the solid–liquid 
phase transition of polymers (Huppertsberg and Knepper, 
2018). Thermogravimetric analysis-differential scanning 
calorimetry is relatively simple to operate. And the amount 
of sample required is relatively small (1 to 20 mg). Besides, 
the analysis accuracy of this method is high (Huppertsberg 
and Knepper, 2018). Currently, this method has been used 
as a complementary or alternative method for the determi-
nation of polyethylene microplastics and polypropylene 
microplastics by Fourier transformation infrared spectros-
copy (Majewsky et al. 2016).

On the basis of thermogravimetric analysis-differential 
scanning calorimetry and Fourier transformation infrared 
spectroscopy, thermogravimetric analysis-Fourier transfor-
mation infrared spectroscopy has been developed. The main 

process of this method is that samples are first pyrolyzed in 
thermogravimetric analysis to generate pyrolysis gases. And 
then these pyrolysis gases are analyzed by Fourier transfor-
mation infrared spectroscopy, ultimately realizing the iden-
tification of the chemical composition of microplastics (Yu 
et al. 2019). For example, after concentrating soil samples 
at low concentrations, Zhou et al. used thermogravimetric 
analysis-Fourier transformation infrared spectroscopy to 
identify and quantify polystyrene microplastics and polyvi-
nyl chloride microplastics in soil samples (Yu et al. 2019).

In short, thermal analysis does not require complex 
pretreatment of samples and can be directly injected for 
analysis. But thermal analysis also has some shortcom-
ings. Firstly, it is difficult to identify some copolymers 
by thermal analysis because the transition temperature of 
polymers tends to be influenced by polymer branching and 
other impurities in microplastics (Huppertsberg and Knep-
per, 2018; Majewsky et al. 2016; Rocha-Santos and Duarte, 
2015; Shim et al. 2017; Silva et al. 2018). Besides, thermal 
analysis can’t be used to characterize physical properties 
such as the appearance and morphology of microplastics 
because thermal analysis is destructive to environmental 
samples. Therefore, thermal analysis is generally used for 
the identification of chemical component of microplastics or 
the quantification of microplastics (Huppertsberg and Knep-
per, 2018; Majewsky et al. 2016; Rocha-Santos and Duarte, 
2015; Shim et al. 2017; Silva et al. 2018). This may limit the 
application of thermal analysis.

Mass spectrometry

Mass spectrometry of polymers can provide important infor-
mation about polymer structure, molecular weight, degree 
of polymerization, main functional groups and end group 
structure (Weidner and Trimpin, 2010). Mass spectrometry 
is usually combined with other methods to analyze the types 
of polymers in microplastics. At present, mass spectrometry 
techniques commonly used to analyze microplastics mainly 
include pyrolysis gas chromatography-mass spectrometry 
(Fries et al. 2013; Hendrickson et al. 2018), thermal extrac-
tion desorption-gas chromatography-mass spectrometry 
(Duemichen et al. 2019) and matrix assisted laser desorption 
ionization-time of flight-mass spectrometry (Kirstein et al. 
2016; Weidner and Trimpin, 2010).

Pyrolysis gas chromatography–mass spectrometry and 
thermal extraction desorption-gas chromatography–mass 
spectrometry are two critical techniques for the identifica-
tion of microplastics by reverse analysis of thermal degra-
dation products of microplastics. The operation process of 
both two methods is to first place samples in an oxygen-
free environment such as inert gas. Then, the polymers in 
microplastics are thermally degraded, producing a large 
amount of thermal degradation products. These products 
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are then captured and separated in a chromatographic 
column. Finally, these thermal degradation products are 
analyzed using mass spectrometry (Dekiff et al. 2014; 
Prata et al. 2019).

However, it is impossible to get information about 
physical characteristics of microplastics through these 
two methods because these two methods may damage 
samples. In addition, it is possible to misjudge the type 
of microplastics because different polymers may produce 
similar pyrolysis products (Huppertsberg and Knepper, 
2018; Majewsky et al. 2016; Rocha-Santos and Duarte, 
2015; Shim et al. 2017; Silva et al. 2018).

