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Abstract
The textile industry contributes to about 5% of all waste globally, with approximately 20 billion pounds of waste landfilled 
every year, calling for advanced recycling methods in the context of the circular economy. Here, we review physical and 
chemical methods for recycling textiles waste into high value-added products such as composite reinforcements, soil cover-
ing materials, adsorbents, electrodes, supercapacitors, and nanocrystalline cellulose. Chemical recycling is more frequent 
than physical recycling. Product quality depends on the recycling methods; for instance chemical recycling yield materials 
with better porous characteristics and higher adsorption capacity than materials obtained by physical recycling. Intelligent 
wearables and technologies for advanced textile processing are discussed.

Keywords  Bast fibers · Textiles waste · Recycling · Circular economy · Chemical recycling · Physical recycling · 
Composite · Adsorbent · Cellulose

Introduction

Bast fibers are derived from various basts that have 
recently gained popularity due to their low cost, low den-
sity, biodegradation, and excellent mechanical properties 

(Bourmaud et al., 2018; Kalia et al., 2009; Yan et al., 
2016). They are not only used in traditional textile fields 
but also widely applied to industrial textile fields, such 
as camping tents, fishing nets, ropes, and car cushions 
(Ip and Miller, 2012; Ramamoorthy et al., 2015; Ramesh 
et al., 2017). Bast fibers include hemp, ramie, flax, sisal, 
kenaf and jute (Choi and Lee, 2012; Crini et al., 2020; Yu 
et al., 2014), of which hemp is called Cannabis sativa L. 
(Candy et al., 2017; Kuglarz and Grübel, 2018), consist-
ing of 70% cellulose (Schettini et al., 2013). Ramie is a 
unique product that originated in China (Feng et al., 2011; 
Yang et al., 2021) with moisture absorption and perme-
ability are about 3-5 times that of cotton fibers, along with 
bacteriostatic behavior, mildew resistance, ventilation and 
cooling (Cai et al., 2020; Dang et al., 2019). In addition to 
being the oldest textile fiber in the world, flax is native to 
the Mediterranean and Southwest Asia. Its round or oblate 
shape makes it superior in heat dissipation and moisture 
absorption when wet. Jute usually grows in warm, humid 
climates, while the shape is polygonal, with varying canal 
sizes, and provides excellent strength, toughness, elastic 
modulus, and moisture absorption (Ivanovska et al., 2019). 
Sisal is a perennial tropical hard leaf fiber (Sever, 2016), 
originated in Mexico (Luhar et al., 2019) and is mainly 
grown in Africa, North America and Asia (Ye et al., 2015). 
It is the hardest fiber with a crescent or horseshoe shape, 
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the largest amount and the widest planting range today. 
Kenaf is a relatively new annual fiber resource introduced 
from abroad in the early twentieth century in China, 
which is an essential raw material for the bast spinning 
and paper industry due to its strong resistance to environ-
mental stress. With the economic growth in recent years, 
the demand for biodegradable, green and environmentally 
friendly bast products has increased. Meanwhile, the waste 
associated with bast resources is becoming increasingly 
severe. Therefore, appropriate measurements are required 
to deal with the increasing generated bast textiles waste 
effectively.

Generally, many textiles waste is disposed of by burn-
ing in municipal waste incinerators or landfills (Wang 
et al., 2022). Incineration will produce lots of toxic gases 
and carbon dioxide, polluting the atmospheric environment 
and producing the greenhouse effect (Lu et al., 2022; Wu 
et al., 2017; Yu et al., 2021), while landfills will release 
undesirable chemicals into the soil, causing soil and water 
pollution (Meng et al., 2019; Rago et al., 2018). Evidence 
has shown that both incineration and landfilling are consid-
ered less efficient ways to treat bast textiles waste (Xu et al., 
2019). In facing the new requirements (carbon neutrality, 
emission peak) of environmental protection (Cao and Wu, 
2008), appropriate recycling of bast textiles waste through 
effective and scientific methods to produce new raw materi-
als with similar properties or new functions is necessary to 
realize a circular economy.

In the precondition to guaranteeing environmental secu-
rity, recycling aims to ensure the good use of resources and 
protect the environment by using advanced technologies to 
transform the waste generated during the production and 
consumption processes into reusable resources and products 
(Nzioka et al., 2018). Currently, various methods are used 
to recycle bast textiles waste, including physical recycling 
(Brzyski et al., 2017; De Silva and Byrne, 2017; Renouard 
et al., 2017), chemical recycling (Marinho et al., 2020; Wil-
liams and Reed, 2004) and energy recycling (Ghoushji et al., 
2017; Yi et al., 2013; Sandin and Peters, 2018). Physical 
recycling employs mechanical equipment to reprocess bast 
textiles waste into fibers. The obtained product is available 
as a material for filling, sound insulation, heat insulation of 
wall insulation layer and bathroom wall tiles (Gebremedhin 
and Rotich, 2020; Muthuraj et al., 2019). Chemical recycling 
represents turning waste materials into valuable ingredients 
using a substantial amount of chemical means (Ouchi et al., 
2010).

In contrast, thermal energy generation during incinera-
tion of bast textiles waste is considered energy recycling. 
Moreover, several products are generally obtained after the 
recovery and utilization, such as reprocessed fiber fabrics, 
non-woven fabrics, processed fibers filling, and reclaimed 
cellulose fibers. The recycling of the bast textiles waste, 

thus, improves the textile enterprises concerning the circular 
economy model, thereby enhancing the value of the mate-
rials and promoting social progress (Navone et al., 2020).

