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Abstract
Agro-waste extracts are considered green solvents since they are easy to handle, readily accessible from natural waste feed-
stock, biodegradable and recyclable. Therefore, the employment of these extracts in reaction media has emerged as the most 
useful and eco-friendly alternative in modern organic chemistry. Here, we review recent developments for the generation of 
new carbon–carbon and carbon–heteroatom bonds mediated by  agro-waste extracts. We show that these aqueous extracts 
have great applicability in several transformations, including condensations, oxidations, multicomponent and coupling reac-
tions. The challenges and advantages on the use of water of agro-waste extracts in synthetic methodologies is also detail.
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Introduction

The 12 principles of green chemistry formulated by Anas-
tas and Warner (1998) have enabled the design of environ-
mentally benign products and processes over the last years 
(Anastas and Eghbali 2010; Anastas and Zimmerman 2006). 
The application of these concepts has notably received spe-
cial attention in organic synthesis due to their applicability 
as green reaction media in the development of sustainable 
methodologies (Sheldon 2012). In particular, the “use of 
safer solvents and auxiliaries” (5th principle) associated with 
the “use of renewable feedstocks” (7th principle) has been 
considered a powerful advance in modern organic chemistry 
(Ruslan et al. 2021).

In this regard, several biomass-based organic solvents 
have been applied for the generation of new carbon–carbon 
and carbon–heteroatom bonds (Sydnes 2019; Gamdeepan 
et al. 2019; Corrêa et al. 2015). The most commonly bio-
derived solvents used are cyrene (Camp 2018), ethyl lac-
tate (Asthana et al. 2005; Mäki-Arvela et al. 2014), glyc-
erol (Sonnati et al. 2013; Díaz-Álvarez et al. 2014) and 
2-methyltetrahydrofuran (Alcantara and de Maria 2018). 

Furthermore, biomass-based organic solvents have effi-
ciently replaced traditional solvents improving the selec-
tivity and yield in several transformations (Henderson 
et al. 2011; Prat et al. 2013). For instance, Cyrene which is 
obtained from cellulose may substitute dipolar aprotic sol-
vents such as N-methyl-2-pyrrolidone, dimethyl sulfoxide 
or dimethylformamide (Sherwood et al. 2014; Khoo et al. 
2015). Despite the good applicability of these biomass-based 
organic solvents, unwanted organic waste is still generated 
after the reaction workup.

To minimize the generation of unwanted organic solvents, 
biobased aqueous solvents derived from fruits have been 
employed for this purpose (Misra et al. 2012; Gulati et al. 
2020a, b; Nasrollahzadeh et al. 2020; Das 2020a). In this 
context, several fruit juices have been successfully applied to 
solve this issue, for instance, by using pineapple (Patil et al. 
2011), watermelon, coconut (Halder et al. 2019; Fonseca 
et al. 2009), tamarind and lemon (Saha et al. 2018; Vekariya 
et al. 2016; Kumari et al. 2020; Khan et al. 2018; Dutta et al. 
2019a) in the reaction media.

Likewise, the use of water in organic reactions can defi-
nitely decrease environmental pollution because this solvent 
is highly abundant, inexpensive, nonvolatile, nonflammable, 
inexpensive and very safe (Kitanosono et al. 2018; Simon 
and Li 2012; Li and Chen 2006). Notably, the use of agro-
waste ashes associated with aqueous solution or simply 
known as water of agro-waste extracts has emerged as a sus-
tainable alternative in modern synthetic organic chemistry 
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(Hooshmand et al. 2019). The employment of water of agro-
waste extracts is also advantageous comparing to traditional 
organic solvents since theses extracts are readily prepared 
from natural waste materials, avoiding high-cost industry 
processes. (Talukdar and Deka 2016; Schmitt et al. 2021). 
Thus, undoubtedly, the use of water of agro-waste extracts 
is highly desirable in organic synthesis.

In 2017, Bora and coworkers revised previous achieve-
ments regarding the application of water of agro-waste 
extracts in organic synthesis (Sarmah et al. 2017a). However, 
a number of publications related to the application of these 
extracts in organic chemistry have significantly increased 
since the advances related to the formation of new car-
bon–carbon and carbon–heteroatom bonds are updated day 
by day (Venkateswarlu 2021).

