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Abstract
Nanomaterials are now widely used in various industries such as automotive, biomedical, cosmetics, defense, energy, and 
electronics, due to their unique properties. However, this ubiquitous presence of nanomaterials in the environment is induc-
ing possible major issues of toxicity for humans. Indeed, nanomaterials can elicit toxicity in human cells. Here, we review 
nanomaterial exposure to humans, with focus on impact on human cells and animal models. We discuss mainly nanomaterials 
made of silver, gold, silica, quantum dots, iron oxides, zinc oxide, and titanium dioxide. There is evidence that nanoma-
terials accumulate in the heart, liver, spleen, kidney, and brain by including ingestion, dermal penetration, inhalation, and 
intravenous.
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Introduction

Over the twentieth and twenty-first centuries, the field of 
nanotechnology has expanded, which in turn has accelerated 
the rise in number of novel nanomaterials being industrial-
ized. The establishment of these new nanomaterials is likely 
due to their exceptional, size-reliant physical and chemical 
properties. Nanotechnology is undoubtedly performing a 
crucial part in modernization and the economy for many 
industries. Nanomaterials are featured according to their 
explicit attributes such as surface charge, surface area, sur-
face coating, particle morphology, and degree of agglomera-
tion (Jeevanandam et al. 2018; Subhan et al. 2021). Never-
theless, it has been shown that those modifications within 
the essential characteristics of the bulk material form the 
base in place of a upper size limit. Nanomaterials can be 
synthetically manufactured for commercial purposes, poten-
tially be an unintended by-product, or, instead, materialize 

naturally. Nanomaterials exist in natural surroundings that 
then discover a path to enter the human body or impact 
human health as they make contact with humans through 
direct or indirect methods (Malakar et al. 2021).

The latest research has concentrated on improving and 
increasing the viability of nanotechnology. As a result, 
improvement in the utilization of nanomaterials has 
increased exponentially, intensifying their existence in vari-
ous natural resources, water, air, and soil (Saeedi et al. 2019). 
The increased usage of nanomaterials is reflected in the sig-
nificance of exploring their possible impact on human health 
over the past decade. Submicron-scale particles are ultrafine 
particles that are typically freed within the surrounding area 
through fossil fuel combustion or industrialized emissions, 
although engineered nanomaterials can be produced as the 
result of controlled practices (Li et al. 2016). This category 
of nanomaterials could have detrimental impacts on humans, 
including inflammation, allergy, asthma, genetic mutation, 
and signaling pathway intervention. Furthermore, they could 
harmfully damage cardiovascular and respiratory systems 
(Li et al. 2016). Engineered nanomaterials have turned out 
to be fascinating in numerous applications because of the 
special abilities imparted by their nanoscale size. Both their 
commercial manufacture and need are on the upsurge (Khan 
et al. 2019). Along with the intensified need for engineered 
nanomaterials in consumer goods, concerns about their 
impact on human health and surroundings have been ampli-
fied. Data on the number of engineered nanomaterials and 
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their allocation in several products is non-existent (Piccinno 
et al. 2012). An integral part of the risk assessment of engi-
neered nanomaterials involves their quantity, distribution, 
product life cycle, and product outcomes (Piccinno et al. 
2012). Since nanomaterials can be toxic, risk evaluations to 
humans and their surroundings are highly significant as their 
need continues to rise.

This study discusses not only the integration of research 
on the role of engineered nanomaterials and their potential 
impact on human health, but also current knowledge gaps. 
Most investigations corresponding to the toxicity of engi-
neered nanomaterials have been driven by in vitro or in vivo 
studies utilizing animal models. Consequently, most of the 
exploration on toxicity can obliquely pertain to humans 
(Savage et al. 2019). The main subject in this paper is the 
impact of titanium dioxide, carbonaceous, silver, and silica 
nanoparticles on different cell lines and animal models. This 
review summarizes the various categories of engineered 
nanomaterials. The literature has been summarized, based 
primarily on potential human exposure and human health 
impacts, reflecting on exposure routes including air, water, 
and food, and regarding agronomic crops that accrue nano-
materials from the soil. The influence of nanomaterials on 
human health will be carefully evaluated. The predominant 
knowledge gaps will be discussed relative to prospective 
options for the future.

This article is an abridged version of the chapter by 
Asmatulu et al. that will be published in the book series 
Environmental Chemistry for a Sustainable World (Abedin 
et al. 2021).

Production of engineered nanomaterials

Synthetic nanomaterials are produced as both intended and 
unintended nanoscale materials through human intervention. 
Nevertheless, the annual transition of synthetic nanomaterial 
into the environment is considerably much lower than that of 
natural nanomaterial and is expected to release about 10.3 
megatons per year into the atmosphere (Shukla and Iravani 
2017). Although synthetic nanomaterials are tiny in volume, 
in contrast to natural nanomaterials, they are still a hazard 
to their surroundings and are referred to as contaminants. 
Synthetic nanomaterials are generally grouped as incidental 
nanomaterials along with engineered nanomaterials (Bar-
houm et al. 2022). The latest report summarizes synthetic 
nanomaterials that could be freed into urban surroundings 
from different sources (Amenta et al. 2015).

Nanomaterials manufactured for marketable intent are 
designated as engineered nanomaterials. They are used 
extensively and encompass telecommunications, informa-
tion technology, agrochemicals, personal care products, and 
energy fields (Aslani et al. 2014; Donia and Carbone 2019; 

Resnik 2019). Furthermore, their need is growing every day, 
along with further engineered nanomaterials are making 
their path toward numerous water sources. Engineered nano-
materials are utilized in practically every area of technology, 
from quantum computing to agriculture. They can be com-
prehensively categorized depending on their morphology—
0D (quantum dots), 1D (nanorods), 2D (graphene), or 3D 
(fullerene)—as well as their composition, including carbon 
and metallic established nanomaterials (Paramasivam et al. 
2021). The applications and characteristics of different engi-
neered nanomaterials are summarized in Table 1.