This review aims to highlight the recycling methods of 
bast textiles waste. Firstly, the application of bast textiles 
waste in reinforcements, soil covering materials, papermak-
ing materials, cellulose, nanocellulose and nanocrystalline, 
adsorbents, electrode materials and supercapacitors is sum-
marized and discussed via physical and chemical recycling 
methods. Secondly, the future recycling methods of the bast 
textiles waste were prospected. Finally, we hope that the 
bast textiles waste can be recycled effectively and prepared 
into functional filaments, papers, battery diaphragms, three-
dimensional (3D) reinforcements of composites, electrode 
materials and other products in the future, reforming a short-
process, high-value, pollution-free and zero-emission recy-
cling method.

Physical recycling

Physical and chemical methods are the principal methods 
for recycling bast textiles waste in which products recov-
ered by these ways can be remanufactured into industrial 
textiles, cellulose, nanocellulose, cellulose nanocrystalline, 
adsorbents, electrodes as well as supercapacitors, thus fur-
ther enhancing the value of the textile wastes and forming 
the circular economy model of “natural resources-products-
renewable resources” (Nagarajan et al., 2020). The current 
efforts of these two methods will be detailed in the following 
sections.

Bast textiles waste recovered by physical methods can be 
reprocessed into industrial textiles and absorbents. Industrial 
textile refers to textiles used in various industries, such as 
agriculture, animal husbandry, construction, transportation, 
and other cutting-edge scientific fields. These textiles can 
also be described scientifically as technical or high-perfor-
mance textiles. Currently, the bast textiles waste application 
in industrial textiles mainly includes the reinforcements of 
composites and soil covering materials (Laborel-Préneron 
et al., 2017).

Composite reinforcements

Bast fibers and fabrics attract research attention due to their 
fast growth, low density, high specific strength, rigidity and 
sound absorption (Kalusuraman et al., 2020; Kuciel et al., 
2019), and their composites have been extensively employed 
in automobiles, civil, furniture, and construction industries 
(Ge et al., 2020; Lu et al., 2020; Zhang et al., 2021). The 
reinforcement structures are mainly divided into zero-
dimensional (0D), one-dimensional (1D), two-dimensional 
(2D) and 3D structures from structural dimensions and 
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manufacturing processes, as shown in Fig. 1. The 0D and 1D 
structures include fibers and yarns. These are regarded as the 
smallest structural unit for preparing reinforced materials. 
Among these, yarn is indicated by the arrangement of the 
textile fibers in a particular orientation to form an elongated 
fiber assembly with specific mechanical properties by twist-
ing or entangling the fibers. Weaving, knitting, braiding, 
stitching, and non-woven processes can develop fibers and 
yarns into 2D and 3D structures with specific dimensions. 
The weaving structures can be further divided into plain, 
twill and satin, in which plain is formed by interweaving the 
warp and weft yarns one by one, while twill results from the 

interweaving of the two at a certain angle and satin represent 
a single tissue point on each warp and weft yarn.

Knitting is a process of preparing fabric using knitting 
needles to hook various yarns into a coil and subsequently 
connect them into a series of sets, which covers warp knit-
ting and weft knitting with specific elasticity and flexibil-
ity suitable for use for towels, sweaters and other products. 
Braiding structure is the same as the production process of 
mats and braids, composed of two or more sets of misaligned 
and interwoven strips (Dong et al., 2020). It can be made 
into products of flat, tubular or other shapes due to its simple 
manufacturing process. Stitching is sewing the laminated 
fabric with yarn (Abdelal and Donaldson, 2018). Non-woven 

Fig. 1   Classification of reinforcement structures. According to the 
structural dimensions and manufacturing processes of materials, the 
reinforcements are generally divided into zero-dimensional (0D), 
one-dimensional (1D), two-dimensional (2D) and three-dimensional 
(3D) structures. As a 1D structure, the yarn is made of fibers through 

the spinning process. The 2D structure includes weaving, braiding, 
knitting, stitching and non-woven structures according to the differ-
ent manufacturing processes. By introducing yarns in the direction of 
thickness, various 2D structures can be turned into 3D structures
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technology refers to the sheets and webs developed by direc-
tional or randomly arranged fibers by friction, amplexation, 
or bonding methods. Among these, needle punching technol-
ogy is a typical non-woven process which uses the puncture 
effect of the needle to strengthen the fluffy web into a fabric. 
A 3D structure can be generated by introducing the yarn 
in the thickness direction of the 2D structure, which can 
enhance the overall mechanical performance of the mate-
rial. 3D orthogonal and 3D angle interlock structures are the 
two commonly used structures in 3D weaving technologies, 
which have integral properties (Fan et al., 2022) and improve 
the performance of the woven in the thickness direction.

Moreover, two flat fabric pieces are vertically connected 
by fibers or yarns to form a 3D knitted structure, known 
as the knitted spacer fabric. It has excellent hygroscopicity, 
moisture conductivity and filterability, thus finding use in 
agriculture, medical treatment, entertainment, among other 
uses. 3D braiding is based on the 2D braiding process to 
enhance the axial fiber to braid 3D fabric. After continuous 
development, 3D four-directional, 3D five-directional, 3D 
six-directional, and 3D seven-directional structures can be 
manufactured (Zheng et al., 2017). 3D stitching structure 
achieves by introducing yarn in the thickness direction of 
the laminated fabric. This structure has excellent interlayer 
properties and impacts damage tolerance (Song et al., 2022). 
The needle in the Z direction can pierce the fiber into the 
felt, thus allowing the preparation of felt with a 3D struc-
ture. This structure can meet the requirements for excellent 
mechanical performance materials.