Considering the relevance of carbon–carbon and car-
bon–heteroatom bond-forming reactions and the eco-
friendly aspects of water of agro-waste extracts, herein we 
present an overview focus on the development of synthetic 
methodologies mediated by water of agro-waste extracts. For 
a better discuss, this review was divided into 4 sections: (i) 
general aspects, (ii) carbon–carbon bond-forming reactions, 
(iii) carbon–heteroatom bond formation and (iv) multicom-
ponent reactions.

General aspects of agro‑wastes

The development of appropriate destinations of agricultural 
biomass wastes has attracted special attention since it usu-
ally demands further treatment which is associated with high 
cost (Udugama et al. 2020; Cattaneo et al. 2021; Freitas 
et al. 2021). However, these agricultural biomass wastes 
could be converted into respective ashes which provide them 
several applications (Balakrishnan et al. 2011; Swain et al. 
2019; Vivek et al. 2019; Patil et al. 2020). For instance, 
they have been successfully used in solid state fermentation 
(Sadh et al. 2018), biofertilizer (Lim and Matu 2015) and 
the chemical industry (Azat et al. 2019; Guzmán et al. 2016; 
Roselló et al. 2017). In this context, heterogeneous cataly-
sis is the most common application of agro-waste ashes in 
applied chemistry (Roldan-Carmona et al. 2014; Nath et al. 
2019; Halder et al. 2020a; Das et al. 2020b; Lalhmangaih-
zuala et al. 2021; Laskar et al. 2019a).

In terms of its economic feasibility, the employment of 
ashes is very desirable because the oxides might be produced 
directly from municipally biomass wastes, avoiding the high 
feedstock and transportation costs (Freitas et al. 2021; Lai 
et al. 2017). Furthermore, the use of agro-waste ashes is 
preferable than the conventional inorganic catalysts since it 
can be obtained from renewable resources, which also gener-
ates environmental and economic benefits (Abdullah et al. 
2017; Udugama et al. 2020; Nabora et al. 2019).

Similarly, water of agro-waste extracts has attracted spe-
cial since these extracts are inexpensive, biodegradable, 
inexpensive and easily obtained from biomass residues. 
According to literature reports, water of agro-waste extracts 
has a basic nature, containing different alkaline and alkaline 
earth metal carbonates and/or hydroxides (Deka et al. 2007; 
Jenkins et al. 1996). These peculiarities of water of agro-
waste extracts might provide them unique applications in a 
wide range of reactions.

Regardless the type of water of agro-waste extracts, gen-
erally it has been used a standard protocol for the prepara-
tion of desired aqueous extracts (Boruah et al. 2015a). In 
fact, water of agro-waste extracts are prepared by burning 
the biomass residue into respective ashes, which are fur-
ther suspended in distilled water in a glass erlenmeyer and 
stirred from 15 to 120 min at room temperature, depending 
on the nature of agro-waste. Afterward, the filtration of this 
aqueous mixture provides the corresponding water of agro-
waste extracts (Fig. 1). The final solution has a unique basic 
nature and generally contains a stable mixture of alkali metal 
carbonates which are particularly useful as a basic catalytic 
media (Deka et al. 2007; Neog and Deka 2013).

In spite the sole procedure for the preparation of water 
of agro-waste extracts, the composition of these aqueous 
solution is most likely variable and it depends on several 
features, including diversity of soils, cultivation form, pre-
cipitation levels and difference in the plant species (Vassilev 
et al. 2013). Moreover, the origin of the plants is also par-
ticularly relevant due to different availability and metallic 
composition of the soil (Laing et al. 2009; Delaquis et al. 
2016). Thus, different water agro-waste extracts are study 
over the world and notably applied in organic synthesis. The 
following sections will disclose the relevance of aqueous 
extracts in the generation of new carbon–carbon and car-
bon–heteroatom bonds.

