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Abstract
Conventional methods to clean wastewater actually lead to incomplete treatments, calling for advanced technologies to 
degrade recalcitrant pollutants. Herein we review solar photo-oxidation to degrade the recalcitrant contaminants in indus-
trial wastewater, with focus on photocatalysts, reactor design and the photo-Fenton process. We discuss limitations due 
to low visible-light absorption, catalyst collection and reusability, and production of toxic by-products. Photodegradation 
of refractory organics by solar light is controlled by pH, photocatalyst composition and bandgap, pollutant properties and 
concentration, irradiation type and intensity, catalyst loading, and the water matrix.

Keywords  Recalcitrant pollutants · Solar photo-oxidation · Full-scale applications · Process optimization

Introduction

The treatment and reuse of industrial wastewaters are critical 
for the long-term management of water resources because it 
helps to reduce contamination in water bodies (Ateia et al. 
2020). The prevalence of pollutants of emerging concern 
such as pesticides, perfluoroalkyl substances (PFAS), phar-
maceuticals, and phenols in industrial effluents has triggered 
public health worries due to their extreme toxicity and bio-
logically rebellious characteristics (Gar Alalm et al. 2021). 
Various human activities introduce these toxins into the 

aquatic environment regularly. One of the greatest barriers to 
widespread adoption of water reuse is the detection of harm-
ful organic contaminants in wastewater end-of-pipe effluent 
(Rueda-Marquez et al. 2020). Moreover, the toxic and recal-
citrant nature can threaten the ecosystem and human health 
because of the contamination of water bodies (Arcanjo et al. 
2018). The carcinogenic nature of these stable compounds 
makes the fate of these contaminants in the aquatic environ-
ment a major issue (Tolba et al. 2019). The parent pollutants 
are concerned, and the transformation products generated 
through weathering by oxidation, hydrolysis, anaerobic, or 
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other chemical reactions may be more toxic and carcino-
genic (Chaves et al. 2019). Furthermore, some recalcitrant 
pollutants have colors that can absorb sunlight and reduce 
oxygen dissolution, and it could affect aquatic life if left 
untreated. Therefore, it is necessary to effectively decolor 
industrial effluents prior to the release to water streams (Rad-
wan et al. 2018).

Thus, the response has been the drive to efficiently 
remove biorecalcitrant contaminants from industrial waste-
water to detract the associated environmental problems and 
improve the prospect of reuse. This review study aims to 
develop a strategic plan for treating hazardous wastewater 
utilizing solar photo-oxidation, focusing on process optimi-
zation. Moreover, the comprehensive review on technical 
constraints, process optimization, prospective and appli-
cations of solar photo-oxidation of hazardous recalcitrant 
industrial wastewater are provided.

Drawbacks of conventional wastewater 
treatments

Biological, chemical, and physical techniques are all used to 
treat industrial wastewater (Parrino et al. 2019; Adel et al. 
2020; Sharma and Shahi 2020; Nashat et al. 2022). Industrial 
effluents’ physical and chemical treatments are ineffective 
in many cases because either the treatments fail to remove 
micropollutants completely or require a long retention time 
to reduce the pollutant concentration to the required level 
(Nashat et al. 2022). Moreover, conventional treatments have 
further drawbacks because they shift pollutants to another 
step, causing disposal issues. Biological methods take up 
more area, are less flexible in design and operation, and are 
sensitive to diurnal and temperature fluctuations, as well as 
the toxicity of some substances. Although such processes 
can degrade many pollutants, many others are resistant 
because of the complex chemical structure and high stability. 
Moreover, the biological treatment systems are insufficient 
because it depends on micro-organisms that have difficulties 
consuming toxic organics (Teoh and Li 2020; Fouad et al. 
2021a).

Conventional chemical processes consume high dosages 
of chemicals and generate excessive sludge volume that 
requires further disposal. Physical methods such as mem-
brane filtration processes are less investigated. Membrane 
processes include micro- and nanofiltration, reverse osmosis, 
and electrodialysis (Magdy et al. 2021). The major limita-
tions of these methods are the fast membrane fouling and 
the high cost of replacement (Ling et al. 2020). Adsorp-
tion by activated carbon is another alternative for remov-
ing biorecalcitrant pollutants (Gar Alalm and Nasr 2018). 
However, the costs of regenerating the activated carbon 
are high, which reduce its applicability. Accordingly, it is 

recommended to use adsorption as a post-treatment for pol-
ishing the effluent of the main treatment system. The main 
significant drawbacks of catalysts are regeneration and col-
lection issues from effluents for reuse.

Solar irradiation availability

The earth receives about 1.5 × 1018 kWh per year of solar 
irradiation (Gernjak 2006). The irradiation that reaches the 
ground without being blocked or absorbed is referred to as 
direct beam radiation; the irradiation that reaches the earth 
but is dispersed before arriving at the ground is known as 
diffuse radiation, and the total is defined as the global radia-
tion (Gernjak 2006). Of note, the light effectively arriving 
at the ground level is reliant on different parameters, such as 
weather conditions, latitude, and time of day. Figure 1 shows 
the global average solar spectra that reaches the ground.

In a quest to evaluate the feasibility of solar photo-oxida-
tion at a certain location, measurements must be performed 
to calculate the irradiation energy throughout the year. Many 
researchers interested in solar energy applications have stud-
ied the average intensity of solar irradiation on the earth. 
Figure 2 shows a contour map for the average solar energy 
per year. The abundance of solar irradiation makes it appro-
priate for solar energy utilization for wastewater treatment.

Natural sunlight includes ultraviolet, visible light, infra-
red, X-rays, and even radio waves. The spectra of almost 
all solar irradiation reaching the atmosphere span from 
100 nm to about 1 mm (Tawfik et al. 2018; Zhao et al. 
2019b). This band of irradiation energy can be classified 

Fig. 1   Solar irradiance spectra Eke et  al. (2017). The spectral irra-
diance versus the wavelength of the AM1.5 global (ASTMG173), 
AM1.5 direct (ASTMG173) and AM0 (ASTM E490). The wave-
length was in the range of 0–3000 nm. Copyrights are permitted from 
the publisher (Eke et al. 2017)
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into five regions according to wavelengths (Fujiwara and 
Yano 2011; Chen et al. 2019; Vu et al. 2020):

a.	 The ultraviolet C (UVC) range spans a spectrum of 
light that occurs at a higher frequency than violet light 
and is therefore invisible to the human eye. Because of 
the atmosphere, very little of this intense light reaches 
Earth’s surface.

b.	 Ultraviolet B (UVB) rays can be characterized by a 280–
315 nm wavelength range. Like ultraviolet rays, types 
B and C are absorbed heavily by the atmosphere and 
contribute to creating the ozone layer. The ultraviolet 
type B damage to DNA directly results in sunburn.

c.	 The ultraviolet-A ranges from 315 to 400 nm. It was 
once believed that ultraviolet-A had an easier time dam-
aging DNA than other wavelength ranges; however, it 
has since been demonstrated that it causes severe DNA 
damage.

d.	 This range represents the visible range of light, which 
spans 380–780 nm, the smallest wavelengths of the sun's 
irradiance spectrum. It is also the range of the sun's total 
irradiance spectrum with the highest output.

e.	 The infrared range spans 700 nm to one million nanom-
eters and accounts for a significant fraction of the elec-
tromagnetic energy reaching the earth.

Advanced photo-oxidation processes are mainly depend-
ent on ultraviolet light, and hence it is recommended to use 
ultraviolet transparent material for the solar reactor, such as 
borosilicate tubes. However, some catalysts were developed 
to utilize a part of visible light. In ultraviolet light, the cor-
responding electromagnetic spectrums are ultraviolet types 
A, B and C, depending on their wavelength.