Nowadays, there are many strategies to develop reinforce-
ments from the bast textiles waste. For example, Holser 
(2009) directly incorporated the waste flax fibers into the 
mixture of glycerin and C6H10O4 for preparing thermosetting 
composites and bio-composites. However, these materials 
developed directly from untreated bast fibers may not meet 
the application requirements in the field of mechanics. As 
a result, a few research studies have used bisphenol-A/bis-
phenol-A-based benzoxazine and silane coupling agent (or 
amino silane) to modify the waste hemp and jute fibers (Das 
et al., 2010; Panaitescu et al., 2010; Zegaoui et al., 2019). 
The modified methods can effectively develop the low-value 
fibers waste into a new type of bio-composites, thus improv-
ing their performance in residential and construction fields 
(Ganguly, 2009). Simultaneously, pretreated waste jute 
and glass yarns in terms of mercerized and resized have 
also been used to weave the reinforcements for composites 
(Masood et al., 2018). However, the mechanical properties 
of the material developed using the single waste jute yarns 
are noted to be lower than that of the composite developed 
using hybrid yarns. This suggests that weaving technology 
helps boost the performance of composites.

Moreover the (C3H6)n-flax non-wovens wastes were 
ground and re-assembled into new non-wovens, and a new 

composite was obtained by injection molding method (Ren-
ouard et al., 2017). The waste can also be converted into 
composites with thermoplastic materials such as polylactic 
acid or polyethylene (Battegazzore et al., 2018; Nestore and 
Vancovicha, 2013), exhibiting optimal bending tensile prop-
erties. Furthermore, blended yarns generated from flax fibers 
waste and renewable polylactic acid fibers can also be made 
into unidirectional composites for lightweight construction 
fields, demonstrating a potential upcycling process of waste 
(Mohl et al., 2022). Simultaneously, waste hemp reinforced 
composites with 30% fiber volume content show excellent 
mechanical, thermal, physical, and chemical properties for 
roofing, tents, and flooring (Jadhav and Jadhav, 2022).

Starch is a commonly used plasticizer for preparing plant 
fiber-reinforced cement boards. The physical and mechanical 
properties of the jute cement starch composite board meet 
the European standards and can be used for building par-
tition walls, internal partitions and insulation (Ferrandez-
Garcia et al., 2020). Moreover, waste flax can be developed 
into thermal insulation particleboard through hand lay-up 
and hot-pressing processes to replace the traditional thermal 
insulation materials for attaining environmental protection 
(Sam-Brew and Smith, 2017; Zach et al., 2016), and their 
mechanical properties are also enhanced to a certain extent. 
Meanwhile, the porous structure of the hemp fibers has spe-
cific sound absorption properties. Therefore, applying waste 
materials for noise control can result in cost-effective and 
environmentally friendly strategies (Bhingare et al., 2019; 
Raj et al., 2020). Tiuc et al. (2018) incorporated 10% waste 
flax fibers into the rigid polyurethane foam matrix to fabri-
cate composites with high sound absorption performance. 
The resulted fibers were used in road, railway or air transpor-
tation fields. In the future, bast fiber composites are expected 
to lead to latent inhibition in basic facilities and the vehicle 
industry (Ge et al., 2021; Kakati et al., 2019; Radzuan et al., 
2020; Chauhan et al., 2019), especially in automotive inte-
rior parts for significantly reducing the weight and cost of 
automobiles.

The composite preparation methods, strengths and short-
comings are summarized in Table 1. Bast textiles waste is 
usually ground into powder and subsequently hot-pressed 
with a binder to form composites with vast potential for fur-
niture and rail transportation usage. In addition, the bast 
fibers can also be used for sound absorption and thermal 
insulation for building reinforcement. Simultaneously, vari-
ous strategies have incorporated the woven bast yarns into 
the fabric and mixed them with the high-performance fib-
ers to prepare the composites. These methods are effective 
in developing the waste fibers into functional materials. In 
short, these methods would provide an impetus for future 
research and application of the bast textiles waste in com-
posites production.
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Soil covering materials

Usually, the soil covering material is a polyethylene film 
with a thickness of 0.04 mm (Oz et al., 2016). The prepara-
tion process is reinforced with various functional additives 
to achieve thermal insulation, cooling, disease prevention, 
weeding, breathability, and easy operation. The bast textiles 
can be used as a soil covering materials due to their water-
retaining properties. Therefore, efforts have been made to 
develop the bast textiles waste into non-woven fabrics to 
design uniform, porous, bulky, and mechanically wounded 
fiber sheets for strawberry cultivation. Among the various 
bast textile waste, the performance of the waste jute non-
woven fabric is superior as compared to the others, sug-
gesting that jute non-woven fabric represents a promising 
alternative to soil covering material (Sengupta and Debnath, 
2018).

Adsorbent materials

The bast textiles are commonly used directly as an adsor-
bent in a large area without additional treatment due to their 
unique porous structure, which significantly reduces the pro-
duction cycle of adsorption materials. For example, Tofan 
et al. (2015) used waste hemp fibers washed with soap and 
soda ash to adsorb Zn(II) ions in an acid medium solution. 
The adsorption potential of hemp fibers is unchanged after 
three cycles of adsorption-desorption of Zn(II). As reported 
in other studies, the Co(II) can also be adsorbed by waste 
hemp fibers (Tofan et al., 2013). These results indicate that 
untreated waste hemp fibers may have a good adsorption 
efficiency.

Chemical recycling

Chemical recycling represents another way of turning the 
bast textiles waste into functional components by chemical 
means. The chemical recycling approach is usually used in 
papermaking, the extraction of cellulose, nanocellulose and 
cellulose nanocrystalline, and the preparation of adsorbents, 
electrodes, and supercapacitors.

Papermaking materials

Pulpzyme has been used to treat jute from the waste woven 
carpets (Mohajershojaei and Dadashian, 2014) due to the 
pulpzyme can hydrolyze the cellulose chains and shorten 
the cellulose fibers. The materials produced by this method 
are suitable as raw materials for the papermaking process, 
with a width size between 0 and 4 mm.

