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Abstract
Climate change is predicted to cause severe loss in agricultural production by increasing disease epidemics and intensify-
ing abiotic stresses. Therefore, there is a need for sustainable methods to alleviate plant stress, such as non-thermal plasma. 
Here we review the role of non-thermal plasma for plant treatment, with focus on the control of viruses, bacteria, fungi and 
other diseases. We present factors influencing the microbicidal activity of non-thermal plasma. Application of non-thermal 
plasma for combating abiotic stresses such as drought, metal toxicity, nanoparticles and salinity are discussed. Plasma-
generated reactive species trigger the activity of stress-responsive genes in plants. The hypothetical mechanisms involved in 
triggering the activity of different stress-responsive genes controlling diseases as well as abiotic stresses, are also presented 
and discussed. The mechanism of plant-plasma interaction is similar to priming, hormesis or adaptive response, and resem-
bles vaccination in animals and humans.

Keywords Climate change · Disease · Abiotic stress · Non-thermal plasma · Reactive oxygen and nitrogen species · 
Oxidative stress · Stress-responsive genes

Introduction

Agricultural productivity is jeopardized by several stress 
factors coupled with climate change (Challinor et al. 2014; 
Zhao et al. 2017). In the coming decade, agriculture is 

anticipated to solve challenges such as population rise over 
30% and competition for depleting natural resources of 
land, water and energy (Challinor et al. 2014). In this con-
text, traditional stress management strategies are limited. 
Plasma agriculture is an emerging field, where the appli-
cation of non-thermal plasma on plants has demonstrated 
promising results. Non-thermal plasma is also referred to 
as cold plasma, low-temperature plasma or non-equilib-
rium plasma. In non-thermal plasma, the temperature of 
heavy particles such as ions, neutrals and radicals is much 
lower than the temperature of electrons (Ji et al. 2019). 
Hence, thermodynamic disequilibrium arises between 
heavy particles and electrons, and this unique property 
enables cold plasma in treating biological materials (Misra 
et al. 2019).

Although plasma has been frequently used to treat the 
surfaces of various biological materials, the effects of 
plasma treatment are not confined to the surface. Indeed, 
effects are often observed deeper into the living tissues due 
to activity of reactive species generated from plasma (Lu 
et al. 2016; Varilla et al. 2020). Non-thermal plasma can be 
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produced at either low pressure or atmospheric pressure, 
which facilitates plasma use in agriculture, food processing, 
water decontamination and medicine (Ambrico et al. 2020; 
Babajani et al. 2019; Pérez-Pizá et al. 2021; Puač et al. 2018, 
Surowsky et al. 2015, Zhang et al. 2018, von Woedtke et al. 
2013).

Application of non-thermal plasma in agriculture stimu-
lates plethora of responses in plants during different phases 
of growth and development (Adhikari et al. 2020a, b; Hol-
ubová et al. 2020). In addition to enhancing seed germina-
tion and seedling growth, pre-treatment of planting mate-
rial with non-thermal plasma showed alleviation of several 
stress factors (Fig. 1). Recent research focussed on deci-
phering the role of non-thermal plasma in food processing, 
and in stimulating seed germination and seedling growth 
(Pignata et al. 2017; Sonawane and Patil 2020; Cui et al. 
2019; Măgureanu et al. 2018; Starič et al. 2020). Neverthe-
less, the use of non-thermal plasma to manage stress crop 
plants has been rarely analyzed. Therefore, here we review 
the use of non-thermal plasma to treat crop plants with 
focus on mechanisms ruling pathogen control and abiotic 
stress tolerance.

Mechanism of non‑thermal plasma 
in alleviating plant stress

Ideal conditions for plant growth occur rarely in nature, com-
pared to unfavorable conditions. Hence, plants have evolved 
certain mechanisms that empower them to actively safeguard 
from broad range of biotic and abiotic stressors (Zhu 2016). 
In general, an intense stress is a burden on any living organ-
ism, especially plants. Yet, low intensity stress forces plants 
to activate defense-related pathways, as long as the strength 
of the stress signal remains weak and affordable (Hilker et al. 
2016). Non-thermal plasma action on plants represents a 
biphasic response and resembles the processes of priming, 
hormesis, or adaptive response, that in some way remain 
identical to vaccination responses seen in humans and ani-
mals (Pastor et al. 2013; Holubová et al. 2020).

Application of non-thermal plasma in agriculture has 
been widely reported to stimulate a variety of responses 
in plants during different phases of growth and develop-
ment (Adhikari et al. 2020a, b; Holubová et al. 2020). Pre-
treatment of seeds and seedlings with non-thermal plasma 
enhances germination and growth and alleviates stress. 

Fig. 1  Non-thermal plasma induces responses in plants, which pro-
mote tolerance against  disease and abiotic stress. Usually seeds or 
seedlings are treated with plasma that eventually triggers the activ-

ity of antioxidants and phytohormones, activate stress-signaling path-
ways and related gene expression, and induce epigenetic modifica-
tions
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Therefore, exposure of biological material to the mild 
stress of plasma reactive species induces protection against 
stronger stress (Esposito et al. 2011). However, the intensity 
of initial plasma stress should be carefully tuned to activate 
defense responses without seed deterioration (Agathokle-
ous et al. 2019; Agathokleous and Calabrese, 2019). Thus, 
optimization of physical parameters of the plasma is criti-
cal to generate plasma components in appropriate doses for 
achieving a desired biological response (Szili et al. 2015; 
Sthijns et al. 2016; Tabares and Junkar 2021).

Methods for plant disease management

Conventional methods

Plants encounter several biotic stresses throughout their life 
cycle due to the confrontation of other living organisms such 
as fungi, bacteria, viruses, insects and weeds that severely 
impede their growth and development resulting (Horst, 
2001). An average of 10-16% loss of crop production, equiva-
lent to half a billion tonnes of food, occurs every year due to 
plant diseases (Strange and Scott 2005; Oerke, 2006). The 
annual monetary loses due to plant diseases is around $220 
billions worldwide (FAO 2019). Hence, the control of plant 
diseases is essential for sustainable food production (Strange 
and Scott 2005). Selective breeding for the development of 
resistant varieties and application of agro-chemicals is com-
mon but has limitations. Breeding plants to develop new 
resistant varieties that possess constitutively active defense 
is not a viable option. Since, there are known fitness costs 
associated with the stimulation of defense responses in plants 
(Heil et al. 2000; Huot et al. 2014). Large-scale application 
of chemicals to crops causes environmental pollution (Hahn, 
2014; Dhananjayan et al. 2020). Moreover, the overuse of 
resistant varieties and chemical formulations on plants induce 
the breakdown of disease resistance with risk of emergence 
of new races of pathogens (Jørgensen et al. 2017). Biocon-
trol agents are also able to inhibit phytopathogens (Heimpel 
and Mills 2017). Nonetheless, implementation of biocontrol 
agents on a commercial scale for plant disease management 
is constrained in terms of reliability, efficiency, durability and 
cost (Pal and Gardener 2006). Thus, conventional technolo-
gies have often limitations of environmental safety, efficiency 
and economical aspects.

Non‑thermal plasma

Existing research evidence strongly suggest non-thermal 
plasma technology as an eco-friendly approach for man-
agement of various stress factors encountered by plants. 
Application of non-thermal plasma for inactivation of 

fungal and bacterial pathogens causing food contamination 
has been frequently demonstrated (Puligundla and Mok 
2016; Misra et al. 2019). Besides, the role of non-thermal 
plasma in controlling human and animal viruses was also 
reported (Filipić et al. 2020). However, the potentiality 
of plasma technology in the deactivation of plant patho-
genic fungi, bacteria and viruses has been comparatively 
less explored. Few studies reported effective inactivation 
of fungi, bacteria and viruses in different  crop species 
(Table 1). In these studies, different combinations of gases 
and plasma sources are utilized to eradicate phytopathogens 
under laboratory conditions, as discussed below.

Non‑thermal plasma treatment for the control of fungal 
pathogens

Seed‑borne diseases Seed contamination with pathogenic 
microorganisms causes diseases in seedlings, leading to a 
significant reduction in crop yield (Oerke 2006). Indeed, the 
quality of seeds alone accounts for at least 10-15% increase 
in the total crop  productivity (Gupta and Kumar 2020). 
Thus, planting disease-free seeds could minimize the losses. 
Both pre-sowing and post-harvest treatments of seeds are 
critical for disease management in plants. Pre-sowing treat-
ment of seeds using plasma eradicates fungal pathogens and 
restricts the inoculum build-up on seed surface and progres-
sion of disease after germination (Adhikari et al. 2020a, b; 
Pignata et al. 2017).

Application of non-thermal plasma for the control of 
seed-borne diseases has been mostly performed by expos-
ing the seeds either directly to plasma, or through plasma 
generated gas/plasma-activated water (Selcuk et al. 2008; 
Nishioka et al. 2014; Brasoveanu et al. 2015; Kordas et al. 
2015; Khamsen et al. 2016; Ambrico et al. 2017; Ochi et al. 
2017). In most of the studies, direct plasma treatment was 
frequently performed on the seeds for the control of diseases. 
Alternatively, plasma can be applied directly on the suspen-
sion cultures prepared in vitro for the inactivation of fungal 
spores and mycelial growth (Avramidis et al. 2010; Na et al. 
2013; Hashizume et al. 2014; Panngom et al. 2014).

Avramidis et al. (2010) evaluated the effects of air plasma 
treatment on the vegetative state (the hyphae) of fungal spe-
cies and found remarkable inhibition in growth as well as 
deformation and disruption of fungal hyphae. Similarly, Na 
et al. (2013) reported a drastic reduction in hyphal growth 
and spore germination of two fungal species, viz., Neuro-
spora sp. and Fusarium sp., following the application of 
a microwave plasma jet. Nonetheless, other studies, using 
various modes of plasma discharge, reported only partial 
deactivation of pathogens. For instance, non-thermal plasma 
generated using diffuse co-planar surface barrier discharge 
resulted in the reduction few microorganisms and pathogens 



2138 Environmental Chemistry Letters (2022) 20:2135–2164

1 3

Ta
bl

e 
1 

 P
ub

lis
he

d 
da

ta
 o

n 
th

e 
eff

ec
t o

f n
on

-th
er

m
al

 p
la

sm
a 

tre
at

m
en

t i
n 

in
du

ci
ng

 d
is

ea
se

 st
re

ss
 re

si
st

an
ce

 a
nd

 m
ic

ro
bi

al
 in

ac
tiv

at
io

n 
effi

ci
en

cy
 in

 v
ar

io
us

 p
la

nt
 sp

ec
ie

s

Tr
ea

te
d 

m
at

er
ia

l
Ty

pe
 o

f p
la

sm
a

Ta
rg

et
 o

rg
an

is
m

Im
pa

ct
 su

m
m

ar
y

Re
fe

re
nc

e

Fu
ng

al
 d

is
ea

se
s

Ph
ilo

de
nd

ro
n 

er
ub

es
ce

ns
 le

av
es

A
tm

os
ph

er
ic

 c
ol

d 
pl

as
m

a 
je

t u
si

ng
 

he
liu

m
/o

xy
ge

n
C

ol
le

to
tr

ic
hu

m
 g

lo
eo

sp
or

io
id

es
O

xi
da

tiv
e 

ra
di

ca
ls

 p
ro

du
ce

d 
fro

m
 

pl
as

m
a 

co
ul

d 
di

sr
up

t o
il 

va
cu

ol
es

, 
po

ly
sa

cc
ha

rid
es

, a
nd

 p
ro

te
in

s i
na

ct
i-

va
tin

g 
th

e 
fu

ng
us

Zh
an

g 
et

 a
l. 

(2
00

7)

C
er

ea
ls

 a
nd

 p
ul

se
s

Lo
w

 p
re

ss
ur

e 
co

ld
 p

la
sm

a 
us

in
g 

ai
r 

ga
se

s a
nd

 su
lfu

r h
ex

afl
uo

rid
e

As
pe

rg
ill

us
 sp

. a
nd

Pe
nc

ill
iu

m
 sp

.
Pl

as
m

a 
tre

at
m

en
t f

or
 1

5 
m

in
 u

si
ng

 
su

lfu
r h

ex
afl

uo
rid

e 
co

ul
d 

si
gn

ifi
ca

nt
ly

 
re

du
ce

 m
ic

ro
bi

al
 c

ol
on

ie
s t

o 
3-

lo
g 

in
 

bo
th

 th
e 

fu
ng

al
 sp

ec
ie

s

Se
lc

uk
 e

t a
l. 

(2
00

8)

Fu
ng

al
 sp

or
e 

su
sp

en
si

on
A

tm
os

ph
er

ic
 p

re
ss

ur
e 

di
el

ec
tri

c 
ba

rr
ie

r 
di

sc
ha

rg
e 

pl
as

m
a

As
ch

oc
yt

a 
pi

no
de

lla
 a

nd
Fu

sa
ri

um
 c

ul
m

or
um

Tr
ea

tm
en

t c
ou

ld
 si

gn
ifi

ca
nt

ly
 in

hi
bi

t 
th

e 
ve

ge
ta

tiv
e 

st
at

e 
of

 fu
ng

i a
s w

el
l a

s 
de

fo
rm

 a
nd

 d
is

ru
pt

 th
e 

fu
ng

al
 h

yp
ha

e

A
vr

am
id

is
 e

t a
l. 