Solar advanced oxidation processes (AOPs) was success-
fully employed by Brienza et al. (Brienza et al. 2016) to 
minimize the toxicity effect of micropollutants. 2,4-Dichlo-
rophenol and pesticides were effectively removed by flat-
panel photo-reactor immobilized TiO2 (titanium dioxide) 
and equipped with monitor, an ultraviolet radiometer and 
operated with natural sunlight at spectral ranging from 310 
to 400 nm (Janin et al. 2013). 70% of the total organic carbon 
(TOC) was removed wastewater industry. A pilot parabolic 
collector solar plant was used to degrade emerging contami-
nants of isoproterenol, atrazine, antipyrine, acetaminophen, 

Fig. 2   World solar irradiation map (Zhang et  al. 2013). The map 
shows the annual average solar energy distribution. The color leg-
ends described the spectral range of different frequencies on the earth 

received from solar irradiation. Annual average solar irradiation in 
kWh/m2. N (north), S (south)
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caffeine, sulfamethoxazole, progesterone, triclosan, and 
diclofenac (Klamerth et al. 2009). The removal efficiencies 
for those contaminants varied from 45 to 78%. Ahmed and 
Chiron (Ahmed and Chiron 2014) investigated the solar 
photo-Fenton for degradation of carbamazepine, which was 
removed by 55–82% values. Solar-based advanced oxida-
tion treatment processes are efficient for degrading biore-
calcitrant contaminants. However, the treatment costs are 
questionable and excess sludge generation.

Advance oxidation processes 
for the treatment of industrial wastewaters

Because of the limitations of traditional treatment proce-
dures, it became necessary to develop innovative, more 
environmentally acceptable methods for removing refrac-
tory contaminants. As a result, substantial research efforts 
have been directed worldwide in recent decades to create 
newer, more potent, and promising ways for degrading pol-
lutants in industrial wastewater known as advanced oxi-
dation processes (AOPs). Advanced oxidation techniques 
used in chemical wastewater treatment can entirely miner-
alize contaminants into CO2 (carbon dioxide), water, and 

inorganic compounds, or at the very least, change them into 
more harmless chemical species. Advanced oxidation pro-
cedures entail the production of enough hydroxyl radicals 
to oxidize organic pollutants (Gar Alalm et al. 2015a; Su 
et al. 2021). Although additional species may contribute to 
degradation, the major oxidant species appears to be super-
oxide and hydroxyl radicals, which are unstable and highly 
reactive in most circumstances (Monteagudo et al. 2020; Wu 
et al. 2021a). These sophisticated oxidation techniques can 
be divided into homogeneous and heterogeneous. Energy-
consuming and non-energy processes are two different types 
of homogeneous processes. Figure 3 displays a variety of 
advanced oxidation methods that are now being researched 
for use in treating wastewater.

Heterogeneous photocatalysis

Photocatalysts like titanium dioxide, tungsten trioxide, and 
metal–organic-frameworks (MOFs) are used in heterogeneous 
photocatalytic oxidation (HPO) processes, showing promising 
results in the breakdown of organic contaminants and the pro-
duction of more biodegradable and less hazardous compounds 
(Bavykina et al. 2020; Ahmadijokani et al. 2021; Zorainy et al. 
2021). This technique is based on forming hydroxyl radicals 

Fig. 3   Classification of 
advanced oxidation processes 
(AOPs). The classification is 
based on heterogeneous, which 
involve photocatalytic ozona-
tion, catalytic ozonation and 
heterogeneous photocatalysis 
processes. Furthermore, the 
homogeneous processes are 
classified with and without 
energy. The energy-oriented 
processes include electrical, 
ultrasound and ultraviolet 
energy processes. O3 (ozone), 
H2O2 (hydrogen peroxide), Fe2+ 
(Ferrous cation)



1843Environmental Chemistry Letters (2022) 20:1839–1862	

1 3

in situ under ambient settings, which transform a wide range of 
harmful chemical molecules, including those that are non-bio-
degradable, into comparatively benign transformation products 
such as CO2 and H2O. The oxidation of persistent compounds 
relies on a triple action of a semiconductor photocatalyst, light 
irradiation source, and oxidizing agent. Ultraviolet and vis-
ible radiation from the sun can also power the process. On the 
earth's surface, 0.2–0.3 mol photons m−2 h−1 of solar ultra-
violet radiation is reached, ranging between 300 and 400 nm, 
with an average energy of 20–35Wm−2. This demonstrates that 
sunshine can be a cost-effective and ecologically beneficial 
illumination source. (Ahmed et al. 2011; Zhao et al. 2022). 
Consequently, there has been much interest in developing 
effective photocatalytic wastewater remediation for full-scale 
applications. Solar photocatalytic oxidation of insecticides, 
medicines, and phenols has recently been deeply explored, 
even though heterogeneous photocatalysis has appeared in 
various forms. The wastewater pH, categories of photocatalyst 
and structure, pollutant concentration and type, light inten-
sity, photocatalyst dosage, other wastewater constituents, and 
solvent kind all play a role in photocatalytic degradation of 
refractory organics (Antonopoulou et al. 2021; Samy et al. 
2021; Yang et al. 2021c; Wang et al. 2022b). However, low 
efficiency resulting from poor visible-light capturing catalysts, 
photo-reactor design, catalyst recovery and reuse, the forma-
tion of hazardous intermediates, and concerns about catalyst 
deactivation are all stated to be important downsides (Assadi 

et al. 2021; Chen et al. 2021; Su et al. 2021; Yang et al. 2021c; 
Gar Alalm et al. 2021).

In the heterogeneous photocatalysis ultraviolet/titania 
method (Fig. 4), ultraviolet light range λ < 400 nm is used for 
illumination, and titanium dioxide semiconductor acts as a 
catalyst. Titanium dioxide stands out among other semicon-
ductors because of its large surface area, regular shape and 
size of particles, high stability, and ability to use sunlight as a 
light source (Fatima and Kim 2021; Mohanta and Ahmaruz-
zaman 2021; Wu et al. 2021b). Photons with energies greater 
than the bandgap energy excite valence band electrons in the 
photocatalysis oxidation process, boosting interactions with 
organic contaminants (Mohanta and Ahmaruzzaman 2021; 
Huang et al. 2021). A positive hole (h+) is generated in the 
valence band, while in the conduction band, an electron (e−) is 
generated when the catalyst active surface is illuminated with 
enough energy (Zhu et al. 2021). The positive hole produces 
hydroxyl radicals by oxidizing either the organic contaminant 
or H2O. The oxygen deposited on the semiconductor surface is 
reduced by the electron in the conduction band. The reactions 
that occur when ultraviolet light activates titanium oxide are 
as follows: (Ahmed et al. 2011).

(1.1)TiO2 + hv → e− + h+

(1.2)e− + O2 → O2⋅
−

Fig. 4   Principles of titanium 
dioxide photocatalysis (Ahmed 
et al. 2011). It shows the photo-
reduction and photo-oxidation 
processes, where the excita-
tion and recombination occur 
between the conduction band 
(CB) and valence band (VB) of 
the titania catalyst. h+ (proton), 
e− (electron), O2 (oxygen), H2O 
(water), CO2 (carbon dioxide), 
H2O2 (hydrogen peroxide), 
UV (ultraviolet), R (functional 
group)



1844	 Environmental Chemistry Letters (2022) 20:1839–1862

1 3

Because the bandgap of ZnO (zinc oxide) is similar to 
that of titanium dioxide, 3.2 eV, under intense sunlight, it 
has been found to be as reactive as titanium dioxide (Heidari 
et al. 2020). Different metal oxide semiconductors, such as 
ZrO2 (zirconium oxide), LaVO4 (lanthanum vanadate), WO3 
(tungsten trioxide), and ZnO, were also studied for their abil-
ity to degrade organic pollutants (Martín-Sómer et al. 2019; 
Samy et al. 2020a; Yang et al. 2021c; Hu et al. 2021). A 
pseudo-first-order model can explain the removal rates of 
organic pollutants at low substrate concentrations (Lewis 
et al. 2020; Martínez-Pachón et al. 2021).

Many efforts were devoted to immobilizing titanium 
dioxide particles on various supports to improve catalytic 
activity and facilitate the collection of a photocatalyst. (Gar 
Alalm et al. 2014; Samy et al. 2020d, b). Due to low particle 
suspension and restricted mass transfer of the contaminant 
and catalyst, titanium dioxide-coated plates showed slower 
degradation rates (Hinojosa-Reyes et al. 2013; Amiri et al. 
2016). Many research works have demonstrated that sup-
porting the semiconductor on activated carbon as strong 
adsorbents can be more efficient and easier for catalyst col-
lection (Matos et al. 2009; Bardestani et al. 2019; Chávez 
et al. 2020).