Although the principles, operations, advantages and 
disadvantages of these two methods are basically the 
same, the two technologies still have their own character-
istics. Firstly, pyrolysis gas chromatography–mass spec-
trometry can be applied to the direct analysis of solid 
samples. Besides, this method can be used to identify 
main polymer types in microplastics and organic additives 
in microplastics simultaneously. Additionally, the amount 
of sample required is relatively small (5 μg–200 μg). Last 
but not least, there is no high requirement on the size 
of microplastics when using this method (Nuelle et al. 
2014). But pyrolysis gas chromatography–mass spectrom-
etry can generally only be used to identify the chemical 
composition of single form microplastics (Prata et al. 
2019).

Compared with pyrolysis gas chromatography-mass 
spectrometry, the pretreatment time of thermal extrac-
tion desorption-gas chromatography–mass spectrometry 
is relatively short. Sometimes pretreatment of samples is 
not even required (Dümichen et al. 2017). However, the 
application scope of thermal extraction desorption-gas 
chromatography mass spectrometry is relatively narrow. 
This method is currently only used in the quantitative 
analysis of polyethylene microplastics.

Matrix assisted laser desorption ionization-time of 
flight-mass spectrometry is an analytical method based on 
the proportional relationship between the mass-to-charge 
ratio of ion fragments and the time-of-flight of the ion 
fragments (Kirstein et al. 2016; Weidner and Trimpin, 
2010). This method can not only be used to identify the 
main polymers in microplastics, but also can be used to 
analyze physical characterization of microplastics through 
imaging technology (Huppertsberg and Knepper, 2018). 
However, this method generally lacks good generality 
because different ionization reagents are required for 
different kinds of microplastics. Therefore, although this 
method has been widely used in the determination of 
biological macromolecules, it is still rarely used in the 
detection of microplastics (Huppertsberg and Knepper, 
2018; Kirstein et al. 2016; Weidner and Trimpin, 2010).

Other promising methods

In addition to these classical methods mentioned above, with 
the rapid development of analytical science, numerous tools 
for specific recognition of molecules have been developed 
in recent years. For instance, the development of some fluo-
rescent dyes or probes with low toxicity and high specific-
ity that can specifically recognize microplastics may be an 
important development direction in the future.

Additionally, as pioneered by Gold’s and Szostak’s labs, 
a technology called systematic evolution of ligands by 
exponential enrichment was developed in 1990, with which 
many functional nucleic acids, aptamers, have been screened 
(Ellington and Szostak, 1990; Kanwar et al. 2015; Shamah 
et al. 2008; Tuerk and Gold, 1990). Aptamers are short oli-
gonucleotides screened from a very large nucleic acid library 
on the basis of their specific affinity with target cargos (Ku 
et al. 2015; Mok and Li, 2008; Neumann et al. 2009; Shamah 
et al. 2008). These target cargos can be highly diverse, rang-
ing from small molecules, amino acids, peptides, proteins, 
cells, virus and even tissues (Baker et al. 2006; Cai et al. 
2006; Ku et al. 2015; Le Floch et al. 2006; Radi et al. 2006; 
Shangguan et al. 2006).

By folding into specific secondary/tertiary conformation, 
aptamers can bind with their targets through non-covalent 
interaction, such as hydrogen bonding, hydrophobic effect 
and van der Waals force (Cai et al. 2018; Mallikaratchy, 
2017). Such a molecular recognition process is similar to the 
antibody-antigen interaction. Thus, aptamers are regarded 
as “chemical antibodies” (Ku et al. 2015) and have been 
applied in numerous fields (Huang et al. 2021). For exam-
ple, Tan et al. have developed numerous aptamer-based bio-
sensors for monitoring living cells (Fang and Tan, 2010; 
Shangguan et al. 2006; Tan et al. 2013; Tang et al. 2007). 
Therefore, it is possible to screen out nucleic acid aptam-
ers that can specifically recognize microplastics by in vitro 
selection technology (Fig. 2).