Carbon–carbon bond formation

The formation of new carbon–carbon bonds is a well-rec-
ognized challenge in organic chemistry and several methods 
have been developed over the last years (Ravelli et al. 2016). 
More recently, carbon–carbon bond-forming reactions 
employing eco-friendly conditions have received special 
attention in modern organic chemistry (Kamanna and Khat-
avi 2020). In this section, we will discuss and summarize 
the peculiarities of agro-waste extracts for the construction 
of new carbon–carbon bonds in a series of transformations 
such as cross-coupling, condensations and Michael addition 
reactions.
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Cross‑coupling reactions

Transition metal-catalyzed reactions are a well-recognized 
approach to form carbon–carbon bonds, and several meth-
odologies have been reported (Seechurn Johansson et al. 
2012; Magano et al. 2011; Nahra and Cazin 2021), including 
Claisen rearrangement (Shi et al. 2021), conversion of alde-
hydes to ketones (Yan et al. 2021), synthesis of heterocyclic 
compounds (Naveen 2021) and cross-coupling transforma-
tions (Sebastián and Morales 2019; Mohjer et al. 2021). In 
particular, the Suzuki–Miyaura cross-coupling reaction has 
become one of the most applicable methodologies for the 
construction of new carbon–carbon bonds under mild condi-
tions (Sherwood 2020; Aabaka et al. 2021).

In 2015, Boruah and coworkers described a suitable 
protocol for the Suzuki–Miyaura cross-coupling reaction 
in the presence of water extract of banana catalyzed by pal-
ladium acetate (Boruah et al. 2015b). The cross-coupling 
reaction proceeded very well in extract of banana at room 
temperature, allowing the preparation of desired products 
in high yields in very short reaction times (Fig. 2, method 
A). Interestingly, the reaction was carried out without the 
use of any external base most likely due to the basic nature 
of the aqueous extract.

In another publication, the same research group pre-
sented other advances in this cross-coupling transforma-
tion using water extract of rice straw ash in the reaction 
media (Boruah et al. 2015a). Similarly, interesting results 
were achieved and the corresponding biaryl compounds 
were obtained from 45 to 90% yields (Fig. 2, method B). 
Moreover, a significant feature of this work was the reus-
ability of the catalytic system, which proved to be highly 
efficient until the 5th cycle with no significant loss of 
activity. An improvement in the Suzuki–Miyaura reac-
tion revealed a better activity of pure rice straw ash com-
pared with its aqueous extract, most likely due the gen-
eration in situ of palladium nanoparticles (Mahanta et al. 
2016). Nonetheless, further studies disclosed that water 
of agro-waste extracts is also useful for the reduction of 
palladium(II) into respective nanoparticles through a green 
process (Dewan et al. 2018). Despite the efficiency of 
agro-waste extracts in reductive processes, these extracts 
have essential importance as base in the Suzuki–Miyaura 
reaction due their inherent alkaline nature.

Another interesting protocol for the generation of new 
carbon–carbon bonds via Suzuki–Miyaura reaction was 
described by Bora’s group (Sarmah et al. 2016). In this work, 
the authors reported the synthesis of biaryl compounds via a 

Fig. 1  Extraction of aqueous solutions from  agro-waste. Basically, 
the biomass waste is burned into respective ash which are further sus-
pended in distilled water in an erlenmeyer and stirred for few minutes 

at room temperature. Next, the filtration of this solution affords the 
respective water of agro-waste extracts
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cross-coupling between aryl halides and boronic acids in the 
presence water extract of papaya bark ash. The reaction was 
carried out employing 0.5 mol% of palladium(II) acetate and 
a mixture of extract and ethanol (1:1), which afforded the 
corresponding products in good yields (Fig. 2, method C). 
Later, the same research group also applied ash water extract 
of hyacinth as an eco-friendly base source in the same cross-
coupling reaction and they also achieved very fruitful results 
(Sarmah et al. 2017b). In this regard, 17 examples of cou-
pled products were efficiently synthesized from 40 to 98% 
yields (Fig. 2, method D).

Appa et al. applied water extract of pomegranate ash as 
a green medium for the Suzuki–Miyaura reaction catalyzed 
by gold–palladium nanoparticles supported by reduced gra-
phene oxide (Appa et al. 2021a). The reaction could toler-
ate both electron-donating and electron-withdrawing sub-
stituents on the aromatic ring of boronic acid as well as aryl 
bromide, affording the desired products in very high yields 
(Fig. 2, method E). Experimental results also suggest that the 
cross-coupling reaction involves a heterogeneous process. 
In fact, the recyclability of the gold–palladium nanoparti-
cles supported by reduced graphene oxide–water extract of 
pomegranate ash system was evaluated and no significant 
loss in catalytic activity was observed until the 3rd cycle.