Morphology‑based engineered nanomaterials

The categorization of nanomaterials is simply depend-
ent on the mobility of an electron. Non-porous palladium 
nanoparticles are a representation of 0D, for 2D graphene 
nanosheets, silver nanorods along with polyethylene oxide 
nanofibers represent for 1D as well as tungsten oxide nanow-
ires and zinc oxide nanowires denote for 3D nanomaterials, 
correspondingly. The electron is usually caught in dimen-
sionless space in 0D nanomaterials, encompasses a uni-
directional space for 1D nanomaterials, and encompasses 
bi-directional and multi-directional space in 2D and 3D 
nanomaterials, respectively (Korotcenkov 2020). 0D along 
with 1D nanomaterials are prevalent and have been manu-
factured in massive quantities for commercial purposes. 
Two-dimensional nanomaterials represent a comparatively 
novel and fascinating high member among various nano-
materials (Zhang 2015). Graphene is a familiar instance of 
2D nanomaterials. Two-dimensional nanomaterials, along 
with their nanocomposites, have presented outstanding 
chemical, physical, electronic, and optical attributes, which 
have helped their advanced usage in energy, bioimaging, 
catalysis, anti-bacterial, drug delivery, sensing, and therapy 
applications (Cai and Yang 2020). Three-dimensional print-
ing is a manufacturing technology established on an auto-
mated computerized model that builds a 3D structure using 
a layer-by-layer discrete-cumulative process. Three-dimen-
sional macrostructures have been created by self-assembly 
of 2D graphene oxide as well as 1D carbon nanotubes, and 
research has identified that 3D microstructures reveal more 
advanced adsorption properties than emerging and conven-
tional contaminants (Asmatulu et al. 2018, 2020).

Composition‑based engineered nanomaterials

Engineering nanomaterials, grouped by their composition, 
may be produced and originate from carbon bases such as 
carbon nanotubes, organic nanomaterials such as lipid or 
polymer nanomaterials, along with metals similar to zero-
valent metalloids, for instance cadmium sulfide nanorods 
(Luo et  al. 2021). Gold and gold-based nanomaterials 
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are practiced for detection. Metal and metalloid oxides, 
sulfides, carbonates, and carbides are ceramic nanomateri-
als. The nanomaterials mentioned above can be chemically 
heat resistant, inactive, and feasible for a wide range of 
operations. Electronics and Chipset exploit semiconductor 
nanomaterials because of their broad bandwidth. Semi-
conductor nanomaterials comprise tremendous computing 
power for mobile devices. These engineered nanomaterials 
can also be made by applying both metals and metalloids. 
Semiconductor nanomaterials are used in photoelectron 
formation, photovoltaics, and photocatalysis along with 
hydrogen production. Semiconductor nanomaterials are 
manufactured in various morphologies differing from 0 
to 3D configurations since this structure can support tune 
across the bandgap (Huntingford et al. 2019; Pang et al. 
2021).

Carbon-based nanomaterials are composed of carbon 
nanotubes that have a thermal conductivity similar to dia-
monds along with elevated electrical conductivity. Carbon 
nanotubes are applied in hydrogen fuel cell components, 
pharmaceuticals, and microelectronics. However, there are 
worries over the health consequences of exposure to car-
bon nanotubes, which might be similar to the exposure to 
amosite. Graphene oxide nanoparticles, oxidative by-prod-
ucts of graphene, have been shown to be a recently estab-
lished and more fascinating nanomaterial for the biomedical 
industry. Even though the expectation of many applications 
for graphene oxide fuels has the potential to be further devel-
oped, concerns regarding its biosafety for human exposure 
consequences remain. The latest review has methodically 
outlined the toxicity studies of graphene oxide both in vitro 
and in vivo (Fadeel et al. 2018; Qi et al. 2020; Wieszczycka 
et al. 2021). One more group of carbon-based nanomaterials 
are polymeric organic molecules, similar to polylactic acid, 
cellulose, chitosan, polyhydroxyalkanoate, and polyacryloni-
trile. These nanomaterials are mainly applied in the medical 
industry because they are biocompatible and biodegradable 
(Kolangare et al. 2019).

Commercially manufactured nanomaterials could be 
released within the aquatic environment at the fabrication 
phase or end of its life cycle as waste. These engineered 
nanomaterials could gradually travel to the groundwater and 
surface of the surrounding environment, or persist in the 
soil to later be conducted through plants or animal-based 
food goods (Nagar and Pradeep 2020). Our knowledge of 
the human health risks associated with engineered nano-
materials in different environmental locations is largely 
insufficient. There are several reasons for this, including 
nanoscale size and transient nature of the material, along 
with dependable overseeing devices that limit the perception 
of the engineered nanomaterials’ effect as contaminants in 
various water bodies, soil, and air. The above-mentioned 
knowledge gaps must be discussed to understand discharge 

and exposure routes of engineered nanomaterials and their 
lasting health impact.