However, it is still a difficult challenge to successfully 
screen out aptamers or fluorescent dyes due to the complex 
composition of microplastics. If suitable aptamers or fluo-
rescent dyes can be successfully screened, researchers can 
combine these tools with some advanced instruments such 
as flow cytometry to indirectly determine whether there are 
specific types of microplastics in environmental samples. 
But sometimes misjudgment may also occur due to the inter-
ference of impurities in environmental samples.

Quantitative analysis

The accurate quantitative analysis of microplastics is an 
important prerequisite to understand microplastics pol-
lution in the environment. At present, two indicators, 
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quantitative concentration and mass concentration, are 
usually used to measure the amount of microplastics in 
the environment.

The quantitative concentration of microplastics refers to 
converting the specific number of microplastics got by man-
ual counting into the concentration of microplastics in envi-
ronmental samples. The methods for measuring quantitative 
concentration of microplastics mainly include visual analysis 
and spectroscopy. However, microplastics are very likely to 
be broken because of the brittleness of microplastics. This 
is highly likely to change the amount of microplastics in 
the sample, thus affecting the calculation of the quantitative 
concentration of microplastics (Andrady, 2011).

Compared with the number of particles, the mass of 
microplastics is not easily affected by various physical and 
chemical factors in the environment. And measuring the 
mass concentration of microplastics can be used to quan-
tify the environmental load of microplastics and get some 
information about the source of microplastics (Rocha-Santos 
and Duarte, 2015). Therefore, mass concentration is more 
reliable than quantitative concentration in the quantitative 
analysis of microplastics (Simon et al. 2018). Thermal analy-
sis is one of the most commonly used methods to measure 
the mass concentration of microplastics in environmental 
samples.

Last but not least, some indexes like chemical oxygen 
demand and total organic carbon can be adopted to evalu-
ate the total amount of organic compounds in environmen-
tal water quality monitoring and risk assessment (Li et al. 
2022). Besides, flow cytometry measurements and some 
aptamer-based biosensors also have great potential in the 
quantification of microplastics in the environment. But until 
now, there is no unified method for quantitative analysis of 
microplastics in the environment.

Visual analysis

The quantification of microplastics in environmental sam-
ples can be preliminarily estimated by manual counting. 
But the accuracy and efficiency of visual analysis method is 
relatively low. For instance, scanning electron microscope-
energy-dispersive X-ray analysis is not very accurate in 
estimating the quantity of microplastics because sometimes 
scanning electron microscope-energy-dispersive X-ray anal-
ysis may be unable to identify microplastics in samples due 
to technical limitations (Wagner et al. 2017).

In view of this, fluorescence staining, as a simple and 
rapid method, has been currently widely applied to improve 
the accuracy of microplastics quantification (Costa et al. 
2021; Maes et al. 2017). Nevertheless, some biological 

Fig. 2   Screening nucleic acid aptamers that can specifically recognize 
specific microplastics by systematic evolution of ligands by exponen-
tial enrichment. The basic idea of systematic evolution of ligands by 
exponential enrichment is to chemically synthesize a single-stranded 
oligonucleotide library in  vitro. Then, this single-stranded oligo-
nucleotide library is mixed with targets such as microplastics. After 
that, there is a complex between the target substance and nucleic acid 
in the mixture. Then, the nucleic acids that are not bound to the tar-
gets are washed away. Then, nucleic acid molecules combined with 
the targets are separated. Next, the nucleic acid molecules bound by 