(2
01

0)

Sp
rin

g 
w

he
at

, m
ai

ze
 a

nd
 b

lu
e 

lu
pi

ne
Lo

w
 p

re
ss

ur
e 

ca
pa

ci
tiv

el
y 

co
up

le
d 

ra
di

o 
fr

eq
ue

nc
y 

pl
as

m
a

Fu
sa

ri
um

 sp
., 

Al
te

rn
ar

ia
 sp

., 
Pe

nc
ili

um
 

sp
., 

C
la

do
sp

or
iu

m
 sp

., 
C

ol
le

to
tr

ic
hu

m
 

gl
oe

os
po

ri
oi

de
s, 

M
uc

or
 sp

. a
nd

 K
ab

a-
tie

lla
 c

au
liv

or
a

Tr
ea

tm
en

t d
is

pl
ay

ed
 a

 fu
ng

ic
id

al
 e

ffe
ct

 
on

 g
ra

in
 a

nd
 le

gu
m

e 
se

ed
s, 

an
d 

th
e 

in
iti

al
 fu

ng
al

 in
fe

ct
io

n 
lo

ad
 w

as
 

de
cl

in
ed

 b
y 

3-
5%

Fi
la

to
va

 e
t a

l. 
(2

01
1)

Fu
ng

al
 sp

or
e 

su
sp

en
si

on
M

ic
ro

w
av

e 
pl

as
m

a 
je

t
Fu

sa
ri

um
 g

ra
m

in
ea

ru
m

, F
us

ar
iu

m
 

ox
ys

po
ru

m
 a

nd
 N

eu
ro

sp
or

a 
cr

as
sa

Sp
or

e 
ge

rm
in

at
io

n 
an

d 
hy

ph
al

 g
ro

w
th

 
of

 th
e 

fu
ng

i w
er

e 
dr

am
at

ic
al

ly
 

de
cr

ea
se

d 
by

 u
si

ng
 o

xy
ge

n 
in

 th
e 

pl
as

m
a 

di
sc

ha
rg

e.
 V

ar
ia

bl
e 

le
ve

ls
 o

f 
in

hi
bi

tio
n 

on
 sp

or
e 

ge
rm

in
at

io
n 

an
d 

gr
ow

th
 w

er
e 

no
tic

ed
 a

m
on

g 
th

e 
th

re
e 

fu
ng

al
 sp

ec
ie

s

N
a 

et
 a

l. 
(2

01
3)

R
ic

e 
se

ed
s

A
tm

os
ph

er
ic

 p
re

ss
ur

e 
di

el
ec

tri
c 

ba
rr

ie
r 

di
sc

ha
rg

e 
pl

as
m

a
G

ib
be

re
lla

 fu
jik

ur
oi

In
hi

bi
tio

n 
in

 th
e 

gr
ow

th
 o

f f
un

gu
s a

nd
 

re
du

ct
io

n 
in

 th
e 

nu
m

be
r o

f f
un

ga
l 

co
lo

ni
es

 o
n 

th
e 

tre
at

ed
 se

ed
s b

y 
m

or
e 

th
an

 9
2%

Jo
 e

t a
l. 

(2
01

4)

To
m

at
o 

se
ed

s a
nd

 fu
ng

al
 sp

or
e 

su
sp

en
-

si
on

A
tm

os
ph

er
ic

 p
re

ss
ur

e 
pl

as
m

a 
je

t
C

la
do

sp
or

iu
m

 fu
lv

um
Si

gn
ifi

ca
nt

 re
du

ct
io

n 
in

 th
e 

ro
tti

ng
 o

f 
in

fe
ct

ed
 se

ed
s d

ue
 to

 d
eg

ra
da

tio
n 

of
 

fu
ng

al
 p

ro
te

in
 a

nd
 D

N
A

Lu
 e

t a
l. 

(2
01

4)

B
ra

ss
si

ca
ce

ou
s s

ee
ds

B
ot

h 
at

m
os

ph
er

ic
 p

re
ss

ur
e 

an
d 

lo
w

 p
re

ss
ur

e 
pl

as
m

a
Rh

iz
oc

to
ni

a 
so

la
ni

Tr
ea

tm
en

t w
ith

 a
tm

os
ph

er
ic

 p
la

sm
a 

fo
r 1

0 
m

in
 m

ar
ke

dl
y 

re
du

ce
d 

fu
ng

al
 

su
rv

iv
al

 ra
te

 to
 3

%
 b

ut
 d

el
ay

ed
 se

ed
 

ge
rm

in
at

io
n

N
is

hi
ok

a 
et

 a
l. 

(2
01

4)

To
m

at
o 

se
ed

s
M

ic
ro

 d
ie

le
ct

ric
 b

ar
rie

r d
is

ch
ar

ge
 

pl
as

m
a 

us
in

g 
ai

r/a
rg

on
Fu

sa
ri

um
 o

xy
sp

or
um

 f.
 sp

. l
yc

op
er

si
ci

Si
gn

ifi
ca

nt
 re

du
ct

io
n 

in
 sp

or
e 

ge
rm

in
a-

tio
n 

pe
rc

en
t a

fte
r 1

0 
m

in
 o

f t
re

at
m

en
t

Pa
nn

go
m

 e
t a

l. 
(2

01
4)

B
ar

le
y 

an
d 

co
rn

 se
ed

s
G

lo
w

 d
is

ch
ar

ge
 p

la
sm

a
As

pe
rg

ill
us

 sp
.,

Pe
ni

ci
lli

um
 sp

. a
nd

Fu
sa

ri
um

 sp
.

Fu
ng

al
 lo

ad
 o

n 
th

e 
se

ed
s o

f b
ot

h 
cr

op
 

sp
ec

ie
s d

ec
re

as
ed

 si
gn

ifi
ca

nt
ly

 w
ith

 
an

 in
cr

ea
se

 in
 tr

ea
tm

en
t d

ur
at

io
n

B
ra

so
ve

an
u 

et
 a

l. 
(2

01
5)

R
ic

e 
se

ed
s

A
rc

 d
is

ch
ar

ge
 p

la
sm

a
Fu

sa
ri

um
 fu

jik
ur

oi
Re

ac
tiv

e 
sp

ec
ie

s g
en

er
at

ed
 fr

om
 p

la
sm

a 
pl

ay
ed

 a
n 

im
po

rta
nt

 ro
le

 in
 re

du
c-

in
g 

fu
ng

al
 lo

ad

K
an

g 
et

 a
l. 

(2
01

5)



2139Environmental Chemistry Letters (2022) 20:2135–2164 

1 3

Ta
bl

e 
1 

 (c
on

tin
ue

d)

Tr
ea

te
d 

m
at

er
ia

l
Ty

pe
 o

f p
la

sm
a

Ta
rg

et
 o

rg
an

is
m

Im
pa

ct
 su

m
m

ar
y

Re
fe

re
nc

e

W
he

at
 se

ed
s

Lo
w

-te
m

pe
ra

tu
re

 p
la

sm
a

Al
te

rn
ar

ia
 sp

., 
Fu

sa
ri

um
 sp

., 
G

ib
be

re
lla

 
sp

., 
Pe

nc
ill

iu
m

 sp
., 

Rh
iz

op
us

 st
ol

on
if-

er
a,

 T
ri

ch
od

er
m

a 
sp

. a
nd

 n
on

-s
po

re
 

fo
rm

in
g 

fu
ng

i

Tr
ea

tm
en

t c
ou

ld
 re

du
ce

 th
e 

nu
m

be
r o

f 
fu

ng
al

 c
ol

on
ie

s t
o 

th
e 

or
de

r o
f 1

-lo
g 

w
ith

in
 1

0 
s o

f e
xp

os
ur

e

K
or

da
s e

t a
l. 

(2
01

5)

H
az

el
nu

t
A

tm
os

ph
er

ic
 p

re
ss

ur
e 

flu
id

 b
ed

 p
la

sm
a

As
pe

rg
ill

us
fla

vu
s a

nd
 A

sp
er

gi
llu

s
pa

ra
si

tic
us

A
 si

gn
ifi

ca
nt

 re
du

ct
io

n 
in

 th
e 

in
oc

ul
um

 
lo

ad
 o

f b
ot

h 
th

e 
fu

ng
i A

. fl
av

us
 a

nd
 

A.
 p

ar
as

iti
cu

s t
o 

th
e 

ex
te

nt
 o

f 4
.5

-
lo

g 
an

d 
4.

19
-lo

g,
 re

sp
ec

tiv
el

y,
 w

as
 

re
po

rte
d 

us
in

g 
ai

r a
s p

la
sm

a 
ga

s

D
as

an
 e

t a
l. 

(2
01

6)

R
ic

e 
se

ed
 h

us
k

A
tm

os
ph

er
ic

 p
re

ss
ur

e 
hy

br
id

 m
ic

ro
 

co
ro

na
 d

is
ch

ar
ge

 p
la

sm
a

In
fe

ct
ed

 m
ic

ro
be

s
C

om
pl

et
e 

in
ac

tiv
at

io
n 

of
 p

at
ho

ge
ni

c 
fu

ng
i a

lo
ng

 w
ith

 o
th

er
 m

ic
ro

or
-

ga
ni

sm
s;

 P
os

iti
ve

 im
pa

ct
 o

n 
se

ed
 

ge
rm

in
at

io
n 

an
d 

se
ed

lin
g 

gr
ow

th
 w

as
 

no
tic

ed

K
ha

m
se

n 
et

 a
l. 

(2
01

6)

W
he

at
 se

ed
s

D
C

SB
D

 p
la

sm
a

Fu
sa

ri
um

 sp
.,

Tr
ic

ot
he

ci
um

 ro
se

um
 a

nd
 A

sp
er

gi
llu

s 
sp

.

Th
e 

gr
ow

th
 in

hi
bi

tio
n 

eff
ec

t o
f p

la
sm

a 
on

 th
e 

su
rfa

ce
 m

ic
ro

flo
ra

 o
f s

ee
ds

 
in

cr
ea

se
d 

w
ith

 th
e 

en
ha

nc
em

en
t i

n 
th

e 
tre

at
m

en
t t

im
e 

an
d 

po
w

er
 in

te
ns

ity

Za
ho

ra
no

vá
 e

t a
l. 

(2
01

6)

Sw
ee

t b
as

il 
se

ed
s

Su
rfa

ce
 d

ie
le

ct
ric

 b
ar

rie
r d

is
ch

ar
ge

 
pl

as
m

a
In

fe
ct

ed
 fu

ng
i

Tr
ea

tm
en

t f
or

 2
0 

s s
ig

ni
fic

an
tly

 re
du

ce
d 

th
e 

m
ic

ro
bi

al
 lo

ad
 w

ith
ou

t a
ffe

ct
in

g 
se

ed
 v

ia
bi

lit
y

A
m

br
ic

o 
et

 a
l. 

(2
01

7)

R
ic

e 
se

ed
s

A
tm

os
ph

er
ic

 p
re

ss
ur

e 
pl

as
m

a 
je

t
Fu

sa
ri

um
 fu

jik
ur

oi
D

is
ea

se
 se

ve
rit

y 
in

de
x 

of
 fu

ng
us

 
re

du
ce

d 
to

 1
8.

1%
 a

fte
r p

la
sm

a 
tre

at
-

m
en

t

O
ch

i e
t a

l. 
(2

01
7)

C
uc

um
be

r a
nd

 P
ep

pe
r s

ee
ds

D
C

SB
D

 p
la

sm
a 

us
in

g 
am

bi
en

t a
ir

C
la

do
sp

or
iu

m
cu

cu
m

er
in

um
 a

nd
 D

id
ym

el
la

br
yo

ni
ae

Tr
ea

tm
en

t f
or

 2
0 

s i
n 

cu
cu

m
be

r c
ou

ld
 

co
m

pl
et

el
y 

er
ad

ic
at

e 
sp

or
es

 o
f C

la
d-

os
po

ri
um

 sp
., 

w
he

re
as

 6
0-

80
%

 re
du

c-
tio

n 
in

 sp
or

es
 o

f D
id

ym
el

la
 sp

. w
as

 
no

tic
ed

. I
n 

pe
pp

er
, 5

0-
80

%
 re

du
ct

io
n 

in
 th

e 
sp

or
es

 o
f D

id
ym

el
la

 sp
. w

as
 

no
tic

ed
 a

fte
r 4

 s 
of

 tr
ea

tm
en

t

Št
ěp

án
ov

á 
et

 a
l. 

(2
01

8)

B
ar

le
y 

an
d 

w
he

at
 se

ed
s

H
ig

h 
vo

lta
ge

 d
ie

le
ct

ric
 b

ar
rie

r d
is

ch
ar

ge
 

pl
as

m
a

N
at

iv
e 

m
ic

ro
be

s (
bo

th
 fu

ng
i a

nd
 b

ac
te

-
ria

), 
ar

tifi
ci

al
ly

 c
ha

lle
ng

ed
 m

ic
ro

be
s 

(b
ac

te
ria

)

Si
gn

ifi
ca

nt
 re

du
ct

io
n 

in
 th

e 
lo

ad
 o

f 
in

oc
ul

at
ed

 c
ha

lle
ng

e 
po

pu
la

tio
ns

 w
as

 
ob

se
rv

ed
 in

 w
he

at
 a

nd
 b

ar
le

y 
gr

ai
ns

, 
as

 c
om

pa
re

d 
to

 n
at

ur
al

 m
ic

ro
bi

ot
a

Lo
s e

t a
l. 

(2
01

8)

So
yb

ea
n 

se
ed

s
A

tm
os

ph
er

ic
 p

re
ss

ur
e 

di
el

ec
tri

c 
ba

rr
ie

r 
di

sc
ha

rg
e 

pl
as

m
a 

us
in

g 
ni

tro
ge

n/
ox

yg
en

D
ia

po
rt

he
/ P

ho
m

op
si

s c
om

pl
ex

Re
ve

rs
al

 o
f o

xi
da

tiv
e 

da
m

ag
e 

ca
us

ed
 b

y 
fu

ng
al

 c
om

pl
ex

 in
 th

e 
tre

at
ed

 se
ed

s 
w

as
 n

ot
ic

ed

Pé
re

z 
Pi

zá
 e

t a
l. 

(2
01

8)

Pi
ne

 se
ed

s
D

C
SB

D
 p

la
sm

a
Fu

sa
ri

um
 c

irc
in

at
um

C
om

pl
et

e 
de

ac
tiv

at
io

n 
of

 fu
ng

us
 w

as
 

ob
se

rv
ed

 a
fte

r 6
0 

s o
f t

re
at

m
en

t
Še

rá
 e

t a
l. 