Nanomaterial exposure and human health 
impacts

Nanotoxicology is a subset of nanomaterial toxicology and 
primarily concerns the toxic effects of exposure to nanoma-
terials. Because the characteristics of material at nanoscale 
differ, the modifications can produce a surge in effects 
exclusive to a size-specific regime entirely missing from 
bulk materials (Laux et al. 2018; Mourdikoudis et al. 2018). 
Studies on the impact of natural nanomaterials on human 
health are lacking, and maximum research has focused on 
engineered nanomaterials. Cronin et al. provided the details 
of engineered nanomaterials on the human immune system 
and provided an overview of nanosafety valuation (Cronin 
et al. 2020). The article mentioned above predominantly 
concentrates on exposure pathways of numerous nanoma-
terials from air, water, and food, where nanomaterials are 
intentionally added, or nanomaterials available in soil are 
ferried up through food products as primary parameters 
(Bundschuh et al. 2018). The life cycle of nanomaterials 
in the human body, their dwelling times, and their fate to 
various human organs could be distinct and are reliant on 
the exposure route of the physical and chemical traits of 
the nanomaterials (Gupta and Xie 2018). The large volume 
of manufacturing and demanded usage of engineered nano-
materials has elevated several concerns regarding their life 
cycle as well as developing toxicity to human health.

Exposure of engineered nanomaterials to humans

Due to distinctive characteristics related to their size, engi-
neered nanomaterials have caused a surge in their use in 
industrialized applications, which in turn has intensified 
the worries relative to their safety and impact on human 
health. The need for engineered nanomaterials is thriving 
among consumers as well as in commercial products such as 
food additives, water purification, soil cleaning, sunscreen, 
biocides, supplements, shampoos, agriculture, energy pro-
duction, feed, veterinary drugs, packaging, and informa-
tion technology (Martirosyan and Schneider 2014; Kaphle 
et al. 2018; Yata et al. 2018; Rai et al. 2019). Even though 
common nanopesticides on the market exceed the 100-nm 
upper size limit, as nanotechnology exploration develops, it 
is conceivable that increasing agriculture-affiliated products 
will fall into the nanoscale size range, lower than 100 nm 
(Chhipa 2017). This could drive the trophic transposition 
of engineered nanomaterials to humans along with the 
potentiality of biomagnification (Judy et al. 2011). In addi-
tion, engineered nanomaterials could end up in agricultural 
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territories throughout their aggregation in sludge during 
wastewater treatment (Madhura et al. 2019).

The exposure of engineered nanomaterials to humans 
develops via several pathways such as inhalation, ingestion, 
dermal penetration, and injection. Figure 1 shows a sche-
matic of the various sources of engineered nanomaterials 
and their routes of exposure to humans.

Inhalation is the main pathway of exposure to humans; 
consequently, the existence of nanomaterials in the air 
poses a substantial health risk (Helland et al. 2008). The 
recommended threshold exposure limit depends on the 
density of the nanoparticles. Nanoparticles in the urban 
air can be multiplied in the nanomaterials manufacturing 
and processing industries, thus becoming a severe organi-
zational safety problem. It is assessed that nanomaterials 

are in approximately 3000 products of many applications 
across various industries (Heinz et al. 2017). Human skin 
has exclusive barrier characteristics that prevent the pen-
etration of titanium dioxide nanoparticles into the skin. 
Various studies have shown that titanium dioxide nanopar-
ticles cannot penetrate the skin, even though their size is 
less than 100 nm. However, other studies have found that 
titanium dioxide nanoparticles are able to penetrate the skin. 
However, some of these do not reveal toxicity in particular 
surroundings.

Engineered nanomaterials including titanium dioxide 
(80%), zinc oxide (70%), silver (20%), carbon nanotubes, 
and graphene are known to exist in exclusive skincare and 
baby products, and thus can be exposed to humans directly 
when used onto the skin. There is growing controversy over 

Fig. 1   Examples of possible sources of products containing engi-
neered nanomaterials, and modes of human exposure. The one-of-a-
kind size-subordinate physicochemical properties of nanoparticles 
frequently advance their applications in numerous items; nonetheless, 
these equivalent special properties additionally lead to extraordinary 
physiological reactions in living frameworks by communication with 
these materials. Nanoparticles enter the body by crossing one of their 
external layers, either the skin or lungs or digestive system. How well 

they move from outside to inside will rely upon the particles’ specific 
physical and chemical properties. TiO2: Titanium dioxide; SiO2: Sili-
con dioxide; Ag: Silver; ZnO: Zinc oxide; Al2O3: Aluminum oxide; 
Sn: Tin; Au: Gold; Pt: Platinum; CeO2: Cerium dioxide; HCT: Hema-
tocrit; LED: Light-emitting diodes; Se: Selenium; Ca: Calcium; Mg: 
Magnesium; SWCNT: Single-walled carbon nanotube; MWCNT: 
Multi-walled carbon nanotube
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this possibility because of the route of engineered nanomate-
rials over the skin barrier (Alfei et al. 2020). It is commonly 
believed that metallic engineered nanomaterials penetrate 
the skin and move to the basal layers. Since the skin’s pores 
are tiny, it is evident that even the smallest particles can pass 
through easily. Zinc oxide nanoparticles are utilized in the 
food industry, silver nanoparticles are utilized in the apparel 
industry for antiseptic and deodorization products, and iron 
oxide nanoparticles are applied in dyes and jewelry waxing 
and can be directly exposed to the skin during use (Ajdary 
et al. 2018; Malakar et al. 2021).