targets are amplified by polymerase chain reaction using the nucleic 
acid molecule as a template, and the next round of screening pro-
cess is performed. Through repeated screening and amplification, 
some nucleic acid molecules that can’t bind to targets or have low or 
medium affinity with targets are washed away. Finally, the aptamer, 
the nucleic acid molecules with high affinity to the targets, is isolated 
from a very large random library. The purity of aptamer increases 
with the process of systematic evolution of ligands by exponential 
enrichment
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organic matter in samples may also be stained with these 
hydrophobic fluorescent dyes. And there is no method to 
remove these organic matters from environmental samples 
completely (Jee et al. 2009). Furthermore, some environ-
mental samples have natural fluorescence properties (Shim 
et al. 2016). Thus, fluorescence staining may produce false-
positive results. Moreover, some fluorescence dyes may be 
hazardous to the environment, which further limit the appli-
cation of fluorescent staining. Thus, developing some fluo-
rescent dyes with low toxicity, high specificity and specific 
recognition of microplastics may be an important develop-
ment direction of fluorescent dyeing in the future.

In short, nowadays visual analysis method can only be 
used as an auxiliary method for the quantitative analysis of 
microplastics.

Aptamer and in vitro selection

There may be interactions between nucleic acid molecules 
and microplastics. For instance, Peijnenburgac et al. found 
that microplastics interacted strong with the RNA fragment 
of severe acute respiratory syndrome coronavirus 2. And 
electrostatic and hydrophobic processes were the major 
mechanisms for the interactions (Zhang et al. 2022). Thus, 
using in vitro selection to screen out nucleic acid aptamers 
extends the application scope of traditional nucleic acids. 
Therefore, it is possible to screen out nucleic acid aptam-
ers that can specifically recognize microplastics by in vitro 
selection.

Furthermore, aptamers can be coupled with fluorescent 
dyes or electroactive substances to quantify microplastics 
in samples. And microplastics can be quantitatively ana-
lyzed according to the intensity of fluorescent signal or the 
strength of electrical signal. However, misjudgment may 
also occur due to the interference of impurities. And it may 
be difficult to screen out aptamers that can recognize micro-
plastics specifically.

Flow cytometry measurements

Flow cytometry has been widely applied in biological and 
medical fields (Adan et al. 2017). In flow cytometry, the 
laser light scattered from particles is recorded in forward or 
side scattering angles and can be applied to quantify sub-
stances in the particle size range of 0.5–40 μm (Primpke 
et al. 2020a). But this technology is rarely applied to the 
quantification of microplastics (Kaile et al. 2020). In view 
of this, Sorasan et al. used flow cytometry to track the for-
mation of small (1–25 μm) microplastics by utilizing Mie's 
theory to derive the size of microplastic particles from scat-
tering intensity readings (Sorasan et al. 2021).

Nevertheless, flow cytometry can only be used to detect 
microplastics with small particle size, and cannot analyze 

the types of microplastics. In addition, some impurities in 
environmental samples are highly likely to affect the accu-
racy of experimental results. Thus, flow cytometry needs to 
be further improved to detect microplastics with large parti-
cle size. It is believed that flow cytometry will play a greater 
role in the field of environmental analysis in the future.

Spectroscopy

Spectroscopy is a method for qualitatively classify and 
quantify microplastics without damaging samples. The com-
monly used spectral analysis methods mainly include Fou-
rier transform infrared spectroscopy and Raman spectros-
copy. Fourier transform infrared spectroscopy can be used 
to identify microplastics larger than 20 μm in size (Araujo 
et al. 2018; Prata et al. 2019; Schymanski et al. 2018) while 
Raman spectroscopy can be used to identify and quantify 
microplastics smaller than 20 μm in size (Prata et al. 2019). 
Accordingly, Fourier transform infrared spectroscopy and 
Raman spectroscopy are often used in conjunction with each 
other in the analysis of microplastics (Käppler et al. 2016; 
Prata et al. 2019; Wright et al. 2019).