(2
01

9)



2140 Environmental Chemistry Letters (2022) 20:2135–2164

1 3

Ta
bl

e 
1 

 (c
on

tin
ue

d)

Tr
ea

te
d 

m
at

er
ia

l
Ty

pe
 o

f p
la

sm
a

Ta
rg

et
 o

rg
an

is
m

Im
pa

ct
 su

m
m

ar
y

Re
fe

re
nc

e

Fu
ng

al
 sp

or
e 

su
sp

en
si

on
A

tm
os

ph
er

ic
 p

re
ss

ur
e 

co
ro

na
 P

AW
C

ol
le

to
tr

ic
hu

m
 g

lo
eo

sp
or

io
id

es
In

ac
tiv

at
io

n 
ra

te
 o

f f
un

gu
s w

as
 h

ig
he

r 
us

in
g 

ai
r-P

AW
 th

an
 o

xy
ge

n-
PA

W
, a

nd
 

m
ic

ro
bi

ci
da

l e
ffi

ci
en

cy
 e

nh
an

ce
d 

w
ith

 
in

cr
ea

se
 in

 tr
ea

tm
en

t d
ur

at
io

n

W
u 

et
 a

l. 
(2

01
9)

M
ai

ze
 se

ed
s

D
C

SB
D

 p
la

sm
a

As
pe

rg
ill

us
 fl

av
us

,
As

pe
rg

ill
us

 a
lte

rn
at

a 
an

d
Fu

sa
ri

um
 c

ul
m

or
um

Re
du

ct
io

n 
in

 c
ol

on
ie

s o
f F

. c
ul

m
or

um
 

by
 3

.7
9-

lo
g 

af
te

r 6
0 

s o
f t

re
at

m
en

t 
w

as
 n

ot
ic

ed
; w

hi
le

 A
. fl

av
us

 a
nd

 A
. 

al
te

rn
at

a 
w

er
e 

re
du

ce
d 

by
 4

.2
1-

lo
g 

an
d 

3.
22

-lo
g,

 re
sp

ec
tiv

el
y,

 a
fte

r t
re

at
-

in
g 

fo
r 3

00
 s

Za
ho

ra
no

vá
 e

t a
l. 

(2
01

8)

W
in

te
r w

he
at

, n
ar

ro
w

-le
av

ed
 lu

pi
ne

 a
nd

 
m

ai
ze

Lo
w

 p
re

ss
ur

e 
ra

di
o 

fr
eq

ue
nc

y 
pl

as
m

a
B

oi
l s

m
ut

 a
nd

 ro
ot

 ro
t f

un
gi

Tr
ea

tm
en

t c
ou

ld
 in

du
ce

 su
pp

re
ss

io
n 

of
 fu

ng
al

 c
ol

on
ie

s a
nd

 in
cr

ea
se

 th
e 

ac
tiv

ity
 o

f n
on

-e
nz

ym
at

ic
 a

nt
io

xi
da

nt
s 

en
ha

nc
in

g 
di

se
as

e 
re

si
st

an
ce

Fi
la

to
va

 e
t a

l. 
(2

02
0)

Fu
ng

al
 sp

or
es

D
ie

le
ct

ric
 b

ar
rie

r d
is

ch
ar

ge
 u

si
ng

 n
itr

o-
ge

n 
or

 o
xy

ge
n

D
ia

po
rt

he
 lo

ng
ic

ol
la

Pl
as

m
a-

in
du

ce
d 

lip
id

 p
er

ox
id

at
io

n 
an

d 
an

tio
xi

da
nt

 a
ct

iv
ity

 se
ve

re
ly

 a
ffe

ct
ed

 
th

e 
gr

ow
th

 o
f f

un
ga

l c
ol

on
ie

s

Pé
re

z-
Pi

zá
 e

t a
l. 

(2
02

1)

Ba
ct

er
ia

l d
is

ea
se

s
Su

sp
en

si
on

 c
ul

tu
re

G
lid

in
g 

ar
c 

di
sc

ha
rg

e 
pl

as
m

a
Er

w
in

ia
 c

ar
at

ov
or

a
Re

po
rte

d 
gl

id
-a

rc
 d

is
ch

ar
ge

 to
 b

e 
m

or
e 

eff
ec

tiv
e 

in
 k

ill
in

g 
ba

ct
er

ia
l c

ol
on

ie
s 

w
ith

ou
t l

ag
 ti

m
e

M
or

ea
u 

et
 a

l. 
(2

00
7)

To
m

at
o 

se
ed

s
In

du
ct

iv
e 

H
el

iu
m

 p
la

sm
a

Ra
ls

to
ni

a
so

la
na

ce
ar

um
Si

gn
ifi

ca
nt

 in
cr

ea
se

 in
 re

si
st

an
ce

 
ag

ai
ns

t b
ac

te
ria

 a
nd

 im
pr

ov
em

en
t i

n 
an

tio
xi

da
nt

s a
nd

 h
yd

ro
ge

n 
pe

ro
xi

de
 

co
nc

en
tra

tio
n

Jia
ng

 e
t a

l. 
(2

01
4)

Su
sp

en
si

on
 c

ul
tu

re
Lo

w
-te

m
pe

ra
tu

re
 a

tm
os

ph
er

ic
 p

re
ss

ur
e 

gl
id

ar
c 

di
sc

ha
rg

e
C

la
vi

ba
ct

er
 m

ic
hi

ga
ne

ns
is

 su
bs

p.
 m

ic
hi

-
ga

ne
ns

is
 a

nd
 E

rw
in

ia
 a

m
yl

ov
or

a
Pl

as
m

a 
tre

at
m

en
t f

or
 1

2 
m

in
 c

ou
ld

 
eff

ec
tiv

el
y 

sl
ow

 d
ow

n 
th

e 
gr

ow
th

 a
nd

 
re

pr
od

uc
tio

n 
ra

te
 o

f b
ot

h 
th

e 
ba

ct
er

ia
l 

sp
ec

ie
s

M
rá

z 
et

 a
l. 

(2
01

4)

W
he

at
 se

ed
s

A
tm

os
ph

er
ic

 p
re

ss
ur

e 
di

el
ec

tri
c 

ba
rr

ie
r 

di
sc

ha
rg

e 
pl

as
m

a
G

eo
ba

ci
llu

s s
te

ar
ot

he
m

op
hi

lu
s

Re
po

rte
d 

di
re

ct
 e

ffe
ct

s o
f p

la
sm

a 
ge

ne
r-

at
ed

 sp
ec

ie
s a

nd
 id

en
tifi

ed
 c

he
m

ic
al

 
sp

ut
te

rin
g 

to
 b

e 
th

e 
pr

ed
om

in
an

t 
in

ac
tiv

at
io

n 
m

ec
ha

ni
sm

 in
vo

lv
ed

 in
 

ba
ct

er
ia

l d
ec

on
ta

m
in

at
io

n

B
ut

sc
he

r e
t a

l. 
(2

01
6)

C
ab

ba
ge

 se
ed

s
Lo

w
 p

re
ss

ur
e 

pl
as

m
a 

us
in

g 
A

rg
on

Xa
nt

ho
m

on
as

 c
am

pe
st

ri
s

N
ot

ic
ed

 si
gn

ifi
ca

nt
 re

du
ct

io
n 

in
 in

oc
u-

lu
m

 lo
ad

 b
y 

3.
9-

lo
g 

af
te

r 5
 m

in
 o

f 
tre

at
m

en
t, 

an
d 

co
m

pl
et

e 
in

ac
tiv

at
io

n 
of

 b
ac

te
ria

 a
fte

r 4
0 

m
in

 o
f t

re
at

m
en

t

N
is

hi
ok

a 
et

 a
l. 

(2
01

6)

H
yd

ro
ph

on
ic

 so
lu

tio
n

D
is

ch
ar

ge
 p

la
sm

a 
re

ac
to

r
Ra

ls
to

ni
a 

so
la

na
ce

ar
um

Re
po

rte
d 

si
gn

ifi
ca

nt
 re

du
ct

io
n 

in
 th

e 
ba

ct
er

ia
l s

po
re

 d
en

si
ty

 fr
om

  1
07  to

 
 10

2  C
FU

/m
l a

fte
r p

la
sm

a 
tre

at
m

en
t 

us
in

g 
at

m
os

ph
er

ic
 g

as
es

O
ku

m
ur

a 
et

 a
l. 

(2
01

6)



2141Environmental Chemistry Letters (2022) 20:2135–2164 

1 3

Ta
bl

e 
1 

 (c
on

tin
ue

d)

Tr
ea

te
d 

m
at

er
ia

l
Ty

pe
 o

f p
la

sm
a

Ta
rg

et
 o

rg
an

is
m

Im
pa

ct
 su

m
m

ar
y

Re
fe

re
nc

e

R
ic

e 
se

ed
s

A
tm

os
ph

er
ic

 p
re

ss
ur

e 
pl

as
m

a 
je

t
Bu

rk
ho

ld
er

ia
 p

la
nt

ar
ii

D
is

ea
se

 se
ve

rit
y 

in
de

x 
re

du
ce

d 
to

 
38

.6
%

 in
 th

e 
tre

at
ed

 se
ed

s
O

ch
i e

t a
l. 

(2
01

7)

Su
sp

en
si

on
 c

ul
tu

re
Ro

lle
r c

on
ve

ye
r a

tm
os

ph
er

ic
 p

re
ss

ur
e 

pl
as

m
a

Xa
nt

ho
m

on
as

 c
am

pe
st

ri
s p

v.
 c

am
pe

st
ri

s
V

ia
bl

e 
ba

ct
er

ia
l c

el
ls

 d
ec

re
as

ed
 

ex
po

ne
nt

ia
lly

 fr
om

 5
.0

 ×
  1

08  to
 9

.8
 ×

 
 10

5  C
FU

/m
l w

ith
 a

 re
du

ct
io

n 
in

 tr
ea

t-
m

en
t t

im
e 

fro
m

 0
.9

0 
m

in
 to

 b
el

ow
 

0.
34

 m
in

To
yo

ka
w

a 
et

 a
l. 

(2
01

7)

Su
sp

en
si

on
 c

ul
tu

re
D

C
-A

PG
D

C
la

vi
ba

ct
er

 sp
., 

D
ic

ke
ya

 so
la

ni
, X

an
-

th
om

on
as

 sp
. a

nd
 P

ec
to

ba
ct

er
iu

m
 sp

.
Tr

ea
tm

en
t w

ith
 p

la
sm

a 
in

du
ce

d 
co

m
-

pl
et

e 
de

str
uc

tio
n 

of
 th

re
e 

ba
ct

er
ia

l 
sp

ec
ie

s;
 w

hi
le

 p
ar

tia
l r

ed
uc

tio
n 

in
 

co
lo

ni
es

 o
f P

ec
to

ba
ct

er
iu

m
 sp

. w
as

 
no

tic
ed

M
ot

yk
a 

et
 a

l. 
(2

01
8)

Vi
ra

l d
is

ea
se

s
Ro

m
ai

n 
le

ttu
ce

 le
av

es
C

ol
d 

at
m

os
ph

er
ic

 p
la

sm
a 

ge
ne

ra
te

d 
fro

m
 d

ie
le

ct
ric

 b
ar

rie
r d

is
ch

ar
ge

Tu
la

ne
 v

iru
s a

nd
 b

ac
te

ria
l s

pe
ci

es
Si

gn
ifi

ca
nt

 d
eg

re
e 

of
 a

nt
i-v

ira
l a

ct
iv

ity
 

an
d 

re
du

ct
io

n 
in

 b
ac

te
ria

l l
oa

d 
w

as
 

no
tic

ed
 a

fte
r p

la
sm

a 
tre

at
m

en
t

M
in

 e
t a

l. 
(2

01
6)

B
ac

te
rio

ph
ag

e 
su

sp
en

si
on

s
C

ol
d 

at
m

os
ph

er
ic

 p
la

sm
a 

an
d 

pl
as

m
a-

 
ac

tiv
at

ed
 w

at
er

T4
, Φ

17
4 

an
d 

M
S2

 v
ira

l s
tra

in
s

Tr
ea

tm
en

t c
ou

ld
 in

du
ce

 a
gg

re
ga

tio
n 

of
 

ba
ct

er
io

ph
ag

es
 a

nd
 d

am
ag

e 
to

 n
uc

le
ic

 
ac

id
 a

nd
 p

ro
te

in
s o

f v
iru

s

G
uo

 e
t a

l. 
(2

01
8)

To
ba

cc
o 

le
av

es
C

ol
d 

at
m

os
ph

er
ic

 p
la

sm
a 

ge
ne

ra
te

d 
fro

m
 a

ir
To

ba
cc

o 
m

os
ai

c 
vi

ru
s

Tr
ea

tm
en

t c
ou

ld
 p

ot
en

tia
lly

 in
ac

tiv
at

e 
vi

ra
l p

ar
tic

le
s a

nd
 le

av
es

 in
oc

ul
at

ed
 

w
ith

 v
iru

s t
ha

t w
er

e 
pr

e-
tre

at
ed

 w
ith

 
pl

as
m

a 
fa

ile
d 

to
 d

ev
el

op
 n

ec
ro

tic
 

le
si

on
s

H
an

ba
l e

t a
l. 

(2
01

8)

Ir
rig

at
io

n 
w

at
er

C
ol

d 
at

m
os

ph
er

ic
 p

la
sm

a 
ge

ne
ra

te
d 

fro
m

 a
rg

on
 a

nd
 o

xy
ge

n
Po

ta
to

 v
iru

s Y
Pl

as
m

a 
tre

at
m

en
t c

ou
ld

 in
du

ce
 d

eg
ra

da
-

tio
n 

of
 v

ira
l g

en
et

ic
 m

at
er

ia
l

Fi
lip

ić
 e

t a
l. 