Carbon nanotubes have applications in metal composites, 
supercapacitors, organic electrolytes, field emission displays, 
ionic liquids, and lithium batteries. In addition, suitably 
functionalized carbon nanotubes are also being examined for 
drug delivery systems and protein transporters. Furthermore, 
they have the potential to be used in nanoelectronics tech-
nology (Bhatia 2016). Graphene-based products are being 
tried in applications using polymer composites, metal alloys, 
printed electronics, flexible transparent conductors, filtration 
systems, multifunctional coatings, oil, etc. (Faruque et al. 
2021). The silver nanoparticle coating has been employed 
in food as an anti-microbial agent along with cellulose pads 
which are generally incorporated into the containers of meat 
products (Ahari et al. 2021). The silver nanoparticles are 
additionally utilized in water purifiers, fabrics, bed linens, 
toothpaste, shampoos, deodorants, kitchen appliances, and 
nursing bottles. Consequently, humans can originate direct 
contact with engineered nanomaterials through food, phar-
maceuticals, water filtration, household commodities, cos-
metics, etc., leading to oral, dermal penetration, and intrave-
nous exposure pathways (Seltenrich 2013; Halfar et al. 2021; 
Kannan and Vimalkumar 2021).

Another exposure pathway is the gastrointestinal tract 
containing food and drink consisting of nanomaterials. For 
instance, food-grade titanium dioxide nanoparticles may 
consist of some nano-size particles. They are practiced as 
oxygen sensors in food packaging. The food dye E171 con-
tains titanium dioxide nanoparticles at concentrations within 
1–5 µg/mg. These nanoparticles have also been discovered 
in candies, gums, dressings and seasonings, non-dairy oint-
ments, and nutritional enhancements. In addition, titanium 
dioxide and magnesium oxide nanoparticles are applied as 
food preserving agents and facilitate food handling (Ran-
jan and Ramalingam 2016). Furthermore, titanium dioxide 
nanoparticles are used as a colorant in confectionery food 
items and non-dairy creamers. The quantity of titanium 
dioxide nanoparticles ingested is predicted to be approxi-
mately 0.2–0.7 mg/kg body weight/day in the USA as well 
as approximately 1 mg/kg body weight/day in the United 
Kingdom and Germany (Ropers et al. 2017). Winkler et al. 
reviewed the knowledge gaps in investigating the influences 
of titanium dioxide nanoparticles as food additives and 

found that the increased exposure of this food additive might 
impact kids. In the USA, the evaluated nutritional consump-
tion of titanium dioxide nanoparticles was discovered to be 
1–2 mg/kg body weight/day for kids below ten years of age 
(Winkler et al. 2018). Nevertheless, research was lacking to 
determine the upper consumption levels for titanium dioxide 
nanoparticles as a food additive; additional interpretation is 
required to concentrate on this uncertainty.

The Scientific Committee on Food (SCF) of the European 
Food Safety Authority (EFSA) has specified a consumption 
limit of 20–50 mg of silica nanoparticles per 60 kg person 
(Younes et al. 2018). Silica nanoparticles have been identi-
fied in the creation and repository of processed food, and 
it was noticed that about 43% of amorphous silica is in the 
nanoscale range (Murugadoss et al. 2017). Silica is perhaps 
best recognized in anti-caking agents, anti-foaming agents, 
and refining agents in food. Silica particles are also identi-
fied in instant soups, spices, and milk powder at a size of 
50–200 nm. Additionally, silica is used as a nanofiller in 
food wrapping and could be transmitted when it comes in 
contact with food (Rizvi et al. 2010). Furthermore, silica is 
broadly exploited in moisturizers and ointments.

Consequently, the oral and dermal penetration, together 
with the venous exposure of humans to silica nanoparticles, 
is undoubtedly inevitable. Employees in the manufacturing 
production of these particles are also vulnerable to exposure 
by respiration. The medical application of engineered nano-
materials has shown promising outcomes in fighting illness; 
however, it may likewise have undesirable effects. The rising 
usage of nanopesticides in food production means that these 
impurities can bioaccumulate in soil and food plants that 
can be a possible cause of exposure when ingested. Human 
ingestion of agricultural foods can provide exposure to sig-
nificant levels of nanomaterials, where nanomaterials exist 
in soil could finish up as the final by-product, counting of 
meat and dairy products along with their toxicological con-
tacts continue to be unclear (Rasmussen et al. 2010).

Circulation and redistribution of engineered 
nanomaterials in humans

The different exposure routes such as inhalation, inges-
tion, and dermal penetration carry external nanomaterials 
toward the human body and, due to their size, can also dis-
turb organisms at the cell level, resulting in types 1, 2, and 
3 cell death. It is predicted that the size, charge, and shape 
of nanomaterials can increase the rate of transference across 
cell membranes by a factor of 60. Within the pH range of 
human cells, numerous nanomaterials are able to dissolve 
and discharge metal ions. Nanomaterials are not simply 
found in the nasopharyngeal zone; they instantly reach the 
lungs, increasing the retaining time of nanomaterials in the 
human body. When nanomaterials are in the lungs, they can 



2515Environmental Chemistry Letters (2022) 20:2509–2529	

1 3

pass the blood-air-tissue barrier and penetrate through to the 
bloodstream, likely impacting other organs in the body. The 
dose of nanomaterial by inhalation can similarly induce a 
severe response, potentially leading to thrombosis, myocar-
dial ischemia, and vascular dysfunction. Inhaled nanomate-
rial can dwell in the body for three or more months and is 
excreted out of the body by urine (Miller et al. 2017). The 
large surface area of the gastrointestinal tract can endorse the 
adsorption of nanomaterials following their transformation 
within the bloodstream. Additionally, ingested nanomaterial 
can dissolve in the stomach’s acidic pH, and the discharge 
of dissolved ions like silver and cadmium nanoparticles can 
lead to toxic consequences (Huang and Tang 2021).