Although activated carbon does not exhibit a catalytic 
role, it boosts the catalytic performance of titanium dioxide 
due to higher contaminant attraction to titanium dioxide/
activated carbon. As adsorption increases, the concentra-
tion of pollutants near titanium dioxide rises (Gar Alalm 
et al. 2015a). Because of its well-developed micropores, 
high surface area, and sorption capacity, powdered activated 
carbon is commonly exploited to adsorb different kinds of 
pollutants. On titanium dioxide/activated carbon compos-
ites, activated carbon behaves like a hub for pollutants to 
attach before being delivered to the breakdown site (Yao 
et al. 2019).

Factors affecting the degradation of hazardous 
contaminants by photocatalysis

By integrating relevant electronic bands in one composite, 
hetero-structured photocatalysts attempt to facilitate the 
separation of photo-excited electron–hole pairs by multiple 

(1.3)h+ + H2O → ⋅OH + H+

(1.4)R + ⋅OH
yields
�������������������→ degradation

(1.5)R + h+
yields
�������������������→ oxidation

(1.6)R + e−
yields
�������������������→ reduction

transfer paths (Antonopoulou et al. 2021). With appropri-
ate band edge placements, effective electron and hole trans-
fer from different semiconductors can considerably reduce 
energy-wasting photo-induced electron–hole pair recombi-
nation and enhance charge carrier lifetime, boosting photo-
catalytic efficiency. Many researchers have found that the 
catalytic breakdown of PFAS (Perfluoroalkyl substances), 
pharmaceuticals, and other resistant pollutants is heavily 
influenced by initial pH, photocatalyst type and band struc-
ture, initial pollutant concentration, irradiation type, catalyst 
dosage, wastewater matrix, and catalyst calcination tempera-
ture, all of which are discussed in this section (Sühnholz 
et al. 2021; Yuan et al. 2022). A wide spectrum of newly 
invented heterojunctions will be addressed in this section, 
emphasizing improving their photoactivity for industrial 
wastewater remediation.

Type and composition of the catalyst

Titanium dioxide photocatalytic performance is influenced 
by surface functional groups and crystal properties such as 
crystal composition, porosity, band structure, and presence 
of hydroxyl functional groups. (Ahmed et al. 2011; Samy 
et al. 2020c). Particle size is critical in photocatalytic pro-
cesses because it defines the specific surface area of a cata-
lyst, which is directly connected to its efficiency. Numerous 
commonly produced catalysts have been studied in an aque-
ous environment for photocatalytic degradation of different 
chemical molecules (Rafaely et al. 2021; Zhang et al. 2021). 
The specifications and features among some commercial 
titanium dioxide samples are listed in Table 1. The photo-
catalyst titanium dioxide Minerals, Degussa P25, which is 
commercially available, was exploited in many applications. 
titanium dioxide with different phases compositions, such as 
Hombikat ultraviolet 100, PC 10, PC 50, Rhodia, and Tra-
vancore Titanium Products, are often tested for hazardous 
compound breakdown (Ahmed et al. 2011). Due to the par-
ticular area, such as equivalent to 50 m2/g and small particle 
size such as equivalent to 20 nm, P25 include 75 percent 
anatase and 25 percent rutile. It has been established that 
dye degradation occurs faster in the presence of P25 than in 
other photocatalysts. Photocatalyst efficiency was found to 
be in this order: For the breakdown of different pesticide and 
herbicide compounds, P25 > ultraviolet 100 > PC500 > TTP 
(Travancore titanium products) (Doll and Frimmel 2004; 
Lebedev et al. 2016).

Because these parameters can influence the sorption 
behavior of a contaminant and its transformation products, 
as well as the lifetime and charge recombination, differences 
in the Brunauer–Emmett–Teller (BET) surface, impurities, 
lattice structure, or existence of hydroxyl functional groups 
are likely to influence the photodegradation rates (Kumar 
et al. 2020; Antonopoulou et al. 2021; Qin et al. 2021). 
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Ultraviolet 100 has a strong light sensitivity because of the 
rapid transfer of electrons, while Degussa P25 has a higher 
photocatalytic activity which is imputed to slower recom-
bination of charges (Ahmed et al. 2010). Titanium dioxide 
Degussa (p25) was tested in many studies for phenol degra-
dation and revealed a good degradation efficiency, especially 
for phenol concentration less than 100 mg/L (Carbajo et al. 
2018; Bueno-Alejo et al. 2019). In addition, titanium diox-
ide showed a good degradation for many pharmaceuticals 
types that may exist in industrial wastewater (Gar Alalm 
et al. 2016; Fathinia et al. 2020; Giannakis et al. 2021; Fouad 
et al. 2021b).

Concentrations of hazardous contaminants

The rate of titanium dioxide photocatalytic response has 
been shown to be dependent on the content of wastewater 
pollutants in previous studies (Garcia-Muñoz et al. 2020b; 
Serrà et al. 2021). A difference in the number of wastewater 
pollutants will require varied irradiation periods to obtain 
optimum degradation with specific operational parameters. 
Because photocatalysis reactions are photonic in nature, an 
overly high concentration of organic substances has been 
shown to gradually block the titanium dioxide surface and 
impair light absorption, resulting in photocatalyst inactiva-
tion (Zhao et al. 2019a; Gora and Andrews 2019; Qin et al. 
2021; Yang et al. 2021b). Many investigations discovered 
that as the initial concentration of the pollutant was raised, 
the photocatalytic degradation efficiency declined (Dong 
et al. 2022; Pan et al. 2022; Yue et al. 2022). Parida and 
Parija (2006) explored the role of a relatively high start-
ing contaminant concentration such as 2–15 g/L, on phenol 
removal under different irradiation sources. Under solar irra-
diation, the degradation efficiency fell from 100 percent to 
60% by raising the pollutant concentration. The degradation 
decreased from 94 to 52 percent under ultraviolet light with 
raising initial concentrations.

Under visible light, the deterioration was reduced 
from 95 to 50% (Parida and Parija 2006). Lathasree et al. 

studied the effect of beginning concentrations ranging 
from 40 to 100 ppm on the catalytic oxidation of phe-
nol by ZnO. Photodegradation was initially accelerated at 
low concentrations, but the degradation rate decreased as 
concentrations rose. The breakdown was discovered to fol-
low first-order kinetics. The degradation of chlorophenols 
was shown to grow in the 40–60 ppm concentration range, 
and then it was reduced as the concentration increased 
(Lathasree et al. 2004). Several studies have found that 
many molecules are attracted to the photocatalyst at higher 
initial concentrations of pollutants (Chatzimpaloglou et al. 
2022; Li et al. 2022b; Xu et al. 2022). As a result, the 
oxidant species essential for pollutant breakdown, such 
as the hydroxyl radical, rise. However, the generation of 
hydroxyl radicals for given light intensity, catalyst quan-
tity, and exposure time are the same (Jin et al. 2022; Sun 
et al. 2022). As a result, the generated hydroxyl radicals 
may be insufficient for complete breakdown at greater pol-
lutant concentrations (Ren et al. 2022; Wang et al. 2022e). 
Consequently, the rate of contaminant breakdown slows at 
higher concentrations (Ren et al. 2022; Wang et al. 2022e). 
Furthermore, as the substrate concentration rises, interme-
diates are produced, which may adsorb on the catalyst's 
surface (Kim et al. 2022). Slow diffusion of produced 
intermediates from the catalyst surface can deactivate 
active sites on the photocatalyst, slowing the degradation 
rate at low concentrations (Bai et al. 2022).

On the other hand, as anticipated by first-order kinetics, 
the number of active sites would not be a major limitation, 
and the degradation rate will be related to the reaction 
mixture (Ahmed et al. 2011). In the case of combustion 
generated titanium dioxide and P25, Priya and Madras 
(2006) investigated the effect of starting concentrations 
ranging from 10 to 76 ppm on the photocatalytic oxida-
tion of 2,4-dinitrophenol. At 76 ppm, the most signifi-
cant deterioration was seen (Priya and Madras 2006). The 
photocatalytic breakdown of pharmaceuticals has shown 
similar tendencies (Pattappan et al. 2022; Ramalingam 
et al. 2022).