Following their studies on the application of water extract 
of pomegranate ash, Lakshmidevi et al. also explored a 

series of palladium–mesoporous silica catalysts in the same 
cross-coupling reaction (Lakshmidevi et al. 2021). In this 
sense, the protocol was applicable to substrates bearing both 
electron-donating and electron-withdrawing substituents, 
furnishing the corresponding products in very good yields.

In addition, Venkateswarlu’s group has also success-
fully applied palladium(II) acetate as a catalyst for the 
Suzuki–Miyaura reaction in the presence of water extract 
of pomegranate ash (Appa et  al. 2019a). Similarly, the 
combination of palladium catalyst and water extract of 
pomegranate ash proved to be a renewable system for the 
preparation of biaryl compounds, affording the desired prod-
ucts in very good yields (Fig. 2, method F). Very recently, 
biaryl compounds have also been efficiently obtained via 
Suzuki–Miyaura reaction mediated by water extract of rad-
ish leaves (Kempasiddaiah et al. 2021).

The Sonogashira reaction is another common and impor-
tant cross-coupling transformation to accomplish new car-
bon–carbon bonds (Mohajer et al. 2021). Due to the high 
demand for the development of green synthetic approaches, 
the use of agro-waste extracts in this reaction has also 
become highly desirable.

In this context, Dewan et al. reported a palladium-cat-
alyzed Sonogashira cross-coupling reaction in the pres-
ence of water extract of banana peel ash (Dewan et  al. 
2016a). Various reaction parameters were evaluated in this 

Fig. 2  Different methodologies for Suzuki–Miyaura reaction in the presence of agro-waste extracts catalyzed by palladium. Aryl boronic acids 
and aryl bromides reacted efficiently under optimized conditions, furnishing the corresponding biaryl compounds in good yields
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transformation, and the best results were found by using 
1 mol% of palladium(II) acetate and a mixture of water 
extract of banana peel ash/ethanol in a 1:1 ratio at 60 °C. The 
reaction tolerated a variety of aryl iodides containing both 
electron-withdrawing and electron-releasing substituents, 
as well as aromatic and aliphatic alkynes, furnishing the 
respective products in very high yields (Fig. 3, method A).

Water extract of papaya bark ash has also been success-
fully applied in the Sonogashira cross-coupling reaction 
(Dewan et al. 2016b). According to the author’s findings 
supported by experimental evidence, this extract played an 
essential dual role in this reaction, furnishing the alkaline 
medium and acting simultaneously as a reducing agent, gen-
erating in situ of palladium nanoparticles. Thus, the prepara-
tion of the desired products was accomplished in the absence 
of any external base, ligand and/or copper catalyst. In gen-
eral, the reaction was carried out smoothly, providing the 
corresponding cross-coupled products in good yields (Fig. 3, 
method B).

Very recently, Liu and coworkers have described a new 
protocol for palladium-catalyzed cross-coupling reaction of 
indoles and iodoarenes in the presence of water extract of 
pomelo peel ash (Sun et al. 2021). A systematic study devel-
oped by the authors showed a better selectivity and reac-
tion efficiency in three-component mixed solvents. In fact, 
the cross-coupling reaction preferred to take place at posi-
tion 2 of indole by carrying the reaction with 10 mol% of 
palladium(II) chloride, 100 °C and dimethyl sulfoxide/ace-
tonitrile/water extract of pomelo peel ash (0.5:0.5:1.0 mL). 

The reaction well tolerated both electron-releasing and 
electron-withdrawing substituents attached on the aromatic 
rings of iodoarenes, affording the corresponding products 
in very good yields (Fig. 4). Similarly, substituted indoles 
containing methyl, methoxy and halides groups reacted very 
smoothly with iodobenzene, giving the respective cross-cou-
pling products in 59–89% yields.

On the other hand, the Ullman reaction is also a con-
venient catalyzed coupling reaction widely applied for the 
generation of new carbon–carbon bonds and it allows the 
preparation of biaryl compounds (Chen et al. 2017). In a 
pioneering work, Lakshmidevi et al. reported a novel and 
eco-friendly medium based on water extract of pomegran-
ate ash for this coupling reaction (Lakshmidevi et al. 2018).