(2
01

9)

D
C

SB
D

 d
iff

us
e 

co
-p

la
na

r s
ur

fa
ce

 b
ar

rie
r d

is
ch

ar
ge

, D
C

-A
PG

D
 d

ire
ct

 c
ur

re
nt

-a
tm

os
ph

er
ic

 p
re

ss
ur

e 
gl

ow
 d

is
ch

ar
ge

, C
FU

/m
l c

ol
on

y-
fo

rm
in

g 
un

its
 p

er
 m

ill
ili

tre
, P

AW
 p

la
sm

a-
ac

tiv
at

ed
 w

at
er

, s
 

se
co

nd
s, 

m
in

 m
in

ut
es



2142 Environmental Chemistry Letters (2022) 20:2135–2164

1 3

on seed surface (Štěpánová et al. 2018). Results showed par-
tial deactivation of Didymella lycopersici in both cucumber 
and pepper. But, the viral load present on the seed surface 
remained unaffected by plasma treatment.

Foliar and root diseases Foliage and root diseases are seri-
ous plant diseases that cause significant reduction in the 
crop’s yield and quality. There have been various epidem-
ics caused by foliar diseases in the history of agriculture, 
for example, the late blight of potato, brown spot of rice, 
coffee rust and wheat stem rust. In comparison with seed-
borne diseases, they are relatively more difficult to treat with 
plasma, since the plant tissues are sensitive and easily liable 
to damage (Zhang et al. 2014; Seol et al. 2017).

Panngom et al. (2014) tested the antimicrobial efficacy of 
dielectric barrier discharge plasma treatment using air/argon, 
against wilt pathogen Fusarium oxysporum f. sp. lycopersici 
in tomato. After plasma treatment, a significant reduction in 
fungal spore density was observed. Findings were explained 
by the generation of reactive nitrogen species in inducing 
necrotic spore death by the production of toxic peroxyni-
trite and nitrate. Moreover, the transcriptional profiling 
of pathogenesis-related genes, viz., pathogenesis-related 
gene-1a (PR1a), pathogenesis-related gene-1b (PR1b) and 
pathogenesis-related gene-3a (PR 3a) from tomato roots, 
disclosed that reactive oxygen species are responsible for 
the up-regulation of defense-related genes in plants and the 
induction of apoptosis-like death in fungal spores. Yet, the 
study also reported that the same dosage of plasma could 
potentially induce contradictory effects, by inactivation of 
defense mechanisms in pathogen and simultaneously acti-
vate the resistance mechanisms in host.

Cold plasma treatment on fungus-infected leaves of Phil-
odendron erubescens reversed infected spots to normal state 
in treated leaves. Further, enhanced disruption of oil vacu-
oles, polysaccharides and protein molecules of the fungus 
Colletotrichum gloeosporioides resulted from the oxidative 
damage caused by reactive species (Zhang et al. 2014). Jiang 
et al. (2014) identified noticeable improvement in seedling 
germination and resistance against bacterial wilt in tomato 
through plasma treatment. Leaves of treated plants dis-
played higher concentrations of hydrogen peroxide  (H2O2) 
and improvement in the activity of defense enzymes such as 
peroxidase, polyphenol oxidase and phenylalanine ammonia 
lyase, as compared to untreated plants.

Non‑thermal plasma treatment for the control of bacterial 
pathogens

Although plant pathogenic bacteria cause less diseases in 
crop plants than fungal and viral pathogens, bacteria are 
equally problematic and cause significant economic losses 
worldwide (Sundin et al. 2016). Several studies reported that 

non-thermal plasma treatment of phytobacterial suspensions 
inhibits the growth and number of bacteria (Moreau et al. 
2007; Mráz et al. 2014; Toyokawa et al. 2017; Motyka et al. 
2018). Mráz et al. (2014) reported that exposure to plasma 
could decelerate the growth and reproduction of both gram-
positive and gram-negative bacteria. The pathogenicity and 
the colony-forming capability of Ralstonia sp. was decreased 
by plasma discharged through a hydroponic solution (Oku-
mura et al. 2016). Toyokawa et al. (2017) reported the reduc-
tion in the viability of Xanthomonas sp. exposed to roller 
plasma conveyer, as a consequence of the degradation of 
lipopolysaccharides and the oxidation of DNA.

Motyka et al. (2018) investigated the antibacterial prop-
erties of plasma generated from direct current-atmospheric 
pressure glow discharge against five bacterial species, viz., 
Clavibacter michiganensis subsp. sepedonicus, Dickeya 
solani, Xanthomonas campestris pv. campestris, Pectobacte-
rium atrosepticum and Pectobacterium carotovorum subsp. 
carotovorum. While complete eradication of Clavibacter sp., 
Dickeya sp. and Xanthomonas sp. was achieved after plasma 
treatment, a reduction up to 3.43 fold in the inoculum den-
sity of Pectobacterium sp. was noticed. Further, the study 
reported that ultra-violet radiation A-C exerted a bactericidal 
activity following production of reactive species. Treatment 
with plasma-based nanoparticles such as fructose-stabilized 
silver nanoparticles, produced by direct current-atmospheric 
pressure glow discharge, also exerted antibacterial effects on 
the growth and reproduction of strains belonging to Erwinia 
sp., Clavibacter sp., Ralstonia sp., Xanthomonas sp. and 
Dickeya sp. (Dzimitrowicz et al. 2018).

Non‑thermal plasma treatment for control of viral diseases

Compared to bacterial and fungal pathogens, the use of non-
thermal plasma in controlling viral diseases of plants has 
been rarely attempted, whereas applications on human and 
animal viruses are reported (Puligundla and Mok, 2016). 
Min et al. (2016) found that dielectric barrier discharge 
plasma treatment on leaves of romaine lettuce could reduce 
up to 90%, the infection caused by Tulane virus. Similarly, 
Hanbal et al. (2018) stated that inoculation with plasma 
irradiated tobacco mosaic virus solution on the leaves of 
tobacco could suppress the disease progression, whereas 
plants inoculated with the virus not exposed to plasma irra-
diation developed necrotic lesions on the leaves.

Plasma‑activated water for management 
of phytopathogens

Distilled water exposed to cold plasma, often termed as 
plasma-treated water or plasma-activated water, exhib-
its an anti-microbial activity (Perez et al. 2019; Wu et al. 
2019). Wu et al. (2019) reported that plasma-activated water 
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produced using air and oxygen as gaseous sources could 
potentially deactivate the fungal spores of Colletotrichum 
gloeosporioides. However, among the substrate gases used, 
air was found to be more effective than dioxygen in gen-
erating toxic reactive species. Among the reactive species, 
nitrate and ozone produced from plasma played a major role 
in spore destruction. Non-thermal plasma has been proposed 
to act as a priming agent (Babajani et al. 2019; Adhikari 
et al. 2020a, b). Adhikari et al. (2019) stated that priming 
with plasma-activated water could enhance seedling growth, 
endogenous reactive oxygen and nitrogen species activity 
in tomato seedlings. In addition, induction of defense hor-
mones, e.g., salicylic acid and jasmonic acid, and up-regu-
lation in the expression of key pathogenesis-related genes, 
β-1,3 glucanase, chitinase-3-acid, mitogen-activated protein 
kinase and redox homeostasis genes were observed.

Plasma treatment also minimizes bacterial contamina-
tion in water or waste that often acts as disease inoculum 
source. Indeed, plasma treatment of water systems induced 
sub-lethal state of bacteria to viable but non-culturable state, 
but complete decontamination was not achieved (Xu et al. 
2018). Bertaccini et al. (2017) stated that the treatment with 
plasma-activated water could trigger defense responses in 
grapevine against diseases caused by phytoplasmas, which 
are phloem-limited pleomorphic bacteria devoid of cell 
wall. By contrast, Perez et al. (2019) revealed application of 
plasma-activated water had no direct antimicrobial effects 
against Xanthomonas vesicatoria. However, the treatment 
could reduce bacterial infection rate in treated plants by 
intensifying the expression of disease resistance genes in the 
host. Filipić et al. (2019) noticed that application of plasma 
on irrigation water favors the complete inactivation of Potato 
virus Y, a water transmissible plant virus. Hence, non-ther-
mal plasma treatment could be used as a potential alternative 
for controlling the viruses that can spread through water sys-
tems. Similarly, Guo et al. (2018) reported reduction in the 
infection rate of bacteriophages in water samples exposed 
to non-thermal plasma.

Factors controlling the microbicidal activity 
of non‑thermal plasma

Treatment duration

Finding the optimal time of seed disinfection by plasma 
treatment is challenging. Several studies reported that 
plasma has no adverse effects on seed germination and 
subsequent growth during devitalization of phytopatho-
gens (Selcuk et al. 2008; Jo et al. 2014; Kordas et al. 2015; 
Khamsen et al. 2016; Štěpánová et al. 2018). Long treatment 
time improves sterilization (Lu et al. 2014; Zahoranová et al. 
2016, 2018; Homa et al. 2021). Bourke et al. (2018) found 

that longer treatment coupled with higher voltage and fre-
quency promotes microbial decontamination. Nevertheless, 
Homa et al. (2021) found that longer treatment time could 
increase the temperature of treated surfaces and, in turn, 
decrease germination of sweet basil.

Nature of the pathogen

The potential resistance of the pathogen to non-thermal 
plasma treatment is another important limiting factor. In a 
study conducted by Zahoranová et al. (2018), seeds of maize 
were artificially inoculated with harmful species of fungi and 
bacteria. Subsequent to this, seeds were treated with diffuse 
co-planar surface barrier discharge plasma. While complete 
decontamination of bacterial spores was achieved within a 
short exposure of 60 s, fungal spores were de-vitalized after 
180 s. This suggests that there are distinct survival rates 
of spores among microbial species exposed to non-thermal 
plasma (Butscher et al. 2016; Zahoranová et al. 2018).

Similarly, Kim et al. (2017) observed varying levels of 
reduction among microbial species using cold plasma jet. 
For instance, bacterial species were inactivated faster than 
molds and yeasts. Further, Los et al. (2018) reported a strong 
influence of the type of microorganism, e.g., native versus 
artificially inoculated microbes, and its physiological state 
on the inactivation efficacy of plasma treatment. Bourke 
et al. (2018) found higher inactivation rates of artificial 
surface inoculations of a single pathogen, by comparison 
with native microflora containing multiple species. Differ-
ences observed in the efficiency of microbial inactivation by 
plasma treatment could be assigned to variations in cytology, 
morphology, structure of cellular envelopes, reproductive 
cycle and growth phase (Bourke et al. 2018). The efficiency 
of plasma treatment was also reported to vary depending 
on the pathogen propagule (Assaraf et al. 2002; Pérez-Pizá 
et al. 2021). The conidial stage is more sensitive to plasma 
treatment compared to chlamydospores in case of Alternaria 
species (Ambrico et al. 2017).

Structure of the treated surface

The microbicidal activity of plasma treatment can also vary 
based on the type of seed used, its surface characteristics, the 
genus and species of plants, and the plant-pathogen micro-
environment (Selcuk et al. 2008; Lu et al. 2014; Butscher 
et al. 2016; Niedźwiedź et al. 2019). Few studies suggested 
partial deactivation of microbes through plasma treatment, 
due to incomplete exposure of seeds owing to their surface 
properties, e.g., crevices and micropyle (Ambrico et al. 
2017; Homa et al. 2021). Further, Homa et al. (2021) found 
that dielectric barrier discharge plasma on seeds or direct 
cold plasma jet treatment on seedlings is highly effective 
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in controlling the virulence and mycelial growth of Fusar-
ium oxysporum in basil, as compared to plasma treatment 
directly on the in vitro cultures of fungi.

Type of plasma discharge

Plasma-generated species vary based on the conditions of 
plasma discharge, and this further controls the microbial 
inactivation processes. Nojima et al. (2007) developed a 
plasma device generating atomic hydrogen (1H) and dem-
onstrated that 1H surrounded by water molecules, i.e., 
H(H2O)m, played a key role in the deactivation of air-borne 
microbes, probably due to its long life. H(H2O)m released 
from the device reacted with oxygen  (O2) and superoxide 
anion  (O2

-) surrounded by  (H2O2)n, generating highly reac-
tive secondary species such as hydroperoxyl radical  (HO2) 
and dioxidanide  (HO2

-), which further exerted cytotoxic 
effects on microbes.

Many researchers reported that dielectric barrier dis-
charge type plasma is more effective than other discharge 
types for fungal spore eradication (Avramidis et al. 2010; 
Iseki et al. 2011; Hashizume et al. 2014; Panngom et al. 
2014). Low pressure plasma treatment is highly effective 
for complete disinfection of bacterial spores from vegetable 
seeds (Nishioka et al. 2016). Kang et al. (2020) reported 
that rice seeds treated with underwater arc discharge plasma 
and surface dielectric barrier discharge plasma in air (in 
presence of  H2O2) at low pressure had higher disinfection 
rates against Fusarium fujikuroi. Therefore, standardization 
of plasma parameters, i.e., source of discharge, treatment 
time, dose, pressure, frequency and electrode configuration, 
is equally crucial for fine-tuning plasma application.

Possible role of plasma components 
in stimulating the microbial inactivation

Non-thermal plasma has been widely reported to generate 
ultra-violet rays, charged particles, metastables, electro-
magnetic radiation and a variety of reactive species. These 
cocktail of plasma components exert severe microbicidal 
activity against phytopathogens. They tend to inactivate 
microbes either directly by the action of ultra-violet and 
vacuum ultra-violet irradiation, or indirectly through the 
activity of reactive species (Tensmeyer et al. 1981; Nelson 
and Berger 1989; Lu et al. 2014).