Cellulose, nanocellulose and cellulose 
nanocrystalline

Cellulose is the main ingredient of the plant cell walls (Lee 
et al., 2010), consisting of linear chains of D-glucose units 
linked by β-1,4-glycosides (Deeksha et al., 2021; Ge et al., 
2022; Hassan et al., 2020; Pattnaik et al., 2021). Cellulose is 
non-toxic, renewable, and degradable (Hamidon et al., 2022) 
and can be applied for papermaking, plastics, explosives, 
electrical engineering and scientific research equipment. 
Nowadays, extracting cellulose from the bast textiles waste 
mainly includes double asymmetric centrifugation, alkaline 
hydrolysis, alkali and acidification, organic acid extraction, 
and high-energy planetary ball milling.

Double asymmetric centrifugation extraction

The double asymmetric centrifugation method is a mechani-
cal process that provides extra shear stress to convert the 
defibrillated cellulose into micro- and nano-fibrillated cel-
lulose. Unlike the traditional centrifugation method, the 

Table 1   Preparation and 
reinforced structures for 
composites based on bast 
textiles waste

Materials Preparation methods Structure Refs.

Hemp Melt extrusion and hot-
pressing processes

Chopped fibers (Battegazzore et al., 2018)

Flax Hand lay-up molding Chopped fibers (Hussein et al., 2019)
Jute, flax Hot-pressing process Chopped fibers (Tiuc et al., 2018)
Hemp Hot-pressing process Chopped fibers (Zegaoui et al., 2019)
Jute Hot-pressing process Chopped fibers (Ferrandez-Garcia et al., 2020)
Jute Hot-pressing process Chopped fibers, non-

woven fabrics
(Das et al., 2010; Ganguly, 2009)

Jute Hot-pressing process Chopped fibers (Saikia et al., 2017)
Jute Vacuum bag molding Woven fabrics (Masood et al., 2018)



3752	 Environmental Chemistry Letters (2022) 20:3747–3763

1 3

sample not only has a certain degree of freedom of transla-
tion on the central axis, but the holder also rotates around 
the second axis during the process, as shown in Fig. 2a. The 
specific steps include pretreatment of the hemp fibers with 
distilled water, active alkali, and sulfate, followed by pro-
cessing in a double asymmetric centrifugation container for 
3 h (Agate et al., 2020). It is observed from the scanning 
electron micrographs (Fig. 2b-d) that the cellulose prepared 
from different fiber slurries is challenging, where synthe-
sis of cellulose from the delignified fiber using this method 
does not coincide with the previous findings. Therefore, it 
is believed that although this method is simple and conveni-
ent, along with significantly reduced crystallinity of nano-
cellulose after treatment, however, the widely used acid and 
alkali methods are preferred for producing cellulose in vari-
ous conditions.

Alkaline hydrolysis

Alkali hydrolysis is a commonly used method for extract-
ing cellulose, which involves pre-treatment of the bast fib-
ers with alkaline H2O2 solution, followed by heating in an 
alkaline reactor at a specific concentration and temperature. 
The higher the temperature, the more complete the heating 
process. Studies have reported using the alkaline hydrolysis 
method to extract cellulose from waste jute (Ahuja et al., 
2018), hemp (Baksi et al., 2018; Pacaphol and Aht-Ong, 
2017) and other bast textile wastes. The appearance of the 
water suspension and nano-cellulose cast film prepared from 
hemp is displayed in Fig. 2e, f. The defibrillation concen-
tration of cellulose is 0.7% w/V, and the suspension and 
cast film prepared by the high-pressure micro-fluidization 
process performed for 120 min is observed to exhibit the 

Fig. 2   Cellulose is extracted from bast textiles waste. a-d The equip-
ment structure of double asymmetric centrifugation and scanning 
electron microscope images of different pulps treated with double 
asymmetric centrifugation, respectively. Reprinted with permission 
of American Chemical Society from Agate et al. (2020). e and f The 
water suspension and its casting film were prepared by high-pres-
sure micro-fluidization with cellulose defibrillation concentration of 

0.7% w/V for 120 min. Reprinted with permission of Elsevier from 
Pacaphol and Aht-Ong (2017). g The process of extracting cellulose 
and nanocrystalline cellulose from lignocellulosic biomass by acid 
and alkali hydrolysis. Reprinted with permission of Elsevier from 
Tuerxun et al. (2019). h Cellulose was separated from the waste fibers 
by organic acid extraction
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highest transparency, thus confirming the optimal process 
conditions for preparing cellulose films.

Meanwhile, the thermal stability of the cellulose is also 
observed to be higher than that of the original fiber. The 
developed cellulose can also be implanted on the com-
mercial filter paper as a barrier for the oil–water separa-
tion membranes, which has a strong commercial prospect. 
Although this method can eliminate many components in the 
waste bast fibers, the yield obtained is too low.

Acid and alkaline hydrolysis

The primary process involved in the acid-base combination 
method is to hydrolyze the waste kenaf fibers with a certain 
proportion of NaOH solution at room temperature. Subse-
quently, these are bleached with H2O2 (35%) at 75 °C for 4 h 
and filtered to obtain cellulose. Cellulose is further dispersed 
in 60 mL H2SO4 for hydrolysis under stirring to prepare the 
nano-cellulose suspension. After dialysis for 3 days, nano-
cellulose is obtained (Fig. 2g). At the same time, waste hemp 
fibers can also be recycled by this method (Abraham et al., 
2016). The cellulose, nanocellulose, and cellulose nanocrys-
talline prepared by this method did not exhibit cytotoxicity, 
especially cellulose nanocrystalline possesses high modu-
lus, large surface area, biodegradability and environmental 
benefits (Oyeoka et al., 2021), thus signifying the potential 
of their applications in the biological scaffolds and bioen-
gineering (Tuerxun et al., 2019). Nevertheless, this process 
is comparatively complicated and produces a significant 
amount of wastewater.