The influence and activity of different agro-waste water 
extracts, such as water extract of rice straw ash, water extract 
of banana peel ash, water extract of papaya bark ash and 
water extract of lemon fruit shell ash, employing 4-iodoani-
sole as a standard substrate were deeply studied (Fig. 5). In 
this regard, water extract of pomegranate ash was the best 
extract option affording the desired product in 99% yield. 
Experimental analysis of X-ray photoelectron spectroscopy 
and X-ray spectroscopy disclosed the presence of potas-
sium, magnesium, calcium, carbon, oxygen and chlorine in 
the water extract of pomegranate ash. These findings also 
revealed the highest amount of potassium in water extract 
of pomegranate ash solution among all extracts.

The generality of the Ullman reaction was also evalu-
ated by applying various substituted aryl halides, containing 

Fig. 3  Sonogashira cross-coupling reaction in agro-waste extracts. 
A variety of aryl iodides reacted smoothly with boronic acids in 
water extract of banana peel ash, affording the respective products in 

55–98% yields (method A). Aryl iodides and terminal alkynes were 
coupled efficiently in the presence of water extract of papaya bark 
ash, furnishing the desired products in 40–98% yields (method B)
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electron-releasing and electron-withdrawing groups attached 
to the aromatic ring. In general, aryl halides were much more 
reactive than bromides and chloride analogs, affording the 
corresponding coupling products in higher yields.

Likewise, symmetrical biaryl compounds can also be 
accessed by homocoupling of aryl boronic acids (Vascon-
celos et al. 2019). As an eco-friendly example, these com-
pounds were recently obtained via palladium-catalyzed aero-
bic homocoupling of aryl boronic acids mediated by water 
extract of pomegranate ash (Appa et al. 2021b). A wide 
range of desired products were synthesized in very good 
yields via  sp2-sp2 homocoupling reaction by using 1 mol% 
of palladium(II) acetate at room temperature in the presence 
of water extract of pomegranate ash (Fig. 6).

Aldol and condensation reactions

Aldol and condensation reactions are well-known alterna-
tives for the generation of new carbon–carbon bonds and the 
catalytic fashion of these transformations has been widely 
reported over the years (Yao et al. 2018; Poole et al. 2019; Li 
et al. 2019). Among them, the Henry reaction, which is also 
well recognized as a nitro aldol reaction, has been widely 
applied for the generation of new carbon–carbon bonds (Raj-
kumari et al. 2019).

In 2016, Surneni et al. described a sustainable protocol 
for this reaction employing water extract of banana and 
water extract of rice straw ash in the reaction media (Surneni 
et al. 2016). Both natural feedstock extracts exhibited a dual 
role in this nitro aldol reaction, acting as a base as well as 
solvent. It should be noted that water extract of banana was 
the best extract option when compared to water extract of 
rice straw ash, since the desired products were efficiently 
obtained in lower reaction times under similar reaction con-
ditions (Fig. 7).

In 2019, Dwivedi’s group described a novel methodol-
ogy for the preparation of 3-hydroxy-oxindole by decarbox-
ylative aldol reaction of β–ketoacid and isatin derivatives 
promoted by water extract of rice straw ash (Dwivedi et al. 
2019a). The reaction pathway occurs mainly due to the alka-
line nature of extract, which contributes to the decarboxyla-
tion of β–ketoacid and allows in situ formation of methyl 
enolate I, which is the key intermediate for this transfor-
mation. Next, this intermediate smoothly reacts with isatin 
derivatives via an aldol-type reaction to give the respective 
products. Notably, the protocol was applicable for the prepa-
ration of 17 target molecules in very high yields (Fig. 8). 
Moreover, a further experiment at the gram scale provided 
the respective 3-hydroxy-oxindole in quantitative yield, 
which is also a great advance from a synthetic point of view.

Fig. 4  Cross-coupling of indole and iodoarenes in water extract of pomelo peel ash. A variety of indoles were treated with iodoarenes to afford 
the corresponding products in moderate to high yields
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Dutta et al. reported a very efficient method for the prepa-
ration of α-diazo-β-hydroxy esters via aldol condensation 
of aldehydes with ethyl diazoacetate promoted by a water 
extract of banana–dimethyl sulfoxide system (Dutta et al. 
2019b). The reaction proceeded very smoothly furnishing 
the respective α-diazo-β-hydroxy esters from 43 to 85% 
yields (Fig. 9). The protocol was tolerant to both electron-
donating and electron-withdrawing substituents present on 
the aromatic ring of aldehyde. Regarding the synthetic appli-
cability, the sequential conversion of α-diazo-β-hydroxy 
esters into the respective β-keto esters was also described. 
Moreover, the generality of the protocol was also extended 

for the synthesis of imidazo[1,2-a]pyridine-3-carboxylates 
via a one-pot approach.