Table 1   Composition of 
different titanium dioxide 
catalysts. The table shows the 
surface area, the typical size of 
crystals, along with the crystal 
structure

TTP (Travancore titanium products), UV (Ultraviolet), PC (Photocatalyst), P25 (75% anatase, 25% rutile)

Catalyst Surface area 
(m2/g)

Typical size of 
crystal (nm)

Crystal structure Reference

P25 50.0 20–25 75% anatase
25% rutile

Singh et al. (2007)

PC500 287 5.0–10.0 Anatase Singh et al. (2007)
Ultraviolet 100 250.0 5 Anatase Singh et al. (2007)
TTP 9.8 – – Singh et al. (2007)
PC 10 10.0 65–75 Anatase Enríquez and Pichat (2006)
PC 50 54.0 20–30 Anatase Enríquez and Pichat (2006)
Rhodia 150.0 – Anatase Enríquez and Pichat (2006)
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Light intensity and wavelength

Based on the kinds of photocatalysts utilized, crystal struc-
ture, anatase to rutile ratio, and any condition of photocata-
lyst adjustments, the photochemical impacts of radiation 
bulbs with varied wavelength emitting spans have a signifi-
cant effect on the photocatalytic reaction rate (Wang et al. 
2022a; Xie et al. 2022). A light wavelength of 380 nm is ade-
quate for photon activity when using commercial Degussa 
P-25 titanium dioxide, which has an anatase 70/80: 20/30 
crystalline ratio (Chong et al. 2010). The light intensity 
determines how much light is absorbed by the semicon-
ductor catalyst at a specific wavelength. The pace of com-
mencement of the photochemical process for photocatalysis 
electron–hole generation is greatly influenced by the light 
intensity (Abidi et al. 2022; Mafa et al. 2022). The amount of 
light intensity within the reactor usually influences the total 
pollutant transformation and destruction efficiency (Abidi 
et al. 2022; Li et al. 2022d; Mafa et al. 2022; Xiong et al. 
2022).

As a result, several studies have examined the relationship 
between pollutant degradation rate and light intensity for 
various organic contaminants (Atun et al. 2022; Latif et al. 
2022). While the reaction rate was shown to be square root 
dependent on the light intensity in some circumstances, the 
two variables were found to have a linear relationship in 
others (Aliste et al. 2022; Zhang et al. 2022). Puma and Yue 
used ultraviolet-A alone and ultraviolet-A, B, and C irra-
diation to investigate the influence of wavelength range on 
the photodegradation of 2-chlorophenol. Compared to ultra-
violet-A radiation, ultraviolet-ABC radiation significantly 
boosted the 2-chlorophenol breakdown and mineralization 
(Li Puma and Yue 2002). Under ultraviolet-ABC light, the 
initial rate of 2-chlorophenol deterioration was found to be 
1.8 times faster, and 2-chlorophenol degradation reached 98 
percent in 20 min. The photon flux, which was estimated 
to be 1.56 times higher than ultraviolet type A radiation, 
was linked to the enhanced degradation rate with ultravio-
let-ABC radiation. Photocatalysis, photonics, and potential 
interactions due to combined photolysis and photocataly-
sis enhanced the rate improvement. On clear and gloomy 
periods, Kaneco et al. studied the effect of illuminance on 
the sun photodegradation of bisphenol A in waters by tita-
nium dioxide. With only a little increase in the intensity up 
to 35 W/m2, the degradation performance can be improved 
quickly (Kaneco et al. 2004). The influence of ultraviolet 
light intensity ranges 20–400 W on phenol photodegradation 
was investigated by Chiou and Juang. The first-order kinet-
ics were followed in all the reactions. With a light intensity 
of 20 W, 100 W, and 400 W, the degradation rate constants 
in the ultraviolet and titanium dioxide system are 8.3103, 
0.012, and 0.031  min−1, respectively (Chiou and Juang 
2007). The apparent first-order rate constant and irradiation 

energy have an acceptable linear association under the inves-
tigated conditions. The hydroxyl radical generation is aided 
by increasing light intensity, which improves the degradation 
rate (Chiou and Juang 2007).

pH

The electrostatic state of photocatalyst particles, size of crys-
tals, and band structure are all affected by the solution pH in 
the photocatalytic system. Because of the electro-properties 
of titanium dioxide, the change of the solution pH affects the 
surface charge (Kim et al. 2022; Shah et al. 2022). Numerous 
research works have investigated the point of zero charges 
of titanium dioxide to study the impact of pH on photodeg-
radation activity. (Deng et al. 2019; Kovacic et al. 2019). 
Depending on the catalysts used, the point of zero charges 
is a pH range of 4.5–7.0, where the surface charge of the 
catalyst is neutral. Because there is no electrostatic force at 
zero charges of the catalyst, the attraction of pollutants to 
the catalyst surface is limited (Marinho et al. 2017). When 
functioning at pH point of zero charges (titanium dioxide), 
the catalyst's surface charge becomes positively charged, 
attracting negatively charged molecules electrostatically 
over time. Such polar affinities between titanium dioxide 
and charged pollutant molecules can increase adsorption 
onto the photon-induced catalyst surface for future catalytic 
reactions (Ambrosio et al. 2017; Kovacic et al. 2019). This is 
very important when anionic organic molecules are present 
in low concentrations. The catalyst surface will be nega-
tively charged at pH > point of zero charges (titanium diox-
ide), repelling anionic chemicals in the water. The surface 
charge density of the titanium dioxide catalyst is affected 
by pH (Chong et al. 2010; Gar Alalm et al. 2015b). Organic 
pollutants can be protonated or deprotonated depending on 
the pH of the solution. Protonated compounds are perhaps 
more persistent than their parent structures when exposed 
to ultraviolet radiation (Chatzimpaloglou et al. 2022; Pat-
tappan et al. 2022). As a result, the pH of wastewater may 
significantly impact pollutant adsorption and photocatalytic 
oxidation.

In acidic conditions, the positive charge on the catalyst 
sites increases as the pH decreases. When the pH is higher 
than the point of zero charges, the negative charge at the 
catalyst surface rises. Furthermore, the water pH influences 
the production of reactive oxidant species via the interaction 
among hydroxide ions and generated holes on the catalyst 
active sites. Positive holes are the most important oxida-
tion processes at low pH, although hydroxyl radicals are the 
major species at neutral and basic conditions (Berkani et al. 
2022; Kim et al. 2022). Because there are more accessible 
hydroxyl ions on the titanium dioxide surface, it is expected 
that the formation of hydroxyl radicals will be higher. 
With changes in solution pH, the electrostatic attractive or 
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repulsive forces between the catalytic surface and the ionic 
states of pollutants might change, resulting in facilitation 
or inhibition of organic pollutant degradation when cata-
lyst particles are present (Wang et al. 2022d). As a result, 
the best pH for photodegradation is determined by both the 
photocatalyst and the pollutant. Table 2 shows the optimal 
pH of various pollutants and catalysts described earlier in 
the literature. As a result, the process’s degrading efficiency 
will logically increase at high pH.

Catalyst loading

In a truly heterogeneous catalytic regime, the catalyst con-
centration in the photocatalytic process for wastewater treat-
ment systems affects the total photocatalysis reaction rate 
(Chen et al. 2022). Several investigations have found that due 
to blocking and scattering of light scattering and screening 
effects of turbidity, the photocatalytic degradation rate first 
improved by photocatalyst loading but declined if excessive 
amounts were added (Liang et al. 2022; Wang et al. 2022f). 
At high solids concentrations, the tendency for agglomera-
tion, such as particle–particle contact, rises, reducing the 
active sites exhibited to irradiation and, as a result, decreas-
ing the photodegradation rates (Li et al. 2022a; Zaitsev and 
Astapov 2022). Even though the density of active particles 
in water increases as the catalyst is loaded, it appears that a 
point has been reached when light penetration is impeded 
because of the turbidity associated with the suspended cata-
lyst. The optimal photocatalyst amount for photocatalytic 
oxidation is achieved when these two opposing phenomena 
coexist. A higher catalyst amount than the optimal will cause 
an irregular illumination of the catalyst, which will slow 
down the reaction rate (Gar Alalm et al. 2018). A linear 

relationship exists until the reaction rate accelerates and 
becomes irrelevant to catalyst loading. This is due to the 
photocatalytic reactor's shape and operating circumstances, 
where the surface activity is triggered by light photon 
absorption (Pattappan et al. 2022; Ramalingam et al. 2022). 
Any photocatalytic reaction must include a dosage lower 
than the saturation threshold of the photocatalyst utilized 
to avoid excess catalyst and for efficient photon absorption.