The size of nanomaterials changes their adsorption rate, 
as well as lesser particles that can be conducted upward 
by endocytosis. Once these nanomaterials penetrate the 
bloodstream, all of them observe an identical pattern in the 
inhalation exposure route and generate chaos in the organ 
structures at the cellular and subcellular levels by producing 
chemically responsive modes. Correspondingly, when nano-
materials penetrate through the skin, the penetration rate into 
the bloodstream depends on the size, as the smaller nanoma-
terials permeate more easily and influence separate organs 
of the body. Exploration has indicated that the nanoscale 
size of nanomaterials can streamline their effortless at con-
veyance in the bloodstream and may disturb organs such as 
kidneys, liver, and lungs; likewise they may be present in the 
breast milk of breastfeeding mothers (Attarilar et al. 2020). 
Moreover, their tiny nano-size allows them to cross the 
blood–brain barrier along with exposure similarly derived 
in neurotoxicity.

Impact of engineered nanomaterials on human 
health

Detailed observations on how engineered nanomaterials 
impact human health are limited. Moreover, there is a lit-
tle data on employee exposure in industries operating with 
nanomaterials. Therefore, most investigations in this field 
have been performed on animal models. However, risk fac-
tors in humans are ruled by exposure level, exposure path-
ways, and the size, type, distribution, reactivity, and shape 
of the engineered nanomaterials. For employees in condi-
tions of continuous inhalation exposure, it was observed that 
titanium dioxide nanoparticles displayed a higher indicative 
no-effect level (INEL) spell out of 17 μg/m3, followed by 
fullerenes. The impact of engineered nanomaterials taken in 
through respiration depends on their size, shape, characteris-
tics, breathing rate, etc. (Mikkelsen et al. 2011). Engineered 
nanomaterials in the size range of 10–100 nm collect in the 
alveolar region, while engineered nanomaterials smaller 
than 10 nm can aggregate in the thoracic zone. For long 

multi-walled carbon nanotubes, the clearance mechanism 
against the lung may sink (Sinis et al. 2018).

Liao et al. monitored 124 engineered nanomaterials-oper-
ating employees along with 77 unexposed employees for six 
months, stating that employees exposed to carbon nanotubes 
revealed a variation in anti-oxidant enzyme movements for 
glutathione (GSH) peroxidase-1 (GPX-1) along with lung 
behavior, and variations were observed in the anti-oxidant 
enzyme activity for copper-zinc superoxide dismutase (SOD) 
and cardiovascular markers. This investigation specified that 
a decreased grade of serum CC16, as well as lung behavior, 
in employees made them vulnerable to nanomaterials, which 
was undoubtedly consistent with past investigations (Liao 
et al. 2014). Furthermore, studies have exhibited that nano-
materials could intrude among the epigenetic mechanism, 
which incorporates adaptation in gene expression grades 
without modifications in the genuine DNA itself over meth-
ylation, histone tail adaptation, or microRNA mechanisms 
(Stoccoro et al. 2013; Smolkova et al. 2015). The epigenetic 
adjustment has been correlated with cancers, cardiovascular 
complexities, physiological disturbances, autoimmune dis-
orders, neurodegenerative diseases, and psychiatric diseases 
(Stoccoro et al. 2013). Some detrimental outcomes induced 
by common engineered nanomaterials during in vivo and 
in vitro studies are explained below.

Silver nanoparticles

Nanomaterials smaller than 100 nm can penetrate skin cells, 
those close to 40 nm can move within nuclei, and those less 
than 35 nm can move across the blood–brain barrier. Addi-
tionally, catalytic movement, adsorption rates, and binding 
capacity may be enhanced in smaller nanomaterials, thereby 
influencing the dwelling time in the body (Yetisgin et al. 
2020). Sahu et al. illustrated that size is the most decisive 
aspect of the cytotoxicity and genotoxicity of silver nano-
particles in human liver cells (Sahu and Hayes 2017). Prior 
investigations have demonstrated that oral exposure to silver 
nanoparticles is able to direct their transference to numer-
ous areas, for example, to the spleen, lungs, bone marrow, 
kidneys, liver, parathyroid, thyroid, brain, skin, eyes, heart, 
muscles, small intestine, stomach, prostate, tongue, blood, 
teeth, duodenum, and pancreas. Investigations with albino 
mice given dose-reliant silver nanoparticles orally for 
21 days revealed weight loss and adversely impacted micro-
villi and intestinal glands, leading to total reduced ingestion 
by the intestine. An in vivo study with rats proved that sil-
ver nanoparticles are able to be passed on to the offspring, 
along with the oral administration of silver nanoparticles in 
dosages higher than 100 mg/kg of body weight/day, which 
might produce oxidative stress in hepatic tissue in the time 
of pregnancy (Gaillet and Rouanet 2015).
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In a separate research study, the hepatotoxicity and geno-
toxicity of silver nanoparticles were discovered in female 
albino rats (El Mahdy et al. 2015). It was found that expo-
sure to silver nanoparticles produced sinusoidal development 
as well as leukocytosis concerning all in vivo models. It 
was found that silver nanoparticles could undoubtedly be 
transmitted to the offspring via the lungs, kidneys, brain, and 
liver, with high levels presenting when the parent rat orally 
ingested citrate-covered silver nanoparticles close to 7.9 nm 
at a concentration of 250 mg/kg/day (Ema et al. 2017). The 
silver nanoparticles generated phosphorylation of histone H3 
at serine 10 (p-H3s10), which could be utilized to assess the 
toxicity of silver nanoparticles. The authors found that silver 
nanoparticles integrated within the cells along with the ions 
discharged were dependable for the phosphorylation (Zhao 
and Ibuki 2015). The DNA destruction through engineered 
silver nanoparticles can be explored over the CometChip® 
single-cell array platform (Watson et al. 2014). This inves-
tigation reported DNA destruction in TK6 cells by silver 
nanoparticles at a concentration of as little as 5 μg/ml, which 
is disturbing considering that silver nanoparticles are being 
utilized in anti-microbial products along with elevating the 
shelf life of food. At a concentration of 20 μg/ml, silver 
nanoparticles shortened TK6 cell endurance to 27%, con-
ceivably as a result of dysregulation of Bax and Bcl-2 genes 
(Watson et al. 2014).