Other methods

In addition to the aforementioned methods, the organic 
acids method has also been used to extract nano-cellulose 
from the waste jute fibers. Figure 2h shows a flowchart of 
the pulping and cellulose extraction using the organic acids 
method (Erdogan et al., 2019). Firstly, the non-cellulosic 

substances in the waste jute fibers are removed through 
HCOOH at a concentration of 90%. Secondly, 35% H2O2 
and CH2O3 are used to treat waste fibers to improve the 
delignification effect. Finally, the obtained material is 
bleached with H2O2 for 75 min at 60 °C. This method 
has the same advantages as the combined acid and alkali 
treatment. In addition, high energy planetary ball milling 
was also used to extract cellulose working under wet con-
ditions (Baheti et al., 2014). Overall, the resulted products 
exhibit unique characteristics and can be used in different 
applications.

Table 2 compares the different methods of cellulose 
extraction. The double asymmetric centrifugation method 
is simple and continuous, but the characteristics of the 
processed lignin fibers limit its application. Alkaline 
treatment is the most commonly used chemical method 
to improve the crystallization of cellulose and partially 
remove lignin and hemicellulose. However, the low effi-
ciency impedes its industrial application. In contrast, 
the combined treatment of acid and alkaline hydrolysis 
improves the yield of cellulose, and other extraction strate-
gies can be combined to prepare the necessary materials, 
making it the most commonly used extraction method. 
Besides, the extraction methods based on organic acids 
and high-energy planetary ball mills have attracted the 
attention of researchers. Cellulose prepared by these meth-
ods has structural advantages and the significant applica-
tion potential in oil-water separation materials, papermak-
ing and industrial packaging. Overall, Table 2 summarizes 
the potential research directions and advantages for the 
extraction of bast cellulose and nanocellulose in the future, 
thus promoting the progress of the cellulose industry.

Adsorbent materials

Adsorption refers to using the surface of a substance 
to absorb molecules or ions in an ambient medium 

Table 2   Comparison and discussion of different cellulose extraction methods

Method Advantages Disadvantages Material form Refs.

Double asymmetric centrifuga-
tion

Novel, simple and sustainable Cannot be extracted from lignin 
fibers

Fibers (Agate et al., 2020)

Alkaline and acidification 
process

Improve crystallinity; small size; 
non-toxic; high cell survival 
rate; high yield

Complicated procedures Fibers (Abraham et al., 2016)

Alkaline hydrolysis extraction 
method

Improve crystallinity; small 
particle size; remove lignin and 
hemicellulose

Low efficiency Fibers (Baksi et al., 2018)

Organic acid extraction method Except for non-cellulose parts; 
high output

Generate acid solvent waste Yarns (Erdogan et al., 2019)

High energy planetary ball mill-
ing extraction method

Small particle size; simple and 
convenient

Long time Fibers (Baheti et al., 2014)



3754	 Environmental Chemistry Letters (2022) 20:3747–3763

1 3

(Kuznetsova et al., 2018; Liu, 2015). Nowadays, the prepa-
ration methods of adsorbent materials mainly include car-
bonization (Gopinath et al., 2020), modification, and graft 
copolymerization.

Carbonization method

The uneven surface of the bast textiles can be considered 
the starting materials for the production of activated car-
bon, and its good adsorption performance is closely related 
to the content of cellulose and lignin in the bast fibers (Xu 
et al., 2016). Activated carbon is a micro-crystalline carbon 
with a black surface, large specific surface area and low bulk 
density (Pongener et al., 2017; Yang et al., 2011; Zhu et al., 
2020), which is generated by high-temperature physical acti-
vation or chemical activation (Zhao et al., 2020). Presently, 
the preparation ways of activated carbon from the bast tex-
tiles waste include impregnation of the waste fibers for 1-2 h 
in the activator solution such as H3PO4, (NH4)3PO4, KOH, 
or ZnCl2, carbonization at a temperature ranging from 600 to 
800 °C and time (Chen et al., 2018). For example, fibers can 
be pretreated with 17.5% NaOH and 0.7% NaClO2 to remove 
hemicellulose and lignin, then carbonized in a tube furnace 
at 1000 °C for 30 min. Usually, the activator concentration 
is observed to influence the superficial area of activated car-
bon significantly. The higher the activator concentration, the 
lower the pyrolysis temperature, and the greater the surface 
area of activated carbon, which is an economically feasible 
adsorbent.

Senthilkumaar et  al. (2010) and Ramrakhiani et  al. 
(2022) coated H2SO4 on the surface of waste jute textiles. 
The resulting carbon product can be used to remove organo-
phosphorus pesticides and Zn(II). After the experiment it 
was found that the adsorption properties of the carbonized 
bast textiles are mainly affected by the porosity and surface 
oxygen content, while the morphology was observed to have 
a negligible effect (Vukcevic et al., 2012).

Surface modification method

The limitations on the preparation area and long produc-
tion cycles hinder the production of the adsorption materi-
als by the carbonization method for industrial applications. 
Therefore, the appropriate surface modification methods are 
adopted to prepare better adsorbents. These methods include 
anionic azo dye modification, surface amination, and sul-
fonation reaction.