Ultra‑violet radiation

The microbicidal efficiency of ultra-violet radiation on any 
biological material largely depends on the dose delivered 

to the surface (Martin et al. 2008). The dose, in micro- or 
milliJoules per square centimeter, of ultra-violet radia-
tion needed to disinfect a surface varies depends on the 
selected target and desired disinfection levels (Brickener 
et al. 2003). Different microorganisms require various 
doses of ultra-violet energy for inactivation. For instance, 
vegetative forms of bacteria tend to be highly suscepti-
ble to ultra-violet radiation as compared to spore-forming 
microbes (Kowalski 2009). Non-thermal plasma produces 
ultra-violet radiation with different wavelengths. Few stud-
ies suggest that not all wavelengths of ultra-violet radia-
tion are effective to inactivate microorganisms (Laroussi 
and Leipold 2004; Deng et  al. 2006; Lee et  al. 2005; 
Dobrynin et al. 2009). Generally, ultraviolet radiation in 
the range of 200-300 nm with doses of several milliJoules 
per square centimeter is known to be lethal and cause dam-
age to microbial cells (Laurossi 2005; Fridman 2008).

The efficiency of ultra-violet radiation generated from 
the plasma also strongly depends on the operating pres-
sure. Vacuum plasma discharges generate ultra-violet radi-
ation with wavelengths effective for sterilization. Hence, 
ultra-violet radiation is considered as a chief contributor 
in vacuum plasma sterilization (Moisan et al. 2001, 2002). 
Similarly, ultra-violet C produced from low pressure vac-
uum plasma at 200-280 nm is effective for sterilization of 
biological tissues and inactivation of microbes (Boudam 
et al. 2006; Motyka et al. 2018). On the contrary, pho-
tons generated from atmospheric or high pressure plasma 
systems do not play a significant role for sterilization as 
they emit insufficient doses of ultra-violet radiation (De 
Geyter and Morent 2012; Misra et al. 2019). Many stud-
ies hypothesized that atmospheric pressure plasma gener-
ated ultra-violet rays alone should adequately inactivate 
bacterial spores (Trompeter et al. 2002; Park et al. 2003; 
Birmingham, 2004; Heise et al. 2004; Lee et al. 2005; 
Boudam et al. 2006; Deng et al. 2006). However, other 
researchers believed that exposure to plasma generated 
ultra-violet rays alone had negligible microbicidal effects 
(Patil et al. 2014; Surowsky et al. 2014; Reineke et al. 
2015). Hence, further investigation is necessary to clear 
up the contrasting hypotheses.

Reactive species

Many plasma devices use inert gases such as neon, argon 
or dinitrogen as feed gas. Although these gases are rather 
inert, electric discharge into these gases induce their atoms 
to reach the metasable, an excited state with relatively long 
shelf life. This state is essential in chemical and ionization 
processes, and in discharge dynamics (Lu et al. 2016). Based 
on the substrate gas used, several reactive species are created 
either within the plasma, or based on plasma interaction with 
the surrounding atmosphere (Na et al. 2013; Zhang et al. 
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2014; Panngom et al. 2014; Perez et al. 2019). The resulting 
reactive species include atomic, radical, ionic and molecu-
lar species such as atomic oxygen (O), ozone  (O3), singlet 
oxygen (1O2), hydroxyl radical (•OH), superoxide radical 
 (O2

•–), nitric oxide (•NO/NO), peroxynitrites  (ONOO– and 
 OONOO–),  H2O2, nitrites and nitrates  (NO2

– and  NO3
–).

The primary reactive oxygen and nitrogen species such 
as •OH, NO,  H2O2, O and  O3 are mainly created in the gas 
phase plasma. If this plasma is discharged through liquid 
surfaces, the primary reactive species undergo transforma-
tions in the liquid by degrading or interacting with each 
other, or with the molecules in the liquid media to generate 
secondary reactive species (Gorbanev et al. 2018). Some-
times, the secondary reactive species may also be generated 
in the gas-liquid interface layer of aqueous solutions (Fig. 2). 
Reactive oxygen and nitrogen species induce responses in 
biological substrates and, in turn, allow to control phytopath-
ogens (Heil et al. 2000; Panngom et al. 2014; Puligundla 
et al. 2017).

The composition of reactive species generated also varies 
depending on the mode of plasma treatment. For example, 
non-thermal plasma can be delivered onto the biological 
targets either by indirect/afterglow or by direct/glow mode. 
During indirect plasma treatment, the initial liquid medium 
is pre-treated with non-thermal plasma and then applied 
onto a biological target (Bermúdez-Aguirre et al. 2013; 
Puligundla et al. 2017). The biological target may also be 
exposed outside the area of discharge, yet close enough to 

interact with plasma generated species (Starič et al. 2020). 
In this case, the effects of plasma could be chiefly attrib-
uted to long-lived molecular and ionic chemical species, 
e.g.,  O3,  H2O2,  NO2

– and  NO3
–, and secondary reactive spe-

cies (Panngom et al. 2014; Guo et al. 2018). Therefore, the 
targets are not exposed directly to radiation and remain in 
contact with long-lived species that are less aggressive in 
nature and possess marginal kinetic energy.

The second mode of application involves direct plasma 
treatment on the biological target, e.g., seeds are placed 
in a liquid medium or directly exposed within the area of 
discharge (Bermúdez-Aguirre et al. 2013; Puligundla et al. 
2017). Here, the targets are subjected to reactive species 
comprising both long- and short-lived species, e.g., O, •NO, 
•OH and  O2

•–, non-radical chemical compounds such as 
singlet oxygen (1O2), positive and negative charged parti-
cles, neutrals, and ultra-violet/vacuum ultra-violet radiation 
(Starič et al. 2020). Xiong et al. (2017) showed the major 
role of short-lived reactive species, e.g., •OH, in exerting 
bactericidal effects, versus long-lived species, e.g.,  H2O2. 
Among various by-products generated, peroxynitrous acid 
(ONOOH) was considered to display high antimicrobial 
activity (Xiong et al. 2017; Perez et al. 2019).

Plasma-generated reactive species can perform many 
actions on microbial surfaces, such as lipid peroxidation 
resulting in the modification of the cell membrane com-
position, reduction in membrane fluidity, alteration in cell 
permeability and destabilization of membrane proteins. 

Fig. 2  Schematic illustration of plasma-based treatment of a water 
and b seed. a Synthesis of plasma-activated water by exposing water 
to plasma that is used for aqueous treatment (soaking or watering) 
of seeds or seedlings, b treatment of seeds either directly with the 

plasma or indirectly by placing the seeds at a sufficient distance from 
the plasma. (Adopted and re-drawn from Sivachandiran and Khacef 
2017)
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These reactions ultimately induce the loss of viability and 
pathogenicity in microbes (Laroussi and Leipold 2004; Joshi 
et al. 2011). Furthermore, stable reactive species that pos-
sess extended cytotoxic activity can disseminate from the 
membrane toward DNA and react with nucleotides, driving 
cellular damage and make DNA repair highly detrimental 
(Yost and Joshi 2015; Rio et al. 2005). In contrast with the 
activities exerted on phytopathogens, reactive oxygen and 
nitrogen species could act as signaling molecules in plants 
for triggering defense-related responses (Adhikari et al. 
2020a).

Charged species

Although the overall antimicrobial activity of cold plasma 
is known, the contribution of each plasma component to 
the antimicrobial activity is unclear. Besides reactive spe-
cies, charged species also contribute to microbial decon-
tamination (Dobrynin et al. 2009; Klämpfl et al. 2012). Few 
researchers proposed that charged particles induce the rup-
ture of the outer membrane of bacterial cells (Mendis et al. 
2000; Stoffels et al. 2008). In addition, mechanical erosion 
of the microbial cellular envelopes could occur due to the 
impact of the high energy plasma particles such as electrons 
and excited atoms (Butscher et al. 2016). Sometimes aggre-
gation of charges on particular regions of the microbial cell 
surface may occur, thus increasing the permeability of cells, 
termed electroporation (Laroussi et al. 2003).

Overall, the mechanisms ruling the inactivation of phy-
topathogens involve harmful effects of plasma-generated 
reactive species, charged particles and ultra-violet photons 
that target cell membranes and cellular proteins, leading in 
particular to subsequent denaturation of microbial DNA (Lu 
et al. 2014; Hertwig et al. 2018). Physico-chemical changes 
on the cell surface also cause damage to microbes, lead-
ing to their deactivation (Sugimoto et al. 2008; Deora et al. 
2011; Lu et al. 2014; Pérez Pizá et al. 2018). Among various 
components of plasma, reactive species are widely reported 
to be actively involved in causing oxidative damage to intra-
cellular macromolecules of pathogens. Besides, in plants, 
reactive oxygen and nitrogen species are widely reported as 
key signaling molecules that have the capability to regulate 
disease stress through activation of plant defense systems 
(Simontacchi et al. 2015; Dietz et al. 2016).

Selective effects of plasma‑generated 
reactive species on plant and microbial cells

In order to have a definite understanding of the plasma-
mediated disease control, comprehensive knowledge on 
the interaction of plasma-generated reactive species with 
plant and microbial cells stands as a key pre-requisite. 

Primary reactive oxygen and nitrogen species can either 
impact microbial cells directly or interact with the medium 
located between plant and microbial cells to produce sec-
ondary reactive species (Adhikari et al. 2020a, b). Here, it 
is expected that the produced oxidative stress alters more 
the microbial pathogens than the plant cells, because plant 
cells tolerate oxidative stress better than microbial cells 
(Dobrynin et al. 2009; Gay-Mimbrera et al. 2016). Indeed, 
prokaryotic plant pathogens, notably bacteria, possess naked 
DNA and thus remain more sensitive to plasma treatment 
than the eukaryotic plant cells (Holubová et al. 2020). Simi-
larly, long-term exposure to plasma-generated reactive spe-
cies is likely to rise reactive oxygen and nitrogen species 
to levels that defeat the antioxidant capability of microbial 
cells, while plant cells maintain homeostasis (Adhikari et al. 
2020a, b). Reactive oxygen and nitrogen species display a 
peculiar role during plant-pathogen interactions. They tend 
to provoke different signaling pathways in the pathogen and 
host (Panngom et al. 2014). Reactive oxygen species such 
as  O2

•–,  OH• and  H2O2 can oxidize key macromolecules of 
pathogens and devitalize them (Kumar et al. 2015). Reactive 
species also activate defense-related gene cascade systems 
including mitogen-activated protein kinase, respiratory burst 
oxidase homolog and trigger the expression of pathogenesis-
related genes in the host plants (Panngom et al. 2014; Adhi-
kari et al. 2019, 2020a). Moreover, activation of jasmonic 
acid and salicylic acid-mediated defense pathways boosts the 
systemic acquired resistance and hypersensitive responses in 
plants (Vanacker et al. 1998; Adhikari et al. 2020a).

Mechanism of non‑thermal 
plasma in promoting inactivation 
of phytopathogens

Plasma-generated reactive species and other plasma com-
ponents achieve microbial decontamination by penetration 
followed by inactivation. During penetration, mechanical 
erosion and oxidative damage breaks the chemical bonds 
and proteins on the microbial cell envelopes. Such surface 
abrasions on microbial cells can occur either by the direct 
effect of ultra-violet photons or by etching of highly ener-
getic ions and reactive species (Leipold et al. 2010; Butscher 
et al. 2016).

Microbial cell surface modifications

The flux of plasma-generated reactive oxygen species into 
microbial cells enhances oxidative stress, resulting in the 
oxidation of regulatory macromolecules and ultimately cell 
death (Lackmann and Bandow, 2014; Tiwari et al. 2018). 
Plasma-generated reactive oxygen species display different 
modes of action during the devitalization of gram-negative 
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and gram-positive bacteria (Han et al. 2016). For gram-pos-
itive strains, higher levels of intracellular reactive oxygen 
species promote the inactivation of bacterial cells. For gram-
negative strains, damage to the cellular membrane is the 
main cause of lethality (Han et al. 2016). Likewise, charged 
particles are major compounds involved in the breakage of 
outer cell membranes, particularly in gram-negative bac-
teria, which have thin outer membrane and murein layer 
(Mendis et al. 2000). Overall, microbial death is controlled 
by substantial build-up of oxidative stress and damage to 
various cellular structures and macromolecules during the 
penetration process (Leipold et al. 2010; Kumar et al. 2015). 
Nonetheless, if the pathogen is strong enough to bear the 
damage, these processes would at least facilitate the pen-
etration of reactive species into the nucleus of cells and, in 
turn, alter the microbial DNA and proteins in an irreversible 
manner (Kumar et al. 2021a, b).

Plasma‑elicited deleterious effects on the microbial 
genome

Many studies revealed reactive species such as  H2O2,  O2
•–, 

1O2 and NO are main agents involved in microbial inactiva-
tion (Takamatsu et al. 2015; Yost and Joshi, 2015; Misra 
et al. 2019). Yet the contribution of other plasma compo-
nents should not be discounted (Dobrynin et al. 2009). In 
general, reactive species at substantial levels stimulate lipid 
peroxidation. Peroxidation of lipids on the microbial cell 
surface alters membrane permeability and diminish cell via-
bility (Joshi et al. 2011; Hosseinzadeh-Colagar et al. 2013; 
Panngom et al. 2014; Pawłat et al. 2018).

Lipid peroxidation also induces the production of inter-
mediate reactive compounds such as peroxyl, hydroxyl radi-
cals and reactive aldehydes including malonaldehyde that 
serve as secondary toxic messengers (Dobrynin et al. 2009; 
Joshi et al. 2011; Pérez-Pizá et al. 2021). Aldehydes diffuse 
easily through the membrane then react with cellular DNA 
and  induce severe cytotoxic effects (Yost and Joshi, 2015; 
Pérez-Pizá et al. 2021). Indeed, aldehydes induce nucleo-
tide modifications, trigger cross-links between nucleotides 
and interrupt the cell growth as well as repair mechanisms 
(Rio et al. 2005). Aldehydes also induce the development of 
crosslinks in the protein polypeptide chains that ultimately 
alter the enzymatic activity and membrane bound proteins 
of microbes (Joshi et al. 2011; Šimončicová et al. 2018). 
Thus, plasma-induced modifications on the microbial cell 
surface and deleterious effects on the genetic material allow 
microbial decontamination.