The impacts of catalyst loadings on reaction rates have 
been widely investigated in the literature (Dehkordi and 
Badiei 2022; Li et al. 2022b; Pan et al. 2022; Wang et al. 
2022c). Because the operating configuration, irradiation 
fluxes, strength, and wavelengths used were all different, 
the results are mostly unrelated, and a direct comparison is 
impossible. According to reports, the optimal catalyst load-
ing for photo-mineralization and photo-disinfection varies 
depending on the size of the photo-reactor (Fouad et al. 
2021c). Furthermore, in terms of effective photon absorp-
tion and water flow hydrodynamics, the diameter of the 
photo-reactor must be determined (Ramalingam et al. 2022; 
Wang et al. 2022a). A steady-state residence time can be 
achieved with a uniform flow region, but turbulence flow can 
remove catalyst deposition or reaction dead zones (Zapata 
et al. 2010). The turbulent flow was impossible in reactors 
with diameters lower than 20–25 mm, while sizes bigger 
than 50–60 mm were unfeasible. Because large diameters 
often have lower saturated catalyst loading and efficiency, 
the amount of catalyst should be evaluated in this case. Prior 
to introducing the reactor system, the titanium dioxide cata-
lysts are usually uniformly mixed with the desired effluent 
(Bai et al. 2022; Xu et al. 2022). The tight adsorption of 
organics onto the catalyst's surface results in a decreased 
initial concentration of organic contaminants in the catalyst 

Table 2   Optimum pH values for the degradation of various contaminants, using various light and catalyst types, including titania, zinc oxide and 
other catalysts. The optimum pH ranges from 3 to 11

TiO2 (titanium oxide), ZnO (zinc oxide), AC (activated carbon), Ni (nickel)

Contaminants Light type Catalyst Investigated pH Optimal pH Reference

Carbofuran (Pesticide) Ultraviolet TiO2 4–9 7 Hameed et al. (2009)
Isoproturon (Pesticide) Solar light TiO2 3–10 7 Phanikrishna Sharma et al. (2009)
Carbofuran (Pesticide) Solar light TiO2 3–9 7.6 Lopez-Alvarez et al. (2011)
Methamidophos (Pesticide) Ultraviolet TiO2 2–12 12 Wei et al. (2009)
Diazinon (Pesticide) Ultraviolet ZnO 0.5–4 3 Daneshvar et al. (2007)
Dipterex (Pesticide) Ultraviolet TiO2/Ni 1–7 6 Fang et al. (2012)
Phenol Ultraviolet ZnO 4–9 4 Lathasree et al. (2004)
Phenol Ultraviolet TiO2 3–11 3 Kartal et al. (2001)
Phenol Ultraviolet TiO2/AC 2–12 5.2 Lam et al. (2010)
Carbendazim (Fungicide) Ultraviolet TiO2 3–9 4 Saien and Khezrianjoo (2008)
Amoxicillin (Pharmaceutical) Ultraviolet ZnO 4–11 11 Elmolla and Chaudhuri (2010)
Ampicillin (Pharmaceutical) Ultraviolet ZnO 4–11 11 Elmolla and Chaudhuri (2010)
Claxocillin (Pharmaceutical) Ultraviolet ZnO 4–11 11 Elmolla and Chaudhuri (2010)
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dark homogenization (Chatzimpaloglou et al. 2022; Jin et al. 
2022; Li et al. 2022b). Wei et al. explored the effect of tita-
nium dioxide loading on methamidophos degradation. The 
photodegradation efficiency is linearly proportional to the 
catalyst mass when the illumination time is 30 min. The 
photocatalytic degradation efficiency of methamidophos 
improved from 16.6 percent to 75.1 percent as the photocata-
lyst loading raised from 2.0 to 12.0 g/L. When the amount 
of titanium dioxide in the solution exceeds 12.0 g/L, the 
efficiency drops marginally (Wei et al. 2009). As the num-
ber of titanium dioxide particles grows, many photons and 
methamidophos molecules are consumed.

As a consequence of the increased total surface area for 
pollutant adsorption, raising titanium dioxide concentration 
can improve degradation efficiency. Light blocking and scat-
tering may occur if the catalyst concentration is increased 
over 12.0 g/L. The extra titanium dioxide photocatalyst 
causes opacity in the suspension, preventing illumination 
of the catalyst farthest in solution (Wei et al. 2009). Danesh-
var et al. studied the influence of loading ZnO on diazinon 
photodegradation. The ZnO loading was varied between 25 
and 200 mg/L while all other parameters remained constant. 
Experiments with various concentrations of ZnO nanopow-
der revealed that the photocatalytic degradation efficiency 
rose with an increase in ZnO nanopowder concentration up 
to 150 ppm, beyond which an increase in catalyst loading 
had no discernible effect on the degradation. The active 
sites on the catalyst surface and ultraviolet light penetration 
into the solution were used to explain this discovery. The 
overall active surface area expands when the catalyst dos-
age is raised. It was also noted that when the turbidity of the 
suspension grows, ultraviolet light penetration reduces due 
to the rising scattering effect, resulting in a decrease in the 
photo-activated volume of the suspension (Jin et al. 2022; 
Ren et al. 2022). Furthermore, maintaining a homogenous 
suspension at high catalyst concentrations is difficult (Chat-
zimpaloglou et al. 2022; Xu et al. 2022).

Catalyst immobilization

Since discovering the photo-electrocatalytic influence on 
water splitting with a titanium dioxide electrode, numerous 
studies have been conducted to synthesize titanium dioxide 
catalysts on various scales, characterize their physical prop-
erties, and determine their photo-oxidation performances 
due to the surface-oriented essence of photocatalysis reac-
tions (Dong et al. 2022; Li et al. 2022b; Yue et al. 2022). 
The nanoscale titanium dioxide catalyst provides a high 
surface-area-to-volume ratio, which aids in efficient charge 
separation and trapping at the physical surface. Furthermore, 
as compared to bulk catalysts, the light opaqueness of these 
nanoscale catalysts has been observed to have an enhanced 

oxidation performance (Harijan et al. 2022; Zhang et al. 
2022).

Until now, the most ubiquitous applied photocatalyst in 
water and wastewater treatment research is the P-25 titanium 
dioxide catalyst. This catalyst is utilized as a benchmark for 
comparing photocatalytic activity under various treatment 
circumstances (Gar Alalm et al. 2021). P-25 titanium diox-
ide fine particles have often been administered in the form of 
slurry. When the titanium dioxide catalyst is suspended, this 
is usually linked to the high volumetric production rate of 
oxidant species, which is relevant to the area of active sites 
(Khan et al. 2019). Catalyst attachment into a large inert 
substrate, on the other hand, limits the number of catalyst 
active sites and increases mass transfer constraints. When 
the catalysts are immobilized, photon transmission may not 
contact all targets for photonic excitation, making the opera-
tion more challenging. As a result, titanium dioxide catalysts 
in the slurry form are frequently used (Cerrato et al. 2019; 
Garcia-Muñoz et al. 2020a).