Organic preservatives in silver nanoparticles have been 
shown to regulate the toxicity and stability of engineered 
nanomaterials. In general, engineered nanomaterials with a 
positive surface charge may rapidly pass into cells by way 
of electrostatic attraction, resulting in a long retention time 
in the human body. Engineered nanomaterials can similarly 
cause conformational modifications in the bound protein 
along with influencing its operational functions and induc-
ing diseases such as amyloidosis. The surface charge change 
can similarly alter additional features, such as aggregation 
along with hydrodynamic diameter. Transitions in surface 
traits could disturb the interaction of nanomaterials with 
cells, tissues, and organs that handle their adsorption. The 
permanency of engineered nanomaterials in the human body 
may enhance the dwelling time of nanomaterials as well as 
increase the toxic effects because of deferred discharge (Li 
et al. 2021).

Carbon nanotubes and graphene

Carbon nanotubes have been involved in considerable exam-
ination because of their unique physical fiber, such as struc-
tural and chemical components, and they are foreseen to be 
broadly utilized in different industries designed for medi-
cine and electronics. In addition, there have been concerns 
about safety issues involving carbon nanotubes because of 
their insolubility in the lungs. Mangum et al. found that 

single-walled carbon nanotubes could produce scratches 
and interstitial infection in rats within 7–90 days (Mangum 
et al. 2006). Gomes et al. applied carbon materials such as 
multi-walled carbon nanotubes, carbon xerogels, and acti-
vated carbon to synthesize platinum catalysts, which were 
applied using the aqueous aniline solvents approach through 
catalytic air humid oxidation. The synthesized catalysts 
and materials were investigated using various procedures, 
including scanning electron microscopy and transmission 
electron microscopy (Gomes et al. 2004).

Carbon nanotubes produce the same detrimental conse-
quence as asbestos, such as mesothelioma, cancer, pulmo-
nary inflammation, and fibrosis. It has been described that 
the toxicity enforced by carbon nanotubes is conditioned 
based on rigidity, route, surface functionalization, method 
of dispersion, size, impurities, and exposure time. Numerous 
studies have mentioned that longer carbon nanotubes pro-
duced more significant toxicity than shorter ones (Sharma 
et  al. 2016). In mice, multi-walled carbon nanotubes 
5–15 μm in length caused fibrosis, considering that shorter 
lengths in the range of 350–700 nm brought about lower tox-
icity. Moreover, long multi-walled carbon nanotubes induced 
inflammation along with genotoxicity (Sharma et al. 2016). 
The functionalization of multi-walled carbon nanotubes 
contributes to lowering toxicity. It was determined that car-
boxylate-functionalized multi-walled carbon nanotubes did 
not create an inflammatory response. However, substantial 
cationic functionalization instigated pulmonary fibrosis in 
a mouse model (Orecchioni et al. 2014). It was described 
that agglomeration rather than the net charge on the surface 
of multi-walled carbon nanotubes derived from functionali-
zation is necessary for considering the reduced toxicity of 
multi-walled carbon nanotubes (Allegri et al. 2016).

The existence of either a carboxyl or amino group less-
ened toxicity, establishing that the degradation is inde-
pendent of the net charge on the surface of multi-walled 
carbon nanotubes. It was further discovered that surface-
functionalized multi-walled carbon nanotubes displayed a 
more considerable inclination of agglomeration than pris-
tine multi-walled carbon nanotubes, which could mean a 
greater reduced toxicity (Allegri et al. 2016). The excellent 
mortality rate and malignant mesothelioma were discovered 
in all rat models made vulnerable to multi-walled carbon 
nanotubes by intraperitoneal injection. It was perceived 
that lengthier carbon nanotubes illustrated greater toxicity 
along with amplified curvature, which is correlated with 
lower toxicity (Rittinghausen et al. 2014). Bhattacharya et al. 
introduced a technique for inflammation pathways impacted 
by carbon nanotubes (Bhattacharya et al. 2013). It was rec-
ommended that lengthened carbon nanotubes resulted in 
activation of nicotinamide adenine dinucleotide phosphate 
(NADHP) oxidase in macrophages, activating reactive oxy-
gen species generation. However, short carbon nanotubes 
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were attributed to the macrophages and caused lysosomal 
destruction resulting in mitochondrial damage and reactive 
oxygen species creation (Bhattacharya et al. 2013).

Instillation of two categories of multi-walled carbon 
nanotubes (Mitsui-7 and NM-401) into Muta-mouse adult 
females indicated enduring fibrotic lesions in the lungs after 
90 days of exposure. NM-401 triggered DNA destruction 
with Mitsui-7, and the DNA destruction was much lower 
extent. These categories of carbon nanotubes were straight 
and varied in length and diameter; nevertheless, the surface 
area for NM-401 was smaller than that for Mitsui-7. Both of 
these directed to modifications in gene expression correlated 
alongside carcinogenic transfiguration (Rahman et al. 2017). 
It ought to be distinguished, those numerous constraints 
may affect experimental toxicity outcomes in several forms. 
Some specifications consist of the strain of mice, category 
of exposure, dosage, and frequency of test sample selection 
after exposure (Rahman et al. 2017). It was identified that 
multi-walled carbon nanotubes functionalized along with 
carboxylic groups for a diameter wider than 40 nm did not 
influence the cell endurance of macrophages, considering 
that those alongside an equivalent length but diameter in the 
range of 15–40 nm displayed confined cytotoxicity, which 
denotes that cytotoxicity increases along with a decrease 
in diameter when the lengths are equivalent (Allegri et al. 
2016).