Speculative signaling pathways inducing 
defense responses in plant systems

Whether cold plasma affects only the surface of the seed, 
or promote internal changes in the seed still remains incon-
clusive. Few studies reported poor permeability of cold 
plasma into seeds (Niedźwiedź et al. 2019). Yet other studies 
reported that plasma-induced reactive species and ultra-vio-
let radiation promote plant growth and development under 
disease stress through inactivation of phytopathogens and 
activation of defense-related responses in plant cells (Iran-
bakhsh et al. 2017, 2018a, b; Perez et al. 2019; Adhikari 
et al. 2020a). Thus, in addition to exhibiting detrimental 
effects on the phytopathogens, the plasma treatment has the 
capacity to induce immune responses in plants termed as 
plasma-induced 'plant vaccination'. This could be achieved 
perhaps through the preferential activity of reactive spe-
cies that instigate oxidative burst and constantly activate 
defense signaling pathways, thus promoting the expression 
of defense-related genes in plants.

Reactive oxygen and nitrogen species generated from 
plasma treatment can enter into the plant system either by 
wounding, mechanical stress induced during direct treat-
ment or through stomatal openings, and then modify various 
cellular processes (Heil et al. 2000; Filipić et al. 2019). After 
gaining entry into the plant, reactive species are perceived 
by plant cells, resulting in the change of concentrations of 
intracellular reactive species. Here, plasma-generated reac-
tive species are expected to perform similar functions as 
the reactive species produced from other sources. Therefore, 
 H2O2 and oxides of nitrogen  (NOx) generated from plasma 
should follow similar mechanisms of action as exogenously 
applied  H2O2 and  NOx and thus should have a similar impact 
on plant cells (Antoniou et al. 2016; Thomas and Puthur, 
2017).

H2O2‑mediated signaling and regulation 
of transcription factors

In general, unstable reactive oxygen species including 
 O2

•– and 1O2 might react with various components of plant 
cells. Stable reactive oxygen and nitrogen species such as 
 H2O2 and NO move into the plant cell wall by diffusion into 
the apoplast through aquaporins (Jang et al. 2012). They 
interact with the cell membrane receptors, activating differ-
ent defense-related genes, proteins and hormones.  H2O2 is a 
signaling molecule that mainly targets calcium homeostasis 
and alters ion channels, transcription factors, kinases and 
phosphatases by oxidization of the methionine residues of 
proteins (Ghesquière et al. 2011; Petrov and Van Breusegem, 
2012). Moreover,  H2O2 activates the mitogen-activated pro-
tein kinase cascade during plant-pathogen interactions, thus 
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promoting defense gene activation (Zhang et al. 2007; Xing 
et al. 2008).

H2O2 acts by altering the mitochondrial membrane poten-
tial and changing the phosphorylated mitogen-activated pro-
tein kinase levels in a dose-dependent manner (Zhang and 
Klessig, 2001; Kaushik et al. 2015). Consequently, mitogen-
activated protein kinase phosphorylates key transcription 
factors such as WRKY and arabidopsis NAC transcription 
factor (ANAC042) (Petrov and Van Breusegem, 2012). 
The WRKY name is derived from the highly conserved 60 
amino acid long WRKY domains of the transcription factors 
that possess a novel zinc-finger-like motif at the C-termi-
nus and conserved heptapeptide motif WRKYGQK at the 
N-terminus (Bakshi and Oelmüller, 2014). The NAC name 
was coined based on the names of three transcription fac-
tors, viz., NAM (no apical meristem of Petunia), ATAF1-2 
(Arabidopsis thaliana activating factor) and CUC-2 (cup-
shaped cotyledon of Arabidopsis) (Jensen et al. 2010). In 
the following sections, both the transcription factors are 
annotated as WRKY and NAC, respectively.

Several other transcription factors, including zinc finger 
of Arabidopsis thaliana (ZAT), dehydration-responsive ele-
ment binding (DREB) factor, basic leucine zipper (bZIP) 
and myeloblastosis family (MYB), were also proclaimed 
to be activated by  H2O2 signaling, which in turn regulate 
the expression of defense-related genes (Petrov and Van 
Breusegem, 2012). Furthermore,  H2O2 catalyzes the syn-
thesis of salicylic acid by mobilizing the activity of benzoic 
acid 2-hydroxylase enzyme triggering the systemic acquired 
responses and inducing expression of pathogenesis-related 
genes (Leon et al. 1995; Kuzniak and Urbanek, 2012).

NO triggers the activity of defense genes

Another signaling molecule, NO is also involved in regu-
lating jasmonic acid signaling through de-nitrosylation 
and nitrosylation of tyrosine residues triggering hypersen-
sitive responses. Some studies stated that NO is involved 
in changing the configuration of non-expressor of patho-
genesis related gene-1 (NPR1). NPR1 is considered as 
a key transcriptional co-regulator involved in stimulat-
ing plant defense responses by the S-nitrosylation of 
cysteine-156 residue in plants (Tada et al. 2008; Mukhtar 
et al. 2009; Kovacs et al. 2015). Adhikari et al. (2019) 
reported induction in the expression of allene oxide 
synthase (AOS) and 12-oxophytodienoate reductase-1 
(OPR1) involved in jasmonic acid biosynthesis pathway in 
the tomato seedlings treated with plasma-activated water. 
In addition to the activation of plant immune responses, 
NO was suggested to play a significant role in controlling 
the survival and virulence of several fungal pathogens in 
plants (Arasimowicz-Jelonek and Floryszak-Wieczorek, 
2016). Supporting this, Perez et al. (2019) reported a lack 

of antimicrobial activity against Xanthomonas campestris 
that could be related to the absence of ONOOH,  NO2

- spe-
cies and extremely low concentrations of  H2O2 generated 
during plasma treatment.

These studies suggest that crop plants respond to vari-
ous stresses by instigating several morphological, bio-
chemical and molecular mechanisms by robust cross-talks 
among various signaling pathways (Nejat and Mantri, 
2017). All these different mechanisms are interdepend-
ent and consecutively promote hypersensitive responses 
either by programmed cell death or necrosis, leading to 
microbial inactivation or enhancing the capability of 
plants in alleviating diseases through the expression of 
various defense response genes. Nevertheless, the specific 
mechanisms that lead to virus inactivation by non-thermal 
plasma remain unclear. Few studies demonstrated that 
exposure of viruses to non-thermal plasma often results in 
modification or degradation of viral proteins along with 
nucleic acids and lipids in the enveloped viruses (Davies, 
2003; Morgan et al. 2004; Cadet et al. 2008; Tanaka et al. 
2014). Yet, few research groups identified that damage to 
viral coat protein itself is adequate for deactivating viral 
particles with their genetic material remaining intact after 
non-thermal plasma treatment (Yasuda et al. 2010; Zim-
mermann et al. 2011; Filipić et al. 2019).

Although a majority of signaling mechanisms cited 
above were due to the activity of reactive oxygen and 
nitrogen species generated from sources other than 
plasma, they are presumed to perform similar activi-
ties in non-thermal plasma-treated plants. Supporting 
this notion, few studies have demonstrated that exog-
enous application of reactive oxygen and nitrogen spe-
cies as well as ultra-violet radiation could impose simi-
lar effects resulting in enhanced stress resistance, before 
stress events (Antoniou et al. 2016; Thomas and Puthur 
2017). Hence, future research should be essentially cen-
tered on mechanisms promoting plant disease control by 
non-thermal plasma treatment to clear up various exist-
ing hypotheses and a precise understanding of technol-
ogy. Regardless of the overall complexity, we propose a 
general scheme (Fig. 3) with hypothetical illustration of 
the mechanisms involved in microbial inactivation and 
activation of plant defense responses.

Non‑thermal plasma to enhance plant 
tolerance to abiotic stresses

Abiotic stress remains a major issue faced by agriculture. 
Several abiotic stress conditions such as drought, heat, 
cold, salinity and heavy metal toxicity often affect the plant 
growth resulting in poor crop stand and reduced agricultural 
productivity (Soltani et al. 2006; Jabbari et al. 2013). Based 
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on the FAO reports, Cramer et al. (2011) stated that approxi-
mately 96.5% of global rural land area is affected by abiotic 
stresses. Boyer (1982) during early 1980s, reported that as 
much as 70% of crop production loses may occur due to 
environmental factors alone. Dhlamini et al. (2005) reported 
that 6-20% of crop production costing around US$120 bil-
lion is estimated to be lost, due to the effect of various abi-
otic stress factors world-wide annually.

Recently, using genetic and biotechnological tools 
breeders have generated varieties that are resilient to vari-
ous climatic stress conditions. However, practical use of 
stress tolerant varieties have their own limitations simi-
lar to disease resistant varieties. On the other hand, non-
genetic approaches include conventional practices such as 
exogenous application of hormones, plant growth regula-
tors, metabolites (Hsu et al. 2003; Ma et al. 2004; Huang 
et al. 2013; Yang et al. 2014; Godoy et al. 2021) and treat-
ment using magnetic and electric fields (Javed et al. 2011; 
He et al. 2016). Among these methods, application of non-
thermal plasma has captured attention in recent years as 
an environmentally safe and sustainable approach of seed 
treatment for the management of abiotic stresses in plants.

Non-thermal plasma treatment on seeds is anticipated to 
act as a “mild stressor” that could induce signaling path-
ways and strengthen the plant to combat other abiotic stress 
factors. Supporting this idea, research conducted to assess 
the role of non-thermal plasma treatment in the alleviation 
of abiotic stresses demonstrated multiple positive effects of 
plasma treatment over the conventional technologies (Wu 
et al. 2007; Ling et al. 2015; Guo et al. 2017; Iranbakhsh 
et al. 2017; de Groot et al. 2018; Kabir et al. 2019).

Drought stress tolerance

Drought or water-deficit stress is a major climatic stress 
that reduces crop production and food security. Approxi-
mately 454 million hectares of area across the world 
experienced drought-induced yield losses accounting 
to US$166 billion during 1983-2009 (Kim et al. 2019). 
Under drought stress conditions, treatment with non-ther-
mal plasma was identified to provoke a broad spectrum of 
physiological and developmental process in plants that are 
discussed in detail in this section.

Fig. 3  Putative mechanisms enhancing microbial inactivation and 
disease stress tolerance in plants through non-thermal plasma treat-
ment. Plasma components initially act to prevent entry of pathogen 
into the plant cell by etching, degradation of vital proteins and DNA 
in the cells of microbes. If the pathogen subsides this damage and 
gain entry into the plant cells, plasma components could possibly 
trigger defense responses mainly by the activity of reactive species. 
Reactive species such as NO and  H2O2 act as key signaling mol-

ecules in triggering mitogen-activated protein kinase cascade result-
ing in transcription and activation of defense-related genes. Besides 
they tend to provoke secondary defense signaling pathways mediated 
by phytohormones and expression of pathogenesis-related proteins. 
Altogether, these processes would facilitate systemic acquired resist-
ance/hypersensitive responses in plants leading to programmed cell 
death or necrosis in the infected tissues
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Plasma treatment promotes seedling growth, activities of 
superoxide dismutase and peroxidase and increase proline 
concentration in wheat under drought stress (Huang, 2010). 
In another study, Guo et al. (2017) simulated drought stress 
on wheat plants using polyethylene glycol. The seeds treated 
with dielectric barrier discharge plasma could alleviate poly-
ethylene glycol-induced drought stress, whereas untreated 
seedlings were prone to oxidative damage due to increase 
in  H2O2,  O2

- and malonaldehyde concentrations. Further, 
significant enhancement in the cellular abscisic acid levels, 
superoxide dismutase and catalase activity was noticed in the 
treated plants. In addition, plasma could induce the expres-
sion of late embryogenesis abundant (LEA) proteins, as well 
as the regulatory genes, sucrose non-fermenting-1-related 
protein kinases-2 (SnRK2) and pyrroline-5 carboxylate syn-
thase (P5CS) enhancing tolerance to drought stress.

In oilseed rape, Brassica napus L., effects of plasma treat-
ment were analyzed by imposing drought stress, and seeds of 
both drought-sensitive and drought-tolerant cultivars were 
exposed to cold plasma. Interestingly, treated seeds of both 
cultivars had lesser oxidative damage and normal metab-
olism due to enhanced production of antioxidants, viz., 
superoxide dismutase and catalase. Further, accumulation 
of compatible osmolytes was also reported in the treated 
seedlings promoting osmotic balance under stress condi-
tion (Ling et al. 2015). Similarly, Adhikari et al. (2020a) 
evaluated the effect of plasma priming on the tomato seeds 
artificially imposed to polyethylene glycol-induced drought 
stress. Treatment with plasma could induce seed germina-
tion and seedling growth under drought stress mediated by 
the activity of phytohormones, antioxidants, stress signaling 
genes and histone modifications.

Tolerance against heavy metal toxicity

Severe anthropogenic activities including mineral extrac-
tion and excess use of inorganic fertilizers and pesticides 
generally result in heavy metal pollution. Accumulation 
of toxic heavy metals in the soil could affect seed germi-
nation and vital developmental processes of plants reduc-
ing growth, yield and quality (FAO 2015; Manzoor et al. 
2018). In wheat, a study was conducted to investigate the 
role of plasma in limiting heavy metal phytotoxicity, using 
low pressure dielectric barrier discharge generated from 
argon/air and argon/oxygen. Both plasma variants could 
interfere with the expression of cadmium transporter genes 
of wheat, viz., low-affinity cation transporter-1 (TaLCT1) 
and heavy metal adenosine triphosphatase-2 (TaHMA2) 
in the roots (Kabir et al. 2019). Further, cadmium-induced 
oxidative damage in tissues was reported to be significantly 
declined due to upregulated activity of wheat superoxide dis-
mutase (TaSOD) and catalase (TaCAT) genes.  The inhibi-
tory effect of plasma on cadmium uptake was also ascribed 

to the decrease in cellular pH resulting from the activity of 
reactive species that severely limited the bioavailability of 
the metal from the rhizosphere. Along with this, reduction in 
electrolyte leakage, decline in cell death in roots and shoots 
as well as the improvement in total soluble proteins were 
noticed. Results from grafting experiments using plasma-
treated seedlings as root stock suggested, NO to play a key 
role as signaling molecule in alleviating cadmium toxicity 
(Kabir et al. 2019).