Many researchers investigated immobilizing the catalyst 
on a support material to improve the ability of recollec-
tion the catalyst after the reaction or enhancement of pho-
tocatalytic activity by higher adsorption capacity supports 
(Chijioke-Okere et al. 2021; Lima et al. 2022; Matiazzo 
et al. 2022). So far, attempts to immobilize these composite 
films on supports, including glass beads, glass, and stainless 
steel, have been developed to degrade organic contaminants 
by photocatalysis (Lu and Zhang 2022; Valadez-Renteria 
et al. 2022; Zhou et al. 2022). However, the activity for the 
decomposition of organics by other sorbents as a supporter 
of photocatalyst still remains unreported. These sorbents 
often used include silica gels, activated carbon, zeolites, 
and clays. The sorbents are selected to be easily suspended 
by air bubbling or mechanical stirring. Because of its high 
adsorbability and specific area, activated carbon (AC) is a 
suitable alternative among these sorbents (Zeng et al. 2021; 
Huang et al. 2022). Additionally, due to activated carbon's 
strong adsorptive capacity for organic molecules, adding 
titanium dioxide to it could have some favorable benefits, as 
well as solve the problem of establishing optimal adsorption 
capacity of the adsorbate species on the adsorbent to boost 
the photo-oxidation performance (Rayati et al. 2021; Yang 
and Luo 2021).

Although activated carbon does not exhibit photodegrada-
tion activity, it boosts the photocatalytic reaction of titanium 
dioxide due to higher contaminant adsorption on titanium 
dioxide and activated carbon. As adsorption increases, the 
concentration of pollutants near titanium dioxide rises (Li 
et al. 2022c; Tang et al. 2022). Because of its well-developed 
pore structure, high surface area, and sorption capacity, pow-
dered activated carbon (PAC) is widely seen as an adsorbent 
for different kinds of pollutants. In activated carbon loaded 
catalysts, activated carbon can act as a center for organic 
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molecules to adsorb until transported to the breakdown 
center (Li et al. 2022c; Sekar et al. 2022).

Wang et al. investigated nano-titanium dioxide and acti-
vated carbon composite photocatalyst prepared by hydro-
thermal method using chlorine-free and low-cost inorganic 
peroxo-titanate to degrade methyl orange from wastewater. 
Titanium dioxide particles were dispersed well on the carbon 
surface, and no obvious aggregation was found. The com-
posite catalyst titanium dioxide and activated carbon outper-
formed the titanium dioxide-activated carbon combination 
to remove methyl orange. (Wang et al. 2009). Matos et al. 
found a similar trend for removing 4-chlorophenol from 
wastewater, the possibility to use titanium dioxide –activated 
carbon as an alternative environmental green photocatalyst 
with high selectivity in organic synthesis (Matos et al. 2009).

Photo‑Fenton process

Fe2+ or Fe3+ and H2O2 are sources of hydroxyl radicals in 
the photo-Fenton process. The Fenton reaction between Fe2+ 
and H2O2, which creates hydroxyl radical and causes Fe2+ to 
be oxidized to Fe+3, is at the heart of the chemistry (Brillas 
2022; Rodrigues-Silva et al. 2022). The photo-Fenton pro-
cess, which can use ultraviolet irradiation from natural solar 
light, often speeds up reaction rates and induces faster deg-
radation of resistant pollutants than the dark process (Wang 
et al. 2021a; Ju et al. 2022).

Fe2+ ions are oxidized by H2O2 to Fe3+, and one cor-
responding hydroxyl radical is created in the photo-Fenton 
reaction (Park and Hur 2021; Rodríguez et al. 2021). The 
resulting Fe3+ acts as a light-absorbing species in aqueous 
solutions, producing additional radicals, while the Fe2+ is 
regenerated, as shown in the equations below.

The light sensitivity of the photo-Fenton process up to 
a wavelength of 600 nm, which is 35 percent of solar irra-
diation, is its key benefit. Because a homogeneous solu-
tion is utilized, the light penetration depth is great, and the 
interaction between the contaminant and oxidizing catalyst 
is effective. The low pH values required, which are often 
below pH = 4, and the requirement of iron removal after the 
reaction are disadvantages; however, both issues could be 
avoided using a post-treatment procedure (Della-Flora et al. 
2021; Wang et al. 2021b).

Factors influencing the photo‑Fenton process

The Fenton reaction is among the most studied advanced 
oxidation processes in the last three decades, but its 

(1.7)Fe+2 + H2O2 → Fe+3 + ⋅OH + OH−

(1.8)Fe+3 + H2O + h� → Fe+2 + OH + H+

application in wastewater treatment just began in the 1990s. 
Hornstman, Henry John It was first described by Fenton, and 
it involves the formation of hydroxyl radicals in situ by the 
reaction of hydrogen peroxide with a ferrous salt (Çiner and 
Gökkuş 2013). The potent hydroxyl radical, which oxidizes 
organic molecules in a non-selective manner, can modify 
the chemical structure of pollutants in this physical–chemi-
cal process. With the right process conditions, total min-
eralization can be achieved, resulting in CO2, water, and 
organic acids (Kowalska et al. 2021; Maniakova et al. 2021; 
Ramalho et al. 2021).

Although the Fenton reaction has been known since the 
nineteenth century, it was only in 1968 that it was proposed 
as a wastewater treatment method. At first, atmospheric 
researchers investigated the photo-Fenton reaction to learn 
more about the natural mechanisms of hydrogen peroxide 
formation and the oxidation of numerous contaminants in 
atmospheric water droplets. It was then used to decompose 
wastewater containing various micro-pollutants, including 
pesticides, chlorophenols, natural phenolic pollutants, and 
medicines (Polo-López and Sánchez Pérez 2021; Soriano-
Molina et al. 2021b). It has also been used to treat waste-
water with a high organic load of 10–20 g/L total organic 
carbon. Initially, contaminated wastewater has been shown 
to lose its toxicity after being treated with the photo-Fenton 
process before total mineralization. Toxicity is frequently 
followed by an increase in the biodegradability of treated 
wastewater (Fiorentino et al. 2021; Sanabria et al. 2021; 
Silva et al. 2021).

As a result, the photo-Fenton and advanced oxidation pro-
cesses have been utilized as a pre-treatment to biological 
therapy in general (Soriano-Molina et al. 2021c, a). Several 
researchers have looked at the relationship between iron 
content, catalytic behavior, and temperature. Increases in 
the tested parameters, such as the maximum iron content of 
2.6 mM and the maximum temperature of 70 ℃, resulted in 
an increase in reaction rate (Cuervo Lumbaque et al. 2021; 
Guo et al. 2021; Rojas-Mantilla et al. 2021; Subramanian 
and Prakash 2021). Just one study looks at what happens 
when time intervals with and without illumination are alter-
nated. It proposes the creation of precursors in the dark that 
are susceptible to fast photolysis when exposed to light.

In homogeneous Fenton reactions, iron species reside in 
the same phase as reactants. As a result, there is no restric-
tion on mass transfer (Lai et al. 2021; Li and Cheng 2021). 
In numerous investigations, iron salts have been used suc-
cessfully in the photo-Fenton method to treat a variety 
of resistant wastewaters (Casado et al. 2021; Yang et al. 
2021a). Although homogeneous photo-Fenton has a high 
mineralization efficiency under ideal conditions, it has some 
drawbacks. The main disadvantage is developing a substan-
tial amount of ferric-hydroxide sludge at pH values above 
4.0, which negatively impacts the environment and waste 
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management (Vilela et al. 2021; Xin et al. 2021). Further-
more, catalyst renewal is impractical, and a significant pro-
portion of catalytic metal is lost in the sludge. The use of 
heterogeneous catalysts can help overcome some of these 
constraints (Rojas-Mantilla et al. 2021; Saber et al. 2021).

The most critical parameters that impact the efficacy of 
pollutant removal in the photo-Fenton oxidation process 
are the initial concentrations of the pollutant and Fenton 
reagents, acidity, and temperature of the mixture solution 
(Casado et al. 2021; Li and Cheng 2021; Nippes et al. 2021). 
In this case, optimizing the reaction is critical to achieving 
improved treatment outcomes. In numerous studies, mul-
tidimensional experimental design collected at one point 
methodology has been used instead of expensive and time-
consuming traditional procedures. To investigate the impacts 
of many experimental variables on the value of the selected 
response function, which is the proportion of chemical oxy-
gen demand (COD) in percent or total organic carbon (TOC) 
in percent, removal (Xin et al. 2021).