At present, spectroscopy is often combined with other 
techniques to count microplastics. For example, Zhang 
et al. developed a method called μ-Fourier transform infra-
red spectroscopy by combining Fourier transform infrared 
spectroscopy with microscopy to improve the identification 
efficiency of microplastics. This new technique can not only 
be used to measure microplastics as small as size of 10 μm, 
but also can be applied to quantify microplastics in envi-
ronmental samples (Chen et al. 2020b). Besides, based on 
the method of focal plane array-based reflectance micro-
Fourier-transform imaging (Tagg et al. 2015), Loder et al. 
developed a novel method called focal plane array detector-
based micro-Fourier-transform infrared imaging. This new 
technique can be used for the analysis of microplastics with 
a particle size of about 20 μm in marine plankton and sedi-
ment samples (Löder et al. 2015).

Moreover, Peter Fürsta et al. developed a non-contact 
and non-destructive analysis method called micro-Raman 
spectroscopy by combining Raman spectroscopy with 
microscopy. Micro-Raman spectroscopy can also be used 
to quantitatively analyze microplastics in samples. However, 
the maximum total number of micro-Raman spectroscopy 
particles is only 5, 000 because the ability of micro-Raman 
spectroscopy to identify particles of different sizes is differ-
ent. Therefore, micro-Raman spectroscopy is highly likely 
to underestimate the abundance of microplastics in samples 
(Schymanski et al. 2018; Tsering et al. 2022).

In short, with the rapid growth of spectroscopy, spectros-
copy will develop as a key technology for the simultaneous 
chemical characterization and quantification of microplastics 
in the future.
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Thermal analysis

Thermal analysis is an analytical technique to measure 
microplastics based on the relationship between the physi-
cal properties of microplastics and temperature under pro-
grammed temperature conditions (Majewsky et al. 2016). 
Nowadays, thermal analysis has become a general method 
to measure the mass concentration of microplastics in envi-
ronmental samples because thermal analysis is not affected 
by the shape, size and surface morphology of microplastics. 
For example, Majewsky et al. achieved quantitative analysis 
of polyethylene and polypropylene using thermogravimetric 
analysis-differential scanning calorimetry. But the analysis 
of other types of microplastics including polyvinyl chloride, 
polyamide, polyethersulfone, polyethylene terephthalate and 
polyurethane failed due to the overlapping of phase tran-
sitions (Majewsky et al. 2016). Besides, Zhou et al. used 
thermogravimetric analysis-Fourier transformation infrared 
spectroscopy to quantify polystyrene microplastics and poly-
vinyl chloride microplastics in soil samples (Yu et al. 2019).

In addition, both pyrolysis gas chromatography–mass 
spectrometry and thermal extraction desorption-gas chro-
matography–mass spectrometry can be used for the quan-
titative analysis of microplastics by comparing peak area 
with isotope labeled internal standard. Based on this, Erik 
Dümichen et al. combined differential scanning calorimetry 
with pyrolysis gas chromatography-mass spectrometry. They 
found that the change of sample mass in differential scanning 
calorimetry can be used to quantitatively analyze microplas-
tics in environmental samples (Dümichen et al. 2017).

Moreover, thermal extraction desorption-gas chromatog-
raphy–mass spectrometry can be used to quantify five poly-
mers including polyethylene, polypropylene, polystyrene, 
polyethylene terephthalate and polyamide within 2–3 h. The 
mass of samples treated by thermal extraction desorption-
gas chromatography–mass spectrometry can reach 100 mg. 
More importantly, thermal extraction desorption-gas chro-
matography–mass spectrometry can be used to analyze com-
plex heterogeneous matrices without pre-screening micro-
plastics in samples (Nuelle et al. 2014). In short, pyrolysis 
gas chromatography–mass spectrometry is suitable for the 
rapid qualitative and quantitative analysis of microplas-
tics in complex environment such as complex soil matrix 
(Dümichen et al. 2017).

However, at present, thermal extraction desorption-gas 
chromatography–mass spectrometry is only applied in the 
quantitative analysis of polyethylene microplastics, which 
means that the scope of application of this method is still 
narrow. Thermal analysis is not as widely used as spectros-
copy in quantifying microplastics. Moreover, thermal analy-
sis cannot analyze physical characteristics of microplastics 
because thermal analysis is destructive to samples due to 
high temperature conditions (Huppertsberg and Knepper, 

2018; Majewsky et al. 2016; Rocha-Santos and Duarte, 
2015; Shim et al. 2017; Silva et al. 2018). This may bring 
difficulties to the traceability analysis of microplastics.