In recent years, the use of water of agro-waste extracts 
has become a cleaner alternative for condensation reactions 
(Patil et al. 2021). In this context, Chia’s group developed 
a suitable catalytic system for the condensation of alde-
hydes with 4-hydroxycoumarins or indoles promoted by the 
water extract of onion peel (Chia et al. 2018). In this regard, 
the reaction between aromatic aldehydes and a series of 
4-hydroxycoumarins provided the corresponding bisenols in 
62–94% yields (Fig. 10, method A). Analogously, a variety 
of indoles underwent condensation reactions in the presence 
of aromatic aldehydes in the presence of the same water 

Fig. 5  Ullmann reaction in the presence of water extract of pomegranate ash. Palladium(II) catalyzed efficiently the homocoupling of aryl hal-
ides, and the desired products were obtained in moderate to excellent yields (25–99%)
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Fig. 6  Homocoupling of aryl boronic acids in water extract of pomegranate ash. The homocoupling reaction of aryl boronic acids was efficiently 
carried out employing 1 mol% of palladium(II) acetate, furnishing the respective products in high yields (81–98%)

Fig. 7  Henry reaction promoted by water extract of banana or water extract of rice straw ash. Both aqueous extracts were efficient base and sol-
vent for the preparation of nitro aldol adducts in moderate to high yields

Fig. 8  Decarboxylative aldol reaction of β–ketoacid and isatin in water extract of rice straw ash. The desired 3-hydroxy-oxindoles were obtained 
in 92–94% yields through decarboxylative aldol reaction of β–ketoacid and isatin derivatives
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Fig. 9  Preparation of α-diazo-β-hydroxy esters by water extract of banana–dimethyl sulfoxide system. The reaction proceeded very well in the 
mixture of water extract of banana and dimethyl sulfoxide (0.5 mL:0.5 mL), affording in respective products in up to 85% yield

Fig. 10  Condensation reaction promoted by water extract of onion 
peel. The condensation of aldehydes with both 4-hydroxycoumarins 
and indoles was highly efficient, affording the corresponding products 

in 60–94% yields. The water extract of onion peel was also recovered 
and reused for up to five times without loss of activity
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extract of onion peel catalytic system (Chia et al. 2019). 
Generally, the reaction also proceeded well furnishing the 
desired products in very good yields (Fig. 10, method B).

Moreover, in both methodologies, the water extract of 
onion peel was also recovered and reused in further experi-
ments. Remarkably, water extract of onion peel conserved 
its catalytic activity and efficiency for up to five recycling 
experiments. Thus, this extract was considered a green alter-
native for the construction of carbon–carbon bonds via con-
densation reactions. Further studies also demonstrated that 
waste curd water might be a suitable reaction promoter for 
the condensation of aldehydes with indoles (Rajput et al. 
2019).

Badiger and Kamanna (2021) developed a Knoevenagel 
condensation of aromatic/heteroaromatic aldehydes with 
malononitrile promoted by water extract of orange fruit 
peel ash. By this approach, 16 examples of unsaturated ben-
zylidene derivatives were successfully prepared employing 
3 mL of this extract. In general, the protocol was applicable 
for various substituted aromatic aldehydes and the respec-
tive Knoevenagel adducts were obtained in 82–96 yields 
(Fig. 11). Additionally, it was also observed a dual role of 
water extract of orange fruit peel ash and the extract acts as 
a catalyst and solvent in the condensation reaction.

Michael addition reaction

The Michael addition reaction is a particularly valuable 
approach for the generation of new carbon–carbon bonds 
and several synthetic strategies have been well documented 
(Wadhwa et al. 2018; Denisov et al. 2021; Das et al. 2021). 
For example, synthesis of 2-arylacetonitriles derivatives 

(Chen et  al. 2021), asymmetric addition of aldehydes 
to β-nitrostyrenes (Gorde et  al. 2021) and antiselective 
γ-nitroaldehydes (Schnitzer et al. 2020). Similarly, nitroal-
kanes have emerged as versatile and useful reagents in a 
wide range of transformations (Ballini and Palmieri 2018).