Graphene nanosheets were recommended as a supple-
ment in scaffoldings for tissue engineering to strengthen 
cell accouterment/propagation and were also applied in 
photothermal cancer therapy along with drug delivery. The 
size-reliant cytotoxicity of degraded graphene oxide nano-
particles on human mesenchymal stem cells was investigated 
by applying the fluorescent diacetate assay (Akhavan et al. 
2012). It was noticed that the degraded graphene oxide nano-
particles along an average lateral dimension of 11 ± 4 nm 
revealed low cell vitality at an accumulation of 1 μg/ml after 
1 h, considering that degraded graphene oxide nanosheets 
along an average lateral dimension of 3.8 ± 0.4 μm displayed 
substantial cytotoxicity at a much more significant accumu-
lation of 100 μg/ml. For the degraded graphene with an aver-
age lateral dimension of 11 ± 4 nm, the vitality of all the 
cells was eradicated after 24 h at an accumulation of 100 μg/
ml (Akhavan et al. 2012). This specifies that the nano-sized 
degraded graphene is more toxic than that at the micron 
level and exhibits dose-reliant cytotoxicity. It was generally 
recognized that graphene oxide nanosheets are more toxic 
than multi-walled carbon nanotubes (Hu et al. 2011). The 
performance through which graphene oxide nanosheets drive 
cytotoxicity is by interruption of the cell membrane at the 
initial contact of the cell with the graphene oxide; hence, 
the cytotoxicity is separated from the incubation period with 
cells in vitro. It should be seen that graphene oxide nano-
particles control high affinity concerning protein absorption 

along with a layer of protein that could mollify graphene, 
thereby shortening its toxicity (Hu et al. 2011).

Silica nanoparticles

It was realized that silica nanoparticles almost 22.5 nm 
and 56.9 nm in diameter brought lessened FE1 cell vital-
ity after 24 h of exposure, correlating to nanoparticles of 
average diameters of 237.5 nm and 2045.4 nm (Decan et al. 
2016). The intratracheal silica particles were predominantly 
cleansed from the lungs, degrading their opportunity to 
cause a detrimental influence on this organ. Consequently, 
silica nanoparticles have demonstrated lower toxicity than 
alternative nanomaterials. Silica nanoparticles have been 
shown to produce epigenetic transformations, including 
hypermethylation of apoptosis-corresponding genes within 
human bronchial epithelial cells as well as hypomethylation 
of keratinocyte cell lines when exposed to 15-nm silica par-
ticles (Mebert et al. 2017). A mutagenic response to silica 
nanoparticles 7.172 nm and 7.652 nm in size was notified 
for mouse lymphoma cell lines at 100 and 150 μg/ml (Demir 
and Castranova 2016). The CometChip® platform review 
was used to examine the toxicity of amorphous silica nano-
particles, and minor DNA destruction was detected employ-
ing this test trial for TK6 cells, except the outcome was not 
statistically significant (Watson et al. 2014).

Furthermore, it was revealed that there was no reduc-
tion in the metabolic movement of TK6 cells when they 
were exposed to silica nanoparticles (Watson et al. 2014). 
Although the toxicity of silica nanoparticles is universal, 
here there was less detection. Liangjiao et al. showed that 
silica nanoparticles demonstrated toxicity to the immune 
system (Liangjiao et al. 2019). Silica nanoparticles of size 
20–30 nm generated structural transformations to human 
hemoglobin producing heme displacement and deteriora-
tion of the heme protein. Therefore, silica nanoparticles were 
recommended to generate non-synthetic deterioration of the 
hemoglobin’s heme protein. Moreover, silica nanoparticles 
displayed dose-reliant cytotoxicity to human lymphocyte 
cells as well as a half-maximal inhibitory concentration 
(IC50) of 29 μg/ml. Incubation of human lymphocyte cells 
with silica nanoparticles at the IC50 for 48 h increased apop-
tosis as well as necrosis inward toward the cell population 
(Azimipour et al. 2018).

Titanium dioxide nanoparticles

The oral exposure of titanium dioxide nanoparticles to 
maternal mice increased the DNA deletion in the fetus, 
suggesting that it can be passed on to offspring (Trouiller 
et al. 2009). The oral exposure of female mice of between 
25 and 80 nm of titanium dioxide nanoparticles near 5 g/
kg brought about a considerably higher inflammation in 
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the liver, which related to that within male mice, as well 
as in this study, myocardial and kidney damage because 
of the nanoparticles correspondingly revealed (Wang et al. 
2007). One more study similarly revealed DNA destruc-
tion alongside titanium dioxide nanoparticles (21 nm and 
50 nm) at 1,000 μg/ml on human embryonic kidney cells 
(HEK293) along with mouse embryonic fibroblast cells 
(NIH/3T3), but no oxidative DNA destruction was spot-
ted (Demir et al. 2015). Mice exposed to titanium diox-
ide nanoparticles in lesser dosages demonstrated a loss 
of appetite, tremors, and lethargy, which gradually ended 
(Chen et al. 2009). At a high dosage, these mice revealed 
intense indications of lethargy, anorexia, tremors, body 
weight loss, and diarrhea (Chen et al. 2009). A high level 
of serum alanine aminotransferase (ALT) and aspartate 
aminotransferase (AST) in mice after exposure to tita-
nium dioxide nanoparticles showed that the latter revealed 
higher toxicity in the liver than in kidneys (Iavicoli et al. 
2012). The International Agency for Research on Cancer 
(IARC) distinguished pigment grade (lower than 2.5 μm) 
as well as ultrafine (lower than 100 μm) titanium diox-
ide nanoparticles as potential carcinogens, considering 
they could induce inhaling-tract cancer in rats; however, 
it should be mentioned that no combination among work-
related exposure and intensified lung cancer was validated. 
The toxicity of titanium dioxide nanoparticles to lung cells 
is subject to their size, shape, form, surface area, and sur-
face chemistry (Iavicoli et al. 2012).