Mass spectroscopy

Both gas chromatography coupled with mass spectrometry 
and liquid chromatography coupled with mass spectrometry 
are techniques for analyzing microplastics by analyzing the 
characteristic products formed by the hydrolysis or pyrolysis 
of microplastics (Fabbri et al. 2000; Fischer Scholz-Böttcher 
2017; Li et al. 2021b; Wang et al. 2017; Zhou et al. 2018). 
Due to their high sensitivity, these mass techniques show 
great potential in the identification and quantification of 
microplastics, especially nanoplastics.

Furthermore, with the development of isotope labeling 
technology, single particle inductively coupled plasma mass 
spectroscopy, a new mass spectrometry method for quan-
tifying microplastics, has been developed in recent years. 
This new method is a powerful technique for quantitatively 
analyzing the number and size of nanoparticles (Laborda 
et al. 2019). Nowadays, this method has been widely applied 
for metal-based nanoparticles in environmental matrices 
(Cervantes-Avilés et al. 2019; Huang et al. 2020; Keller 
et al. 2018). For example, single particle inductively cou-
pled plasma mass spectroscopy has been applied to quantify 
the size and number concentration of the model Au-coated 
microplastics (at submicrometer scale) with a relatively low 
detection limit (8.4 × 105 particles/L). But using this method 
required multiple steps of sample pretreatment because this 
method was based on indirect analysis of the Au coating 
(Jiménez-Lamana et al. 2020; Lai et al. 2021).

As the technique improves, it was found that single par-
ticle inductively coupled plasma mass spectroscopy has the 
capability to quantify model microplastics particle sizes and 
number concentrations by monitoring 13C (Bolea-Fernandez 
et al. 2020; Laborda et al. 2021). Based on this, Liu et al. 
used single particle inductively coupled plasma mass spec-
troscopy to quantitatively analyze particle number concen-
tration (down to 7.1 × 106 particles/L) with a wide particle 
size range (800 nm–5 μm) and environmentally relevant val-
ues generated during the photoaging of polystyrene micro-
plastics (Liu et al. 2021). In short, single particle inductively 
coupled plasma mass spectroscopy has great potential in 
the studying of the dynamics of microplastics in the aging 
process.

However, the quantification of total microplastics in the 
environment is currently not available by mass spectrometry 
because microplastics often exist as mixtures of different 
polymer types, and most polymers do not have characteristic 
degradation products for mass spectrometry quantification 
(Li et al. 2021b; Peng et al. 2020; Wang et al. 2017; Zhang 
et al. 2021).
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Index method

Although a few methods have been developed for the 
detection of microplastics, but the methods for the analy-
sis of nanoplastics are still far from efficient (Ivleva et al. 
2017; Sander et al. 2019; Wagner and Reemtsma, 2019). 
For instance, Fourier transform infrared spectroscopy can 
only identify microplastics with a particle size above 20 μm 
(Araujo et al. 2018; Prata et al. 2019; Schymanski et al. 
2018) while Raman spectroscopy can be used to identify 
microplastics with a particle size below 20 μm (Prata et al. 
2019). Besides, mass spectrometry is currently not suitable 
for large-scale analysis of nanoplastics (Li et al. 2021b; Peng 
et al. 2020; Wang et al. 2017; Zhang et al. 2021).

To improve the efficiency of monitoring total microplas-
tics including nanoplastics in the environment, it is crucial to 
seek a universal index for all microplastics in an aggregate. 
Some researchers proposed that some indexes like chemical 
oxygen demand and total organic carbon can be adopted to 
evaluate the total amount of organic compounds in environ-
mental water quality monitoring and risk assessment. This is 
because microplastics are mainly composed of six elements 
including C, H, O, N, S and Cl, which are similar to the 
characteristics of natural organic matter in the environment 
(Leenheer and Croué, 2003).