Hou et al. (2021) investigated the effects of cold plasma 
treatment in limiting the uptake of cadmium and lead by 
water spinach. The effect of different modes of plasma treat-
ment including treatment on seeds, plasma-activated water 
and both was also analyzed. Findings suggested combination 
of treatments to be highly effective in controlling cadmium 
uptake by plants, by inhibiting the expression of metal trans-
porter genes, similar to that reported by Kabir et al. (2019). 
However, plasma treatment induced the concentration of 
lead, that could be probably assigned to the activation of 
lead transporter genes in roots of water spinach. The authors 
expressed that the inconsistency in the results with respect 
to lead accumulation could be due to certain limitations in 
their study including reduced sample size and lack of opti-
mization of plasma parameters. These studies demonstrate 
that application of non-thermal plasma could open up new 
avenues in the field of bioremediation.

Plasma priming for protection against nanoparticles

Metal and metal oxide nanoparticles provide beneficial 
effects to plants, including heavy metal decontamination 
(Cartwright et al. 2020). However, few studies reported cyto-
toxic effects of nanoparticles on plant cellular systems, nota-
bly at high concentrations (Yang et al. 2015; Boonyanitipong 
et al. 2011). Iranbakhsh et al. (2018b) found that pre-treat-
ment with cold plasma could induce a growth-promoting and 
protective effect against zinc oxide (ZnO) nanoparticles in 
bell pepper. They suggested that plasma compounds such as 
NO, ozone and ultra-violet radiation promote the activity of 
antioxidants, viz., phenylalanine ammonia lyase and peroxi-
dase that alleviate the toxic effects imposed by nano-ZnO. 
Similarly, non-thermal plasma-treated seedlings of Melissa 
officinalis could overcome the toxic effect of high concen-
trations of selenium and ZnO nanoparticles (Babajani et al. 
2019). Pre-treatment of Chicorium intybus seedlings using 
non-thermal plasma could mitigate the phytotoxic effects of 
elevated concentrations of selenium nanoparticles, and sig-
nificant improvement in the growth characteristics of treated 
seedlings was also noticed (Abedi et al. 2020).
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Salinity tolerance

Soil salinity impairs plant growth and develop-
ment through osmotic stress, oxidative stress, and nutri-
tional imbalance and exerts cytotoxic effects on plants due 
to excessive uptake of sodium and chloride ions (Isayenkov 
et al. 2012). Recently, few studies expressed the capability 
of non-thermal plasma treatment in ameliorating the impact 
of salinity stress in rice and wheat. Iranbakhsh et al. (2017) 
noted that dielectric barrier discharge plasma treatment on 
wheat seedlings could promote tolerance against salt stress. 
The authors observed induction in the expression of heat 
shock factor-4A (HSFA4A) and activity of peroxidase and 
phenylalanine ammonia lyase in treated seedlings, that trig-
gered defense responses and assisted in combating the dete-
riorative impacts of salinity.

Sheteiwy et al. (2018) treated the seeds of rice using cold 
plasma, salicylic acid and a combination of both to investi-
gate their effects on salinity tolerance. Both the treatments 
individually and in combination performed well, and could 
enhance plant growth and uptake of nutrients, besides reduc-
ing ion imbalance under salinity stress. Simultaneously, 
increase in the activity of enzymatic and non-enzymatic 
antioxidants as well as decrease in oxidative damage due to 
sharp decline in the concentrations of reactive oxygen spe-
cies and malonaldehyde was noticed in the treated seedlings.

Alleviation of multiple stress factors

Emerging evidences suggest that pre-treatment with non-
thermal plasma could elicit adaptive responses in plants to 
protect themselves against a combination of stress factors. 
When multiple stressors, viz., salinity, cold and drought, 
were simultaneously imposed on plasma pre-treated seeds 
of maize, drastic changes in osmolyte production and accu-
mulation of proline, as well as soluble sugars were observed 
(Wu et al. 2007). A significant rise in the activity of peroxi-
dase resulting in reduction in electrolyte leakage was noticed 
that aided in coping with the multiple stress factors. Like-
wise, cold plasma treatment on cotton seeds significantly 
improved germination and water absorption in the seedlings 
that were subjected to adverse climatic conditions of chilling 
temperature and water scarcity (de Groot et al. 2018).

Bafoil et al. (2019) studied the effect of non-thermal 
plasma treatment in managing salinity and osmotic stress 
in Arabidopsis thaliana mutants glabra-2 (gl2) and glyc-
erol-3-phosphate acyltransferase-5 (gpat5). Pre-treatment 
with non-thermal plasma induced structural changes on 
the mantle layers of the seed coat reducing its permeability 
and improved seed germination by diminishing the nega-
tive effects of stress to a certain extent. Similarly, irrigation 
with plasma-activated water in barley improved tolerance 

against a combination of stress factors including hypoxia, 
low-temperature and salinity (Gierczik et al. 2020).

Stress tolerance through plasma‑mediated 
epigenetic changes

Few studies recently demonstrated far-reaching effects of 
plasma treatment through epigenetic modifications. Argon 
plasma treatment promoted seed germination and seedling 
growth in soybean under oxygen-deficit conditions by modu-
lating the demethylation of adenosine triphosphate (ATP), 
the target of rapamycin (TOR) and growth-regulating fac-
tor (GRF) genes involved in energy metabolism (Zhang 
et  al. 2017). In other study, non-thermal plasma treat-
ment has been proved to enhance the germination of rice 
seeds matured under heat stress. Knock-down expression 
of nine-cis-epoxycarotenoid dioxygenase (NCED) genes, 
i.e., OsNCED2 and OsNCED5 involved in abscisic acid 
synthesis, and up-regulation of abscisic acid 8'-hydroxylase 
(ABA8'OH) genes, i.e., OsABA8'OH-1 and OsABA8'OH-3 
involved in abscisic acid catabolism along with α-amylase 
synthesizing genes, viz., OsAmy1A, OsAmy1C, OsAmy3B 
and OsAmy3E was reported in this study. It was concluded 
that plasma treatment could provoke epigenetic changes 
through hypo-methylation of OsAmy1C and OsAmy3E 
promoters and hyper-methylation of the OsNCED5 pro-
moter (Suriyasak et al. 2021). The alterations in DNA meth-
ylation patterns caused by plasma treatment could revise 
the gene expression and enhance germination of rice seeds 
that were exposed to heat stress during grain filling stage. 
Similarly, Adhikari et al. (2020a) noticed histone modifica-
tions in tomato seedlings subjected to cold plasma priming 
due to the activity of reactive oxygen species. The study 
observed up-regulation in the enzymatic activities of histone 
acetyltransferase (HAT) and histone-lysine N-methyl-trans-
ferases (HFMET), key players involved in regulating histone 
modifications. The convergent action of these enzymes was 
anticipated to regulate the activity of different biochemicals 
and stress-related genes that ultimately conferred drought 
stress tolerance.

Overall, non-thermal plasma induces several modifica-
tions at biochemical and molecular levels in plants during 
abiotic stress management (Table 2). The outcome from 
the above studies clearly epitomizes that, application of 
non-thermal plasma treatment in crops has the potential to 
enhance abiotic stress tolerance. They tend to decrease the 
oxidative damage to plant membranes through the promo-
tion of both enzymatic and non-enzymatic antioxidants, and 
upregulate the activities of enzymes related to secondary 
metabolism. At the molecular level, plasma-elicited plant 
responses mainly comprise of triggering the activity of 
stress-related genes and epigenetic modifications that act in 
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Table 2  Published data on the effect of non-thermal plasma in provoking abiotic stress responses in various plant species

Crop Type of plasma Impact summary Reference

Drought stress
Wheat Arc discharge plasma Plasma treatment induced the activity of 

peroxidase, α-amylase and soluble proteins 
enhancing drought tolerance. However, 
the degree of tolerance varied between the 
cultivars

Huang (2010)

Oil seed rape Radio frequency capacitively coupled plasma 
generated using helium gas

The activities of superoxide dismutase and 
catalase were increased by 17.71%, 16.25% 
and 13.0%, 13.2% in drought-sensitive and 
drought-tolerant cultivars, respectively. 
Further, enhancement in germination rate, 
soluble sugars and proteins as well as 
reduction in malonaldehyde content was 
noticed under water-deficit conditions

Ling et al. (2015)

Wheat Dielectric barrier discharge plasma Pre-treatment with plasma enhanced seedling 
length, proline, soluble sugars and antioxi-
dant activity, whereas noticeable decrease 
in malonaldehyde content and reactive 
oxygen species was reported. Besides, 
germination potential and germination rate 
increased by 27.2% and 27.6%, respec-
tively, during drought stress

Guo et al. (2017)

Tomato Plasma-activated water Application of plasma-activated water could 
upregulate the synthesis of pathogenesis-
related genes, induce hormone-mediated 
signaling, epigenetic modifications and 
proline accumulation promoting both dis-
ease resistance and drought stress tolerance

Adhikari et al. (2020a)

Heavy metal stress
Wheat Low pressure dielectric barrier discharge 

using (air/argon, argon/oxygen)
Reduction in pH of seeds due to plasma-

induced nitrogen species resulted in 
decreased bioavailability of cadmium. 
Increase in the activity of catalase and 
super oxide dismutase, total soluble protein 
content and down-regulation of cadmium 
transporter genes was noticed in treated 
seedlings

Kabir et al. (2019)

Water spinach Atmospheric pressure plasma jet Plasma treatment could significantly reduce 
the bioconcentration factor of cadmium 
from 0.864 to 0.54. However, the concen-
tration of lead remained unaffected through 
plasma treatment

Hou et al. (2021)

Salinity stress
Wheat Dielectric barrier discharge plasma Treatment with plasma enhanced the expres-

sion of heat shock transcription factor-4A, 
peroxidase activity by 25%, phenylalanine 
ammonia lyase activity by 21% enhancing 
tolerance to salt stress. Besides, increase 
in shoot dry mass (18%), leaf area (18%) 
and chlorophyll-a content (37.5%) were 
reported

Iranbakhsh et al. (2017)

Rice Cold plasma treatment using nitrogen and 
oxygen

Reported synergistic effect of plasma treat-
ment and salicylic acid priming in alle-
viating the salt stress. Noticed significant 
improvement in the activity of superoxide 
dismutase, peroxidase, catalase and ascor-
bate peroxidase, as well as sharp decline 
malonaldehyde content, reactive species 
and cell death

Sheteiwy et al. (2019)
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min minutes

Table 2  (continued)

Crop Type of plasma Impact summary Reference

Multiple stress factors
Maize Atmospheric pressure cold plasma Soluble sugar content, proline, peroxidase 

activity increased by average of 5.5%, 
24.7% and 33.3%, respectively, and 
electrolyte leakage decreased by 20.9% 
resulting in tolerance against drought, cold 
and salinity

Wu et al. (2007)

Cotton Cold plasma generated using air/ argon Treatment using air for 3 min had significant 
impact in enhancing water absorption, 
whereas treatment for 21 min using air 
could enhance both water absorption and 
germination, followed by 81 min of argon 
plasma treatment increasing tolerance to 
both cold and water-deficit stress

de Groot et al. (2018)

Arabidopsis thaliana Dielectric barrier discharge plasma using 
ambient air

Plasma treatment could induce modifications 
on the seed surface reducing its permeabil-
ity and enhancing water uptake as well as 
germination rate in the presence of salinity 
and osmotic stress

Bafoil et al. (2019)

Barley Plasma-activated water Treatment with plasma-activated water could 
enhance tolerance to low-temperature stress 
and hypoxia. NaCl-induced salt stress 
was mitigated through improvement in 
antioxidants, cysteine, γ-glutamylcysteine 
and carotenoids. Together with glutathione, 
these compounds could scavenge excess 
reactive oxygen species and reduce salt-
stress induced damage

Gierczik et al. (2020)

Other stress factors
Soybean Argon plasma Plasma-induced alleviation of oxygen-deficit 

stress through epigenetic modifications 
including demethylation of genes involved 
in energy metabolism

Zhang et al. (2017)

Capsicum annum Atmospheric pressure cold plasma Inhibitory effects of zinc oxide nanoparti-
cles on plants were potentially alleviated 
through plasma treatment. The activities of 
phenylalanine ammonia lyase and soluble 
phenols were enhanced and significant 
improvement in chlorophyll-a and carot-
enoids was noticed

Iranbakhsh et al. (2018a, b)

Melissa officinalis Atmospheric pressure cold plasma Toxic signs of both zinc oxide and selenium 
nanoparticles were partly mitigated by the 
activity of plasma components. Induction 
in peroxidase and phenylalanine ammonia 
lyase activity along with improvement in 
growth characteristics and biomass accu-
mulation was noticed

Babajani et al. (2019)

Chicorium intybus Dielectric barrier discharge plasma Plasma treatment could alleviate the toxic 
effects of selenium nanoparticles induced 
by the activity of catalase and peroxidase. 
Further, improvement in shoot and root 
biomass, number of flowers and their fresh 
weight was noticed

Abedi et al. (2020)

Rice Atmospheric pressure cold plasma Plasma treatment could provoke epigenetic 
changes through both methylation and 
demethylation of promoters involved in 
α-amylase synthesis and abscisic acid 
synthesis promoting germination in seeds 
exposed to heat stress

Suriyasak et al. (2021)
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a synergistic manner and assist the plants in alleviating vari-
ous stress factors.