Anatase titanium dioxide nanoparticles caused more 
toxicity than any other form. In an in  vitro study of 
lung cells, anatase titanium nanoparticles’ toxicity was 
undoubtedly more elevated than in the triple culture 
model. Different varieties of neurological cells were effi-
cient in internalizing titanium dioxide nanoparticles. Brain 
microglia cells were exposed to P-25, titanium dioxide 
nanoparticles. The latter exists in the rutile as well as 
anatase form. P-25 causes microglia cells to generate reac-
tive oxygen species and has been associated with apoptotic 
pathways in neurons at a concentration higher than 20 ppm 
(Long et al. 2006). Moreover, Park et al. showed that with 
cultured human bronchial epithelial cells (BEAS-2B). It 
was found that the P-25, titanium dioxide nanoparticles 
aggregated in the peri-region of the nucleus and enhanced 
reactive oxygen species revealing the apoptotic process. 
The introduction of oxidative stress interconnected to 
genes was also discovered in this study (Park et al. 2008). 
Titanium dioxide nanofilaments and nanorods may exhibit 
significant cytotoxicity to epithelial cells. The crystal for-
mation of nanoparticles could influence their toxicity. 
Additionally, the crystal formation of nanoparticles could 
transform into ecological matrices, which warrants further 
intricate toxicity studies.

Gold nanoparticles

Studies have shown that the toxic effects of gold nanoparti-
cles vary by size and that exposure to smaller nanoparticles 
results in a more pronounced effect. The gold nanoparticles 
are widely applied in many medical industries; however, 
they are known to affect human embryonic stem cells, pri-
marily due to their size (De Berardis et al. 2021). Stem cells 
exposed to 1.5-nm gold nanoparticles displayed less cohe-
sion and impartiality, suggesting cell death, whereas larger 
nanoparticles at 4 nm and 14 nm size showed no sign of 
toxicity. Simplifying the size limits of different nanomateri-
als to endorse toxicity is intricate, as there are presently no 
standardized toxicity proceedings for scientists to correlate 
various outcomes. Nevertheless, scientists typically agree 
that toxicity will surge with smaller-sized nanoparticles, a 
significant component in stimulating toxicity (Carnovale 
et al. 2019). The pattern of nanoparticles may similarly be 
a decisive element in human health properties. For exam-
ple, fibroblasts exhibited more significant toxicity with gold 
nanospheres of size 61.46 nm than with smaller diameter 
nanostars of 33.69 nm. Nevertheless, Steckiewicz et al. 
(2019) conducted a study involving gold nanorods (39 nm 
lengths, 18 nm width), nanospheres (6.3 nm), and nanostars 
(215 nm) exposed to humans and found that gold nanostars 
are more toxic to human fetal osteoblasts and pancreatic 
duct cells. Table 2 summarizes the many research results of 
selected engineered nanomaterials that could impact human 
health.

Conclusion

With the growing usage of nanomaterials in industries 
and consumer products, the exposure of nanomaterials to 
humans and their surroundings continues to rise. The det-
rimental impact of nanomaterials on human health is pre-
dominantly deduced from in vitro and in vivo studies applied 
to animal models. The exposure of humans to nanomateri-
als, especially engineered nanomaterials, requires a better 
understanding of their potential toxicity in order to foresee 
enduring consequences. Having knowledge of the life cycle 
of engineered nanomaterials requires significant investiga-
tion. Unfortunately, there are inconsistent reports about the 
toxicity of engineered nanomaterials, typically influenced 
by several factors that can impact the toxicity study. These 
factors include the type of cell line, type of nanomaterial, 
functionalization, synthesis process of the nanomaterials, 
dosage, size, method of mixing, exposure method, surface 
charge, shape, gender of the animal model, and cell medium, 
thus making it exceedingly complicated to determine the risk 
of engineered nanomaterials or determine their impact on 
humans. The approach of exposure and potential impact on 
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humans has been reviewed here. Dynamic action may pre-
vent engineered nanomaterials from passing through human 
skin and lessen their impact on human health. However, 
the toxicological consequences of exposure to engineered 
nanomaterials are far from clear. The latest scientific studies 
have helped to better understand the connections of engi-
neered nanomaterials to cells, tissues, and organs. As with 
any group of hazardous toxins, several exposure routes must 
be inspected, and more research is necessary to assess the 
impacts of engineered nanomaterials on human health. It is 
very important to improve standard test modes for inspecting 
the toxicity of nanomaterials in vitro and in vivo by utilizing 
animal models. A more vigorous technique for identifying 
the risks of engineered nanomaterials will be required in the 
near future, as various types and vast amounts of engineered 
nanomaterials alter the direction of commercialization.
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