Inspired by this, Li et al. considered total organic car-
bon as an index for quantifying the pollution of total micro- 
and nano-plastics in environmental waters. They found 
that total organic carbon can be used to measure various 
micro- and nano-plastics of representative plastic types and 
sizes (0.5–100 μm) in tap, river, and sea water samples. 
This index method has advantages of low detection limits 
(∼7 μg·C·L−1) and high spiked recoveries (83.7–114%) (Li 
et al. 2022). Nevertheless, sometimes other organic matter 
in the environment besides microplastics may have some 
influence on the experimental results.

Conclusion

In conclusion, accurate analytical methods of microplastics 
are the key and foundation for the treatment of microplastics 
pollution. Based on this, numerous techniques for microplas-
tic analysis have been developed in recent years. According 
to different microplastic information obtained, we divide 
microplastic analysis technology into physical characteri-
zation technology, chemical composition identification tech-
nology and quantitative analysis technology.

Physical characterization technology mainly includes 
visual analysis (Karlsson et al., 2020), dynamic light scat-
tering analysis (Sorasan et al. 2021) and laser diffraction 
particle size analysis. And the techniques commonly used 
for the chemical characterization analysis of microplastics 

include scanning electron microscope-energy-dispersive 
X-ray (Wagner et al. 2017), Fourier transform infrared spec-
troscopy (Song et al. 2015b), Raman spectroscopy (Araujo 
et al. 2018), thermal analysis (Majewsky et al. 2016), mass 
spectrometry (Weidner and Trimpin, 2010), etc. And the 
methods for measuring quantitative concentration of micro-
plastics mainly include visual analysis, flow cytometry 
measurements (Sorasan et al. 2021), spectroscopy, thermal 
analysis, mass spectroscopy and index method (Li et al. 
2022).

Although many achievements have been made in micro-
plastic analysis technology in recent years, many methods 
for analyzing microplastics have their own shortcomings in 
practical application. Moreover, using only one method may 
result in incomplete information on microplastics. And using 
one method is susceptible to interference from false positive 
or false negative signals, reducing the accuracy of analysis 
(Shim et al. 2017). In order to ensure the accuracy of the 
obtained information on microplastics, several analytical 
methods are often combined to analyze microplastics in the 
environment (Shim et al. 2017).

Furthermore, it is worth noting that the development of 
unified and efficient microplastic sampling techniques is of 
great significance for microplastic analysis. However, micro-
plastics have characteristics of complex composition, small 
particle size, wide distribution and diverse shapes. In addi-
tion, microplastics are easily affected by external factors. 
Therefore, it is difficult to completely separate microplas-
tics from the actual environment (Nguyen et al. 2019). Up 
to now, there is no unified and effective method to extract 
microplastics from complex environmental matrix. This not 
only affects the accuracy of microplastic analysis results, but 
also hinders the practical application of numerous micro-
plastic analysis techniques.

Therefore, it is urgent to develop rapid, accurate, low-cost 
and practical analytical methods for microplastic sampling 
and analysis. Among various microplastic sampling tech-
niques, flotation method has the potential to develop into 
a unique method for removing and recycling microplastics 
from the environment in the future.

Besides, many advanced instruments and some com-
posites with related performance have been developed. For 
instance, Corrado et al. used a touch probe and some force 
sensitive resistors to measure high flexibility components in 
composite material (Corrado and Polini, 2019). More impor-
tantly, using in vitro selection to screen out some low-toxic 
tools that can specifically identify microplastics is highly 
likely to become an important field for the analysis of micro-
plastics in the future. Last but not least, with the integration 
of biomedicine, material science, environmental medicine 
and environmental analysis, many novel techniques such as 
flow cytometry, dynamic light scattering analysis, laser dif-
fraction particle size analysis and confocal laser scanning 
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microscopy may play an important role in the analysis of 
microplastics and even nanoplastics in the future.
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