Flax fibers were modified by immersing in cetyltrimethyl-
ammonium bromide surfactant to prepare adsorbents, which 
exhibit the potential to be used to remove the anionic azo 
dyes from wastewater. Amino-functional modification is 
also one of the effective methods for preparing biological 
adsorption materials. The materials prepared by this method 

can effectively remove the pollutants and heavy metal ions 
from the effluents. In particular, the -NH2 groups on the 
adsorption material induce a strong chelating characteristic 
towards the transition metals; thus, it can efficiently remove 
Cu2+ from the aqueous solution. Furthermore, Yang et al. 
(2018) also modified the waste jute with cationic polyacryla-
mide to raise the sludge dehydration capability, which is 
owing to the reason that the H2O2 can improve the dewater-
ing performance of sludge by biopolymer degradation to 
release the bound water and lysis of sludge cells to release 
the intracellular water. Simultaneously, jute can form the 
holes and low compression filtration cakes together with 
cationic polyacrylamide and sludge particles to improve the 
dewatering performance, which shows high efficiency and 
thus indicates its potential in dewatered sludge treatment. 
On the other hand, sulfoethyl cellulose can be extracted and 
synthesized from the waste flax. The resulted product can 
be used to substitute for the heavy metal ion adsorbent and 
carboxymethyl cellulose (Kutsenko et al., 2007). In short, 
biomass adsorption material prepared by these methods 
exhibit an excellent ability to remove metal ions and sludges.

Graft copolymerization method

Graft copolymerization methods are often utilized to prepare 
the high-performance water absorbent materials, which refer 
to the reaction on the macromolecular chain for attaining 
chemical bonding to the appropriate branch or functional 
groups. The resulting product is called graft copolymer, 
which their performance depends on the composition, struc-
ture, length and number of the branches in the primary and 
branch chains.

Al-Mamun et al. (2010) prepared a selective ion adsor-
bent after the ultraviolet curing of jute yarns with C3H4O2 
and H2SO4 to remove Cu2+. The materials prepared by graft 
copolymerization absorb metal ions in the wastewater and 
have high water absorption. A few studies employed the dis-
carded bast yarns to develop super absorbent composites of 
flax residue-g-polyacrylic acid-acrylamide (Liu et al., 2014; 
Yu et al., 2015; Zhang et al., 2013). The obtained material 
exhibits effective water absorption and retention capacity 
in deionized water and distilled water, thus indicating their 
use in applications with high water absorption requirements, 
such as sanitary napkins. Meanwhile, waste ramie adsor-
bents with amphoteric/magnetic multi-structures could also 
be constructed by two different graft copolymerization meth-
ods. The resulting adsorbents' optimum adsorption capaci-
ties for methylene blue and Congo red were 195.9 mg/g and 
147.7 mg/g, respectively. These two methods guided the 
preparation of highly efficient multi-structured adsorbents 
from waste ramie (Peng et al., 2022).

Table 3 tabulates the preparation methods and properties 
of the adsorbents developed from bast textiles waste. The 
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commonly used activators in the carbonization process are 
H2SO4 and KOH, and the purpose is to enhance the pores 
on the surface of the material and reduce the energy loss. 
Almost all forms of bast textiles waste can be carbonized to 
produce absorbents. Different carbonization temperatures, 
durations, and activator concentrations affect the pore sur-
face area. For instance, low pore surface area is obtained 
from a short duration and low carbonization temperature. 
However, the carbonization process is still the primary 
method for preparing the adsorbents for application in 
wastewater, dye adsorption and heavy metal treatment. As 
mentioned earlier, graft copolymerization is another proper 
chemical method for preparing adsorbents, whose precur-
sors are usually the used yarns. Grafting with C3H4O2 or 
other amides is widely utilized for heavy metal ion removal 
and wastewater treatment. Therefore, the summary provides 
a robust background for the preparation of the adsorbent 
materials.

Electrode materials

The commonly employed electrode materials are copper, 
graphite, tungsten copper alloy, steel, and cast iron (Yoon 
et al., 2013). Over the past two decades, agricultural waste 
biomass has become a promising raw material for carbon 
electrode preparation. Since biomass-derived carbon has the 
desired molecular structure for charge storage and transport, 
it is suitable for electrode materials.

Owing to the rich output of the bast fibers, their appli-
cation for the preparation of anode materials for lithium-
ion batteries has attracted much attention. CuCl2 can acti-
vate the jute fibers to produce porous materials with high 
surface area, which can be used as the anode of lithium-
ion batteries (Dou et al., 2019). The jute fibers were first 
immersed and stirred in CuCl2 solution, then carbonized in 
an Ar atmosphere to prepare the porous carbon material. 
The acquired material reveals a remarkable specific charge 
capacity of 581 mAh·g‐1 after 100 cycles at a current density 
of 0.2 A mm−2. This fabrication method is expected to pro-
mote the application of the bast bio-carbon materials for use 
in lithium-ion batteries and sodium batteries, thus promoting 
the further development of the electrode materials.

Supercapacitors

Supercapacitor is an efficient energy storage device that 
exhibits the advantages of high power, long cycle life, wide 
working temperature range, fast charging and discharging, 
energy storage, minimal maintenance, and environmental 
protection (Elwakil et al., 2017; Parveen et al., 2021; Prabha 
et al., 2020). Therefore, numerous studies focused on devel-
oping new materials for high-performance supercapacitors 
such as porous carbon, carbon nanotubes, carbon deriva-
tives, and graphene (Maksoud et al., 2020; Sundriyal et al., 
2021).

Bast textiles waste has become an essential class of raw 
material for supercapacitors due to the unique porous struc-
ture of the resulted product. For example, Zequine et al. 
(2017) hydrothermally treated 1 g of jute fibers in 30 mL 
H2SO4 solution for 24 h and subsequently heated jute and 
KOH at 800 °C for 1 h under Ar atmosphere. The result-
ing product was used in the preparation of supercapaci-
tors (Fig. 3a), and the carbonized jute exhibited a certain 
microporous structure (Fig. 3b). The supercapacitor resulted 
showed optimal flexibility and cycle stability, demonstrat-
ing the potential of carbonization to inexpensively recover 
the jute fibers and attain a flexible energy storage device 
with higher performance. Figure 3c shows the conversion 
of flax fabrics to porous carbon fiber sheets after activation 
with NH3 and carbonization for use in supercapacitors (He 
et al., 2020). The structural diagram of the fabric surface 
is observed to be different during each stage, especially 
the pore structure that appears on the surface of the fab-
ric after carbonization, which provides a theoretical basis 
for improving its conductivity. The optimum surface area 
obtained was up to 1152 m2·g−1 with the maximum pore 
volume of 0.502 cm3·g−1, thus indicating the effectiveness 
of the method in preparing the porous carbon fibers that can 
be directly used as a part of the supercapacitor. In addition 
to the mentioned methods for the production of superca-
pacitors, the carbides from the waste hemp fibers were suc-
cessfully synthesized through KOH pre-treatment for sub-
sequent assembling symmetric supercapacitors (Mijailović 
et al., 2017).