Effect of the concentration of contaminants

One of the key elements in the photo-Fenton process is the 
concentration of pollutants. The inner filtering effect asso-
ciated with high concentrations of absorbing molecules has 
been clearly demonstrated in literature research to have a 
negative impact on the removal efficiency of probe mole-
cules as their concentration rises (Lin and Lin 2021; Brillas 
2022). As a result, the reaction requires a longer irradia-
tion period and/or more Fenton reagents to supply enough 
hydroxyl radicals. With initial concentrations of 60, 100, 
and 200 mg/L, Feng and Le-Cheng, in 2004, examined 
the breakdown of phenol by photo-Fenton. It was discov-
ered that raising the initial phenol concentration resulted 
in reduced degradation efficiency, measured as a percent-
age of the beginning concentration (Feng and Le-cheng 
2004). Increasing the diclofenac content from 10 to 80 mg/L 
reduced the degradation efficiency and photo-Fenton reac-
tion rate (Ravina et al. 2002). Ayodele et al. used a phos-
phoric acid modified kaolin clay supported ferric-oxalate 
catalyst to perform photo-Fenton for phenol degradation 
(Ayodele et al. 2012). Many researchers relate the decrease 
in degradation efficiency at higher concentrations to the 
consumption of Fenton chemicals before the degradation is 
finished (Subramanian and Prakash 2021; Vilela et al. 2021; 
Yang et al. 2021a).

Effect of pH

The fundamental disadvantage of a homogeneous Fenton 
system is that it requires a high pH to achieve optimal deg-
radation efficiency. This is not easy to solve, especially in 
natural waterways or wastewaters with strong buffering (Lin 

and Lin 2021). There is an agreement in the literature that 
the ideal pH range is 2.5–4.0 (Cabrera-Reina et al. 2021; 
Casado et al. 2021; Prada-Vásquez et al. 2021; Xin et al. 
2021). The explanation for this is that species with a greater 
light absorption coefficient and quantum yield for hydroxyl 
radical production develop at pH levels approaching around 
3.0, such as Fe(OH)2

+(H2O)5, are produced (Rahim Pouran 
et al. 2014). After 360 min of photo-Fenton treatment at 
a pH of 6.2, Trovo' et al. found no change in amoxicillin 
(AMX) starting concentration. However, in the absence of 
light, the degradation efficacy at pH 2.5 was 64 percent and 
74 percent after 90 and 330 min, respectively. After 5.0 and 
15 min, full amoxicillin elimination was achieved in this 
trial (Trovó et al. 2011). Luna et al. found that photo-Fenton 
breakdown of polyphenols at neutral and alkaline conditions 
under the influence of strong chlorine ions produced good 
results. The iron species in the solution are stabilized by 
Fe3+ complexation with chloride ions at pH 3 (Luna et al. 
2014).

Higher or lower pH values than optimal values have a 
negative impact on process performance. Due to the scav-
enging effect of H+ ions and the generation of [Fe(H2O)]2+ 
ion, which combines with H2O2 at a slower pace, lower pH 
produces a significant decrease in the number of hydroxyl 
radicals (Guo et al. 2021; Subramanian and Prakash 2021). 
Furthermore, a lower pH prevents Fe3+ and H2O2 from inter-
acting. Another reason is that H2O2 is stable at pH below 3 
due to the generation of H3O2

+, which prevents the synthesis 
of hydroxyl radicals. (Li and Cheng 2021; Subramanian and 
Prakash 2021).

On the other hand, higher pH values interfere with Fenton 
effectiveness by preventing H2O2 breakdown from forming 
hydroxyl radicals due to a lack of H+ ions. Furthermore, 
H2O2 decomposes into water and oxygen at a pH greater than 
5.0. Additionally, rather than hydroxyl radicals, it is possible 
to generate more selective ferric species and develop ferric 
oxyhydroxide (FeOOH), which slows the breakdown rate 
(Gar Alalm and Tawfik 2013). When the pH of a solution 
rises above 4, iron precipitates as ferric hydroxide, reduc-
ing light transmission and limiting photo-activity (Balles-
teros Martín et al. 2009). Recent research on iron dosing 
strategies has shown that administering iron in multiple 
phases improves reaction rate at neutral pH values to the 
level achieved at pH 2.8 (Nippes et al. 2021; Soriano-Molina 
et al. 2021a).

Fenton reagent dosage

Fenton reagent dosage influences the reaction rate, degrad-
ing effectivity, and operating costs. One of the primary 
challenges in photo-Fenton is estimating the appropriate 
concentrations of reagents (Al-Balushi et al. 2021; Hernán-
dez-Coronado et al. 2021; Oller and Malato 2021). Due to 
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the obvious importance of H2O2 concentration for determin-
ing quantitative oxidation and iron salt dose, both reagents 
must be present at their optimal concentrations. Because 
reactive oxidant species are not formed in the absence of 
H2O2, using solar light alone or with iron was ineffective 
(Rahim Pouran et al. 2014).

The kind and concentration of the contaminant have a 
big influence on the Fenton reagent dosage. As a result, 
depending on the results of the experiments, the ideal dos-
age is determined. Higher H2O2 dosages are required when 
the chemical oxygen demand (COD) is higher. On the other 
hand, optimal values are chosen to obtain higher deterio-
ration at lower costs (Ahmad et al. 2019; Radwan et al. 
2019). H2O2 did not influence the breakdown of agrochem-
ical wastewater using photo-Fenton at low concentrations 
(10–50 mmol/L), while the effects clearly increased at larger 
concentrations of H2O2, such as 500 mmol/L (Nogueira 
et al. 2012). Many researchers discovered that increasing 
the amount of iron salt in the solution increased the rate of 
contaminant degradation until it reached the optimum dose, 
after which the rate of degradation decreased (Miralles-
Cuevas et al. 2021; Oller and Malato 2021; Soriano-Molina 
et al. 2021c; Vilela et al. 2021).

Higher total dissolved solids (TDS), iron sludge develop-
ment, scavenging of hydroxyl radicals, and a loss in color 
removal effectiveness due to possible interference of iron 
in color assessment are some of the difficulties associated 
with increasing iron concentration over the optimum dose 
(Rahim Pouran et al. 2014). Furthermore, at larger dosages 
above the optimum amount, the reaction rate reduced due 
to decreased ultraviolet-irradiation intensity produced by Fe 
(OH)2+ formation in acidic media and its strong ultravio-
let-light absorption impact (Rahim Pouran et al. 2014; Gar 
Alalm et al. 2015c).

Types of photo‑oxidation reactors

Based on the deployed condition of the oxidants, photo-
oxidation reactors for wastewater remediation may be cat-
egorized into two major designs. The first kind is the reac-
tor with suspended catalyst particles or other oxidants. The 
second type is the reactor with photocatalyst immobilized 
onto continuous fixed support (Chong et al. 2010). Several 
types of photo-reactors were investigated in the literature. 
According to many researchers, the overall irradiation sur-
face area of the catalyst per unit volume and light dispersion 
within the reactor are the most significant aspects in building 
a photocatalytic reactor (Soriano-Molina et al. 2021b; Wang 
et al. 2021a). The stationary structure is commonly related 
to mass transfer limitations through the photocatalyst immo-
bilized layer, whereas the slurry-type reactors frequently 
reach a large total surface area of photocatalyst per given 

volume (Cabrera-Reina et al. 2021; Domenzain-Gonzalez 
et al. 2021; Lin et al. 2021; Peralta Muniz Moreira et al. 
2021; Venier et al. 2021).

Mehrjouei et al. (Mehrjouei et al. 2013) studied a multi-
phase annular falling-film reactor for wastewater remedia-
tion using multi-oxidation methods, as shown in Fig. 5. The 
reactor comprises a borosilicate glass tube that is fixed coax-
ially inside another bigger tube from borosilicate glass using 
two aluminum caps surrounding the ultraviolet light source. 
Titanium dioxide particles were immobilized on the inner 
tube's outer surface and the outer tube's inner surface. Thus, 
the annular space between two tubes is used as a reaction 
medium. In this design, the wastewater is injected into the 
reactor through small apertures in the upper cap to form thin 
liquid falling films over the walls of tubes. The wastewater 
leaves the reactor from the bottom cap to be transferred into 
a storage container and then recycled again to the inlet point 
of the reactor. Two membrane pumps recycle the wastewater 
through the reactor over the inner and outer tubes separately.