Non‑thermal plasma and plant interactions 
favoring alleviation of abiotic stresses

Non-thermal plasma-plant interactions are complex, and 
thus, a plethora of responses are expected to be generated in 
plants by the activity of various plasma components (Fig. 4). 
Pre-treatment with plasma could provoke both the synthesis 
and activity of several antioxidants involved in maintaining 
reactive oxygen species homeostasis. Further plasma-elic-
ited expression of several stress-responsive genes, transcrip-
tion factors and epigenetic modifications has been reported 
to enhance the plant’s ability to fight against several abiotic 
stress factors that are discussed in detail in this section.

Plasma‑induced antioxidants as scavengers 
of reactive oxygen species

Changes in the metabolism of reactive oxygen species are 
critical for plant cells. Based on their concentrations, reac-
tive oxygen species can feature either beneficial or damaging 
effects to plant cells. Generally, overproduction of reactive 
oxygen species during stress results in deficiency of antioxi-
dant enzymes leading to toxic events in cells. It is hypoth-
esized that plasma-generated reactive species could also 
add to the cellular production level of endogenous reactive 
oxygen and nitrogen species. Thus, high level of oxidative 
stress could be detrimental to cell survival and in many cases 
lead to induction of apoptosis. Nevertheless, experimental 
evidences strongly suggest that plasma treatment with a 
low power and short exposure time could strengthen cel-
lular antioxidant systems and regulate crop stress tolerance 
without imposing any kind of oxidative stress.

Several researchers opined that synthesis and activity of 
various antioxidants, e.g. superoxide dismutase, peroxidase, 
catalase, phenylalanine ammonia lyase and dehydrogenase, 

Fig. 4  Plausible non-thermal plasma elicited responses in plants 
against various abiotic stresses Pre-treatment of seeds or seedlings 
with non-thermal plasma could i induce synthesis of antioxidants that 
scavenge excess reactive species and re-establish homeostasis, ii acti-
vate several transcription factors that trigger the expression of stress-
responsive genes and epigenetic changes lead to DNA and histone 
protein modifications, iii accumulation of soluble osmolytes helps to 

maintain ion and osmotic balance as well as reduce the production of 
malonaldehyde, iv reactive species produced from plasma reduce the 
cellular pH and knock-down the activity of metal transporter genes 
that impairs the uptake of heavy metals from soil (It is to be noted 
that effect of reduction in pH on uptake of heavy metals varies with 
the crop species)
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could be enhanced by pre-treatment of seeds and seedlings 
using non-thermal plasma under environmentally controlled 
conditions (Wu et al. 2007; Ling et al. 2015; Guo et al. 2017; 
Iranbakhsh et al. 2017, 2018a, b; de Groot et al. 2018; Kabir 
et al. 2019). This ensures prevention of oxidative damage 
and scavenging of excess reactive species improving sur-
vival of plants under stress condition. Among various anti-
oxidants, peroxidase and phenylalanine ammonia lyase were 
deciphered to play a crucial rule during both biotic and abi-
otic stresses (Iranbakhsh et al. 2018a, b). Iranbakhsh et al. 
(2017) reported induction in the activity of peroxidase due 
to the elevation of HSFA4A, and through signaling medi-
ated by bioactive components of plasma. Many research-
ers opined that increase in the activity of peroxidase could 
contribute to tolerance against various abiotic stress fac-
tors in different crop species (Wu et al. 2007; Iranbakhsh 
et al. 2017; Babajani et al. 2019). Similarly, a close asso-
ciation between activity of phenylalanine ammonia lyase 
and defense-related responses has been observed in plants 
(Valifard et al. 2014). Since non-thermal plasma treatment 
could intensify the activity of these two key antioxidants, it 
is anticipated to enhance abiotic stress tolerance in treated 
plants.

On the other side, secondary metabolites synthesized in 
plants, especially phenols and anthocyanins, also function 
as powerful non-enzymatic antioxidants mediating reactive 
oxygen species scavenging, and are widely reported to be 
involved in stress protection (Šamec et al. 2021). In agree-
ment to this, application of non-thermal plasma on seeds 
of Echinacea purpurea demonstrated a remarkable increase 
in the concentrations of vitamin-C and other polyphenols, 
that eventually augmented radical scavenging activity (Mil-
daziene et al. 2018). Bußler et al. (2015) witnessed increase 
in the concentration of flavonoid glycosides through die-
lectric barrier discharge treatment in peas that enhanced 
tolerance to oxidative stress. Besides enhancing abiotic 
stress tolerance, the anthocyanins and phenols synthesized 
in response to non-thermal plasma treatment were known 
to instigate the disease stress tolerance in maize (Filatova 
et al. 2020). Phenylalanine ammonia lyase is considered as 
a key enzyme involved in polyphenol biosynthesis and is 
transcriptionally regulated by various environmental and 
developmental factors (Rossi et al. 2016). It can critically 
influence the defense responses in plants for a wide range 
of abiotic stresses (Wada et al. 2014). A positive relation 
between the activity of phenylalanine ammonia lyase and 
intensification of phenolic compounds involved in plant cell 
wall strengthening was noticed, resulting in osmotic stress 
tolerance in few crop species (Dehghan et al. 2014; Rossi 
et al. 2016).

Osmotic adjustment is another vital mechanism adopted 
by plants wherein different osmolytes i.e., proline, soluble 
sugars, glycine betaine and other inorganic ions, assemble 

in the cells to manage drought stress. Accumulation of 
these osmolytes promotes water uptake and maintenance 
of cell membrane integrity during water scarcity (Ashraf 
and Foolad, 2007; Talbi et al. 2015). Plasma technology is 
known to improve osmolyte production during stress condi-
tion (Wu et al. 2007; Ling et al. 2015; Guo et al. 2017). In 
addition, accumulation of proline at high concentrations in 
plant cells under stress has been identified to enhance the 
reactive oxygen species scavenging capacity and combat 
oxidative damage (Filatova et al. 2020).

Plasma‑generated reactive species for stress 
signaling

In plants, the below-ground trait popularly known as root 
system architecture often plays a prominent role in manage-
ment of several abiotic stress factors. Root traits are known 
to exhibit plasticity and respond to external environmental 
stimuli including soil moisture, nutrients, temperature, pH 
and microbial communities (Comas et al. 2013). Fernán-
dez-Marcos et al. (2011) reported prominent role of reactive 
nitrogen species NO (generated from three NO donors) to 
play a key role in influencing root system as a part of drought 
adaptation strategy in plants. The alterations in the root mor-
phology were ascribed to the hormonal balance especially 
auxin concentration in meristems of primary roots mediated 
via post-transcriptional activity of peptidyl-prolyl cis-/transi-
somerase-1 (PIN1) protein involved in auxin transport. Few 
studies observed significant alterations in the root system in 
the non-thermal plasma-treated seedlings (Guo et al. 2017; 
Iranbakhsh et al. 2018a, b; Abedi et al. 2020), but pertinent 
role of plasma generated NO in altering root the architecture 
has not been discussed.

Recently, a study revealed that non-thermal plasma treat-
ment in tomato could alleviate polyethylene glycol-induced 
drought stress through the signal transduction mediated by 
plasma-generated NO and  H2O2 (Adhikari et al. 2020a). The 
prominent role of NO and  H2O2 as cellular signaling mol-
ecules to overcome salinity in non-thermal plasma-treated 
barley seeds has been discussed by Gierczik et al. (2020). 
Sheteiwy et al. (2019) noticed enhanced growth and differ-
entiation in plasma-treated rice seedlings exposed to salinity 
stress, due to the signaling mediated by plasma components 
especially  O3, NO and ultra-violet radiation. It has been 
hypothesized that various reactive oxygen and nitrogen spe-
cies along with radiation generated from plasma could act as 
endogenous signaling molecules (Iranbakhsh et al. 2018a). 
They tend to form an integrated signaling network that could 
affect and regulate numerous physiological processes (Mit-
tler et al. 2004; Wojtyla et al. 2016).

Iranbakhsh et al. (2018a) reported that NO produced 
from plasma could activate the mitogen-activated protein 
kinase cascade that is involved in inducing the expression 
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of defense-related genes. Along with this, NO was reported 
as a key signaling molecule involved in hampering heavy 
metal uptake by plants (Kabir et al. 2019). It is a well-estab-
lished fact that pH surrounding the rhizosphere of plants 
could influence availability of minerals and nutrients (Dong 
et al. 2008). Concurrent to this, Kabir et al. (2019) reported 
that NO generated from non-thermal plasma could induce 
acidification and decrease pH on the surface of treated seeds, 
that subsequently affected the plant’s capacity to uptake cad-
mium metal from soil. Nevertheless, it is important to note 
that the effect of pH on cadmium uptake is expected to vary 
among different species of crops.

Plasma‑induced expression of stress‑related genes

The biological processes and cell interactions taking part 
during plant stress management are recognized as highly 
complex. The stress responses of plants are controlled by 
multiple signaling pathways  and overlaps tend to exist 
between the patterns of gene expression that are induced in 
plants, in reaction to different stresses. The stress-responsive 
genes play a critical role in cellular protection, synthesis 
of functional proteins, regulation of signal transduction and 
gene expression patterns during stress condition (Valifard 
et al. 2014). The induction of stress-responsive genes occurs 
primarily at the level of transcription and coordinated by 
regulatory network of several transcription factors. Broadly, 
heat shock factors are considered as essential transcription 
factors that regulate genes affecting plant growth and devel-
opment. In agreement to this, promising role of different 
heat shock factors in modifying the expression of various 
stress-responsive genes in the non-thermal plasma-treated 
seedlings  has been reported. The activation of various 
heat shock factors through non-thermal plasma treatment 
promoted heavy metal tolerance (cadmium) in wheat and 
rice (Shim et al. 2009), drought tolerance in Arabidopsis 
(Yoshida et al. 2008) and salinity tolerance in wheat (Iran-
bakhsh et al. 2017). Indeed, HSFA4A acts as a substrate 
for mitogen-activated protein kinase-3/6 (MPK3/MPK6), 
and activates the mitogen-activated protein kinase pathway. 
This, in turn, leads to the transcriptional activation of several 
stress-related genes involved in conferring tolerance to vari-
ous abiotic stresses (Pérez-Salamó et al. 2014; Smékalová 
et al. 2014). Besides, mitogen-activated protein kinase is also 
identified to play a decisive role in coordinating the activ-
ity of various other transcription factors including WRKY, 
MYB and ZAT, that in turn, accompany the transcription of 
a large set of target genes (Pérez-Salamó et al. 2014).

In akin to the activity of stress-responsive genes, epi-
genetic modifications play an important role in imparting 
tolerance against climate extremes. In the recent past, few 
studies demonstrated capability of non-thermal plasma 

treatment in facilitating epigenetic modifications on the 
treated targets, by inducing DNA and histone modifica-
tions (Adhikari et al. 2020a; Zhang et al. 2017; Suriya-
sak et al. 2021). Application of cold plasma on the rice 
seeds exposed to high temperature stress during grain 
filling stage could alter the DNA methylation patterns 
of the promoter regions of genes involved in abscisic 
acid metabolism and α-amylase synthesis modifying the 
corresponding gene expression (Suriyasak et al. 2021). 
Similarly, plasma treatment on seeds of soybean induced 
selective demethylation of ATP genes (ATP a1, ATP b1), 
TOR and GRF genes (GRF-5, GRF-6) involved in meta-
bolic processes. This selective DNA demethylation pat-
terns probably enhanced the expression of these genes 
that displayed growth provoking effects enhancing seed 
germination and sprout growth of soybean under condi-
tions of hypoxic environment (Zhang et al. 2017). Along 
with DNA methylation and demethylation processes, 
another element of epigenetic regulation includes his-
tone modification. Adhikari et al. (2020a) observed up-
regulation in the activity of histone modifying enzymes 
HAT and HFMET. Both the enzymes are reported as key 
players involved in the acetylation of lysine residues, and 
methylation of lysine and arginine residues of histones, 
respectively (Pikaard and Scheid 2014). The integrated 
activity of HAT and HFMET was found to be responsible 
for modulating the expression of antioxidants, phytohor-
mones, and stress-responsive genes enhancing drought 
stress tolerance (Adhikari et al. 2020a).

Although a majority of the studies were emphasized 
on identifying the capability of non-thermal plasma treat-
ment in controlling abiotic stress factors, cardinal mecha-
nisms or pathways promoting stress management at the 
molecular level, viz., signal transduction and epigenetic 
gene regulation, were not deeply investigated and remain 
ambiguous. Besides many studies reported prominent 
role of few reactive species (NO and  H2O2) during abi-
otic stress management, whereas pertinent role of other 
plasma-generated components, i.e., radiation and charged 
particles, has not been properly examined. Hence, more 
convincing studies are required particularly at molecular 
level to understand the principal mechanisms implicated 
in the plant-plasma interactions during abiotic stress man-
agement, for precise understanding of the technology.

Conclusion

Non-thermal plasma research has made significant leaps in 
several fields; however, pertinent to agriculture, it is in its 
infancy stage. Intrinsic to enhancing agricultural productiv-
ity, beyond doubt, the technology has been exploited largely 
for enhancing seed germination and successfully geared up 
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in food processing industry. Its level of insight in addressing 
the critical issues in agriculture, especially in terms of stress 
tolerance, is still lacking and restricted to laboratory condi-
tions. So far, most of the research focussed on identifying 
the impacts of non-thermal plasma treatment in managing 
various stress conditions in plants. Whereas, the underlying 
molecular processes cardinal to the stress management were 
not clearly elucidated yet and exclusive efforts need to be 
dissipated in this direction. Of late, many studies reported 
the effects of non-thermal plasma treatment in regulating 
various diseases and abiotic stresses in plants independently, 
that rarely exist in natural ecosystems. Since investigating 
stress factors in isolation does not construe the effects of 
more than one kind of stress on plants, future studies should 
concentrate to discern the plant-plasma interactions  in 
response to multiple stresses. Thus, identifying key regula-
tors elicited by non-thermal plasma treatment that converge 
both disease control and abiotic stress response pathways are 
fundamental and create new avenues for wide scale adapta-
tion of technology.
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