Table 4 summarizes the performance of various super-
capacitors developed from bast textiles waste. The spe-
cific capacitance of supercapacitors assembled from the 

Table 3   Preparation methods 
and performances for adsorption 
materials

Material Method Activation/adsorbate Material form Refs.

Jute Carbonization H3PO4; ZnCl2/I2 Fibers (Chen et al., 2018)
Jute Modification H2O2, cationic polyacryla-

mide/sewage sludge
Fibers (Yang et al., 2018)

Flax Graft copolymerization Poly(acrylic acid)/water Yarns (Liu et al., 2014; 
Zhang et al., 
2013)



3756	 Environmental Chemistry Letters (2022) 20:3747–3763

1 3

carbonized waste bast fibers and nickel, with carbon nano-
tube as the electrode material, is noted to be 408 F·g−1, with 
the cycle stability reaching 100%, which indicates that the 
bast fibers have a significant application potential and devel-
opment prospect in the preparation of supercapacitors. Fur-
thermore, concerning the preparation method of the super-
capacitors, the development of flexible wearable electronic 
textiles could be promoted.

Future research direction of bast textile 
wastes

Given the above recovery methods and applications, bast 
textile wastes can also be quickly, cheaply, and effectively 
recovered for the following aspects in the future:

(1)	 Preparation of filaments: Bast textiles waste is rich in 
cellulose, making them an essential raw material for the 

preparation of cellulose. The prepared cellulose can be 
made into cellulose filaments by wet spinning, and the 
filaments can be made into new clothes by the weav-
ing process. In addition, cellulose filaments can also be 
combined with functional materials such as BaTiO3, 
carbon nanotubes, and Mxene to synthesize products 
with good piezoelectricity and conductivity properties, 
promoting the development and application of cellulose 
filaments in the field of smart wearables.

(2)	 Preparation of composite reinforcements: Bast fibers 
wastes can be made into 3D needle felts by a low-cost 
non-woven process and then transformed into com-
posites by resin transfer molding process. In addition, 
the thermoplastic fibers such as polypropylene fibers 
and polylactic acid fibers can also be combined with 
bast fibers wastes to make 3D needle felts, followed 
by the fabrication of the composites by the hot-press-
ing process. Moreover, the bast fibers wastes can also 
be used for spinning yarns, and the new fibers can be 

Fig. 3   Elementary diagrams of the preparation for supercapacitors. 
a Jute carbon material was produced by hydrothermal and chemical 
activation methods. Reprinted with permission of Springer Nature 
from Zequine et al. (2017). b Scanning electron microscope image of 
the carbonized jute. The material surface has a pore structure, which 

can improve its conductivity. Reprinted with permission of Springer 
Nature from Zequine et al. (2017). c The flexible porous carbon was 
prepared by the NH3 activation method, which was used to assemble 
supercapacitors. Reprinted with permission of Elsevier from He et al. 
(2020)

Table 4   Comparison and 
analysis of performances for 
super-capacitors made of 
different bast textiles waste

Material Electrolyte SC max [specific 
capacitance F·g−1]

Stability [cycles] Material form Refs.

Hemp 1 M H2SO4 122 – Fibers (Mijailović et al., 2017)
Flax 6 M KOH 204.1 100% (3000) Fabrics (He et al., 2020)
Jute 3 M KOH 408 100% (5000) Fibers (Zequine et al., 2017)
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added during the co-spinning process and subsequently 
woven, braided or stitched into 3D preforms for manu-
facturing composites.

(3)	 Preparation of catalyst: Most homogeneous catalysts 
are expensive and create pollution to the environment. 
In order to overcome these issues, the isomerization of 
homogeneous catalysts has attracted widespread atten-
tion in academia and industry. During this period, bast 
fibers with porous structures became a good choice for 
preparing the homogeneous catalyst.

	   Petit et al. (2018) prepared an isomerization cata-
lyst through the functionalization of sisal-derived acid 
carbon and organometallic [MoI2(CO)3(MeCN)2] 
complex. The process uses H2SO4 as a medium to 
generate the sisal fiber material and subsequently 
synthesize the required catalyst with organometallic 
[MoI2(CO)3(MeCN)2] complex, as shown in Fig. 4a. 
The method converts the waste sisal fibers into tech-
nical products, which markedly improves the utiliza-

tion value of these products. The succession experi-
ments indicate that this material exhibits high working 
efficiency and recyclability. However, the metal loss 
may occur during the preparation process. There-
fore, a new catalyst has been prepared by carbonizing 
the waste hemp textiles to obtain 3D porous carbon 
materials, then deposition the vertical MnO2 wires 
(v-MnO2) via a one-step hydrothermal method. The 
developed catalyst can be used for the glycolysis of 
COC6H4COOCH2CH2O with a transition rate of up 
to 98%, which is expected to bring considerable eco-
nomic benefits to the plastic recycling industry (Yang 
et al., 2017). Figure 4b, c presents the scanning elec-
tron microscope images of prepared 3D porous cata-
lyst materials. The surface of the material presents a 
tubular structure with vertical deposition of MnO2, thus 
indicating efficient recycling of the waste bast fibers in 
textile industries.