Luna et al. (Luna et al. 2014) used a falling-film solar 
reactor (Fig. 6). It was made from a stainless-steel plate cou-
pled with a 15-L polypropylene mixing tank. A 4-mm thick 
borosilicate glass cover was placed on the plate surface to 
prevent evaporation of the reaction media during the tests. 
Borosilicate glass permits ultraviolet solar irradiation to 
reach the solution.

Similar to the falling film reactor, W-titanium dioxide 
was coated on tilted aluminum plates under simulated solar 
light for improving the reusability of the catalyst without 
the need for a tedious collecting process (Fouad et al. 2020). 
This design was further improved by including an additional 
chamber with a vertical coated plate to increase the irradia-
tion time per water cycle showing high reusability of dif-
ferent photocatalysts (Samy et al. 2020b, c, e, 2021; Fouad 
et al. 2021c).

Many researchers used a parabolic collector reactor for 
solar photo-oxidation (Ahmed et al. 2011; Vilar et al. 2011; 
Fenoll et al. 2012). The reactor usually contains multiple 
borosilicate tubes but usually consist of Pyrex glass, placed 
atop polished aluminum reflectors that are curved. The water 
flows directly from the tube to the reservoir tank after being 
linked in series. This cycle is circulated many times in a 
closed circuit by a pump until the required irradiation time 
is achieved. The reaction system is usually continuously 
stirred to keep the solution's homogeneity and prevent the 
sedimentation of solids in the reactor or reservoir (Belal-
cázar-Saldarriaga et al. 2018; Esteban García et al. 2018; 
Cabrera-Reina et al. 2019). The configuration of a parabolic 
collector reactor is shown in Fig. 7.

An effective reactor design for photo-oxidation-based 
degradation of organic pollutants requires a high mass trans-
fer rate, which is boosted by mixing the pollutants using 
turbulence and baffles. The liquid and gas flow rates control 
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mass transfer in fixed-bed and fluidized-bed systems (Arzate 
et al. 2020; Talwar et al. 2020; Dai et al. 2021). Also, the 
penetration depth of light should be taken into consideration. 
Because both catalyst particles and contaminants absorb 
ultraviolet light, the penetration depth is restricted. Photo-
catalytic reactions take place on the semiconductor active 
sites, and the catalyst may be disseminated in the solution 
or immobilized on plates, but the catalyst must come into 
contact with the pollutant (de la Obra Jiménez et al. 2020; 
Mejri et al. 2020).

Furthermore, one of the most critical elements impact-
ing the degradation rate is the oxygen content. The solubil-
ity at saturation conditions defines the oxygen content in 

water, which is thought to be largely constant (Dutta et al. 
2019). However, to replenish the oxygen or air utilized in 
the oxidation process, oxygen or air is necessary. The total 
reaction rate could be slowed if dissolved oxygen levels are 
not replenished. Low oxygen solubility in water results in a 
low rate of oxygen reduction by controlled-band electrons, 
resulting in an electron buildup in a semiconductor. The pace 
of accumulation is accelerated due to this buildup (Fioren-
tino et al. 2019). Multi-channeled RPR-type solar collector 
effectively removed 94% and 78% of dyes and pesticides at 
a reaction time of 60 min (Dutta et al. 2019). Merino and 
Alonso (2019) successfully operated photo-Fenton solar 
process to remove 80% amoxicillin and paracetamol from 

Fig. 5   Multi-phase annular 
falling-film reactor (Mehrjouei 
et al. 2013), the reactor system 
shows the ozone and solution 
inlets along with the immobi-
lized titania particles, Titanium 
dioxide, UVA (ultraviolet-
A). The reactor comprises a 
borosilicate glass tube coaxially 
fixed inside a larger borosilicate 
glass tube by two aluminum 
caps surrounding the ultraviolet 
light source. Titanium dioxide 
particles were immobilized on 
the inner tube's outer surface 
and the outer tube's inner 
surface. The wastewater is 
pumped into the reactor through 
small holes in the upper cap to 
produce thin liquid dropping 
films on the walls of tubes, then 
exits the reactor through the 
bottom cap to be deposited into 
a storage container and recycled 
back to the reactor's inlet point. 
Two membrane pumps recycle 
the effluent independently 
through the reactor's inner and 
outer tubes
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Fig. 6   Solar falling film reactor 
(Luna et al. 2014). The reactor 
is composed of reaction volume, 
stirred tank, hydrogen peroxide 
vessel, peristaltic pump, cen-
trifuge pump, sampling system 
along with regulator screw of 
the slope. The main parts of this 
system is a stainless-steel plate 
and a 15L polypropylene mix-
ing tank. To avoid evaporation 
of the reaction media during the 
testing, a 4-mm-thick borosili-
cate glass cover was installed on 
the plate surface. Ultraviolet sun 
irradiation can reach the solu-
tion via borosilicate glass

Fig. 7   A solar photo-oxidation parabolic collectors reactor (Fenoll 
et  al. 2012), the reactor involves a solar collector, water flowmeter, 
sampling valve, mechanical mixer, reservoir tank, photocatalyst and 
a collector for the purified water. The reactor typically has numerous 
borosilicate tubes but is typically made of Pyrex glass and is posi-
tioned atop curved polished aluminum reflectors. After being coupled 

in series, the water flows directly from the tube to the reservoir tank. 
A pump circulates this cycle numerous times in a closed circuit until 
the requisite irradiation time is reached. The reaction system is often 
continually agitated to maintain solution homogeneity and to prevent 
particles from sedimenting in the reactor or reservoir
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the wastewater industry. Solar energy and electrochemi-
cal processes increased the oxidizing species resulting in 
a high degradation of the wastewater industry found that 
positive P/g-C3N4 enhanced the thermo-coupled catalytic 
degradation of hazardous wastewater in the solar Vis–IR 
region (Oller et al. 2021) (Gu et al. 2020). Photo-oxidation 
processes are mainly dependent on ultraviolet light, so using 
ultraviolet transparent material for the solar reactor, such as 
borosilicate tubes, is recommended.

Conclusion

Among wastewater treatment processes, solar energy base 
processes are least implemented because of slow research 
and development in effective solar energy base reactors to 
degrade various contaminants. Conventional wastewater 
treatment processes are not very cost-effective, and process 
efficiencies are not up to the mark (Miralles-Cuevas et al. 
2014)(Pancharoen et al. 2011). Photo-oxidation processes 
are mainly dependent on ultraviolet light, so using ultraviolet 
transparent material for the solar reactor such as borosilicate 
tubes is recommended. Various studies have discovered that 
the total irradiation surface area of catalyst per unit vol-
ume, as well as the dispersion of light within the reactor, is 
essential, which is the fixed-bed configuration's constraint. 
Moreover, the photo-Fenton process is advantageous as it 
has a light sensitivity up to 600 nm, but the formation of a 
large quantity of the sludge has a huge effect on the envi-
ronment and waste disposal issues. As for the limitations of 
the solar photocatalytic reactors could be the availability of 
a specific ultraviolet spectrum concerning the catalyst. At 
the same time, titanium dioxide with activated carbon could 
be a viable photocatalyst as activated carbon supports the 
photocatalytic activity of titanium dioxide. Titanium dioxide 
loaded on activated carbon has high selectivity in organic 
synthesis, which could also be used as an alternative envi-
ronmental green photocatalyst.

Solar energy exposure is abundant in most of the world's 
regions, which is why this section of the research devel-
opment needs to be recognized. Effectively designed solar 
photo-oxidation reactor systems are highly recommended, 
but it could be more efficient with pre-treatments and post-
treatments for higher solar energy utilization to reduce elec-
tricity costs. Resultantly, it could provide us with high purity 
and recovery of reusable wastewater.

Furthermore, solar photo-oxidation reactors can be inte-
grated with conventional wastewater treatments as pre or 
post-treatment reactors as an upgrade or addition to the 
already installed sequence. This review has shown plenty 
of improvement gaps in conventional and advanced oxida-
tion processes for wastewater remediation.
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