Fig. 4   Synthesis  and scanning electron microscope images of cata-
lysts prepared from bast textiles. a The steps of a catalyst prepared 
by acid char and metal-organic complex [MoI2(CO)3(MeCN)2] (Mo) 
functionalization. Reprinted with permission of John Wiley and Sons 

from Petit et al. (2018). b and c Scanning electron microscope images 
of 3D vertical MnO2 wires/hemp-derived carbon (3D v-MnO2/HDC) 
composite made by depositing v-MnO2 at different magnifications. 
Reprinted with permission of Elsevier from Yang et al. (2017)
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(4)	 Preparation of sensors: The sensor is equipment that 
converts the tested message into the required informa-
tion based on definite conditions that can satisfy infor-
mation propagation, machining, and memory. The 
flexibility and porous structure of bast textiles waste 
are a promising option for preparing strain sensors, gas 
sensors and biosensors.

He et al. (2019) prepared multifunctional reduced gra-
phene oxide/linen fabrics through a reduction and inhalation 
filtration process as CH4 gas sensors. Initially, the graphene 
oxide was converted into reduced graphene oxide using 
the Hummers' method, followed by the deposition of the 
reduced graphene oxide dispersion on the surface of the 
linen fabric to change its color to metallic black. The results 
indicate that the material has high sensitivity, reliability and 
feasibility and optimal moisture and air permeability during 
the synthesis process. This provides strong evidence that 
the material produced could be used as wearable intelligent 
devices in personal health care. A few studies also report 
high-permeable pressure sensors' development through the 
carbonization of knitted hemp fabrics (Liu et al., 2021). 
First, the hemp yarn is made into ideal knitted fabrics with 
a weft knitting machine. Subsequently, it is dried and car-
bonized in a tube furnace. The schematic of the graphite 
knitted hemp fabrics is shown in Fig. 5a. It can be observed 

that the knitted fabric becomes black, and the yarn becomes 
thinner after carbonization (Fig. 5b, c), which makes it pos-
sible to prepare the efficient pressure sensors. Finally, in 
order to study the conductivity of the graphite knitted hemp 
fabrics, they were cut into smaller rectangles (1.2  × 1 cm2), 
and external wires and silver paste were connected at both 
sides. Meanwhile, this assembly can light up light emitting 
diodes (LEDs) in Fig. 5d. Furthermore, the unpackaged 
graphite knitted hemp fabrics have the unique advantage of 
high moisture permeability, showing great potential for use 
as a human-wearable device (Fig. 5e). After exploration, 
this material allows complete perspiration, which provides 
a new direction for the preparation of comfortable wearing 
pressure sensors.

On the other hand, untreated textiles can also be made 
into sensors by suction filtration or carbonization. This can 
then reasonably infer that bast textiles waste can be coated or 
impregnated with 2D materials, including reduced graphene 
oxide, carbon nanotubes, and Mxene, to prepare the piezore-
sistive sensors in the future for monitoring the human body 
motion. In short, the recycling value of bast textiles waste 
could be improved by transforming it into a sensor.

(5)	 Preparation of electrode materials: The bast textiles 
waste can also be made into electrode materials after 
activation with CuCl2, KOH, or H3PO4, followed by 

Fig. 5   Transformation of  bast textiles into various sensors. a-c The 
production schematic diagram, picture and scanning electron micro-
scope image of graphite knitted hemp fabrics. Reprinted with permis-
sion of Elsevier from Liu et al. (2021). d and e The conductivity of 

graphite knitted hemp fabrics and schematic diagram of wearables 
and environmental systems. Reprinted with permission of Elsevier 
from Liu et al. (2021)
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carbonization. The resulted electrodes have the advan-
tages of low-cost and easy production.

(6)	 Preparation of papers and battery diaphragms: The cel-
lulose extracted from bast textiles waste can be made 
into battery diaphragms by electrospinning technology. 
This cellulose diaphragm has excellent immersion and 
high-temperature resistance, which has excellent poten-
tial for battery applications. At the same time, the wet 
laying process and the hot-pressing process can also be 
used to make cellulose into unique papers. This method 
has the merits of being green, fast and efficient, and the 
prepared paper has excellent washing resistance and 
tensile properties, making it a great option as packag-
ing paper. In short, the suggested recycling methods 
improve the economic value of bast textiles waste and 
reveal the direction for recycling textiles waste.

(7)	 Recycling of thermal energy: Bast textiles waste that 
can no longer be reused can be converted into ther-
mal energy for thermal power generation by burning. 
Research in this area can be strengthened in future stud-
ies to increase the variety of recycling methods for bast 
textiles waste.

Conclusion

The physical and chemical recycling methods of bast textiles 
waste and the applications of resulted products are reviewed. 
The waste bast fibers have the merits of moisture absorption, 
heat preservation and superior mechanical properties that 
can be used as raw materials for composite reinforcements. 
Moreover, high versatility of cellulose, nanocellulose and 
nanocrystalline cellulose can be extracted from waste bast 
fibers by double asymmetric centrifugation, alkaline, acid-
base, and acidification. Meanwhile, the porous structure of 
bast textiles waste makes them a suitable raw material for 
the preparation of absorbents. After treatment by chemical 
activation and carbonization, it can be used for the adsorp-
tion of heavy metal ions, wastewater treatment, and gas sen-
sors. Bast textiles waste is also useful for preparing electrode 
materials and supercapacitors with excellent conductivity 
and cycle stability. These characteristics allow the applica-
tion of bast textiles waste in flexible electronic wearables. 
Although the studies on bast textiles waste have mainly 
been reported, the optimum recycling of bast textiles waste 
is scarcely reported, and the commercialization potential of 
the resulted product is still unknown. Therefore, the recy-
cling process of bast textiles waste, the resulting products' 
properties, and the overall process's economic feasibility 
need to be further addressed.
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