In this context, Kumar et al. reported a straightforward 
protocol for the Michael addition of nitroalkanes (Kumar 
et al. 2018). The methodology was tolerant for several func-
tional groups on the phenyl ring of 3-methyl-4-nitro-5alk-
enyl-isoxazole, furnishing the respective products in 76 to 
92% yields. Remarkably, in this reaction water extract of rice 
straw ash has shown a dual role, acting as a solvent and base.

In terms of the reaction mechanism, the carbonate anions 
from the aqueous extract abstract a proton from nitrometh-
ane, affording the respective nitrate ion. Next, this species 
undergoes conjugation addition with 3-methyl-4-nitro-5alk-
enyl-isoxazole, furnishing the conjugated addition product 
(Fig. 12). Furthermore, the protocol was also applicable for 
the preparation of 4-nitro butyric acid, which is a synthetic 
intermediate used for the synthesis of Bacoflen.

The development of synthetic approaches for function-
alization of indole cores has significantly increased due to 
the wide range of applications of this heterocycle (Mondal 
et al. 2020; Abenante et al. 2020; Galardon 2021). In this 
context, the incorporation of a 2H-chromene ring at the posi-
tion 3 of the indole core has attracted special attention from 
several researchers (Paul et al. 2014; Kumar et al. 2017; 
Rao et al. 2018; Gore et al. 2012). From an environmental 
point of view, water extract of lemon has been efficiently 
used as a promoter in the functionalization of indoles with 
substituted chromene derivatives (Vasantha et al. 2020). The 
versatility and efficiency of the protocol was investigated by 

Fig. 11  Knoevenagel condensation promoted by water extract of orange fruit peel ash. Aromatic and heteroaromatic aldehydes react smoothly 
with malononitrile to afford the respective benzylidene derivatives in 82–96% yields



851Environmental Chemistry Letters (2022) 20:841–873 

1 3

preparing 8 examples of alkyl-4-(1H-indol-3yl)-2-alkyl-4H-
chromene-3-carboxylate derivatives (Fig. 13). In this view, 
the desired products were achieved with very good yields at 
room temperature.

Carbon–heteroatom bond formation

The development of new strategies for the generation of new 
carbon–heteroatom bonds is directly associated with accom-
plishing privileged organic compounds which might present 
biological, pharmaceutical and synthetic applications (Silva 
et al. 2020; Martins et al. 2020). In this regard, a wide range 
of methodologies that involve different reagents as well as 
solvents have been reported in the literature (Richards et al. 
2021). Various eco-friendly methodologies for the genera-
tion of carbon–oxygen, carbon–nitrogen, carbon–sulfur and 
carbon–bromine will be accordingly summarized and dis-
cussed in this section.

Carbon–oxygen bond formation

The generation of new carbon–oxygen bonds is particularly 
valuable in modern organic synthesis since the respective 
products have shown unique biological and synthetic appli-
cations (Pan et al. 2019; Jiang et al. 2020). For example, 
phenols and their derivatives are important target molecules 
which contains a range of applications, including pharma-
ceuticals (Razavi-Azarkhiavi et al. 2016; Jarial et al. 2016; 
Tungmunnithum et al. 2018; Patra and Singh 2018), antioxi-
dant ( Wright et al. 2001; Amorati et al. 2003; Zeb 2020) and 
flavoring agents (Roston and Kissinger 1981; Maga 1992; 
Liang et al. 2009; Hayes et al. 2019).

As a consequence of phenols relevance, the development 
of new strategies to achieve these kinds of compounds has 
been broadly investigated (Batra et al. 2021). Among them, 
the oxidative hydroxylation of arylboronic acids has been 
considered a promising strategy to access phenols moieties 
(Upadhyay et al. 2021; Mahanta et al. 2021).

Fig. 12  1,6-Michael addition of nitro-alkane to 3-methyl-4-nitro-
5-styryl-isoxazoles in water extract of rice straw ash. The base from 
the aqueous extract abstracts a proton from nitromethane to afford 

nitrate ion. Subsequently, nitrate undergoes conjugation addition with 
3-methyl-4-nitro-5alkenyl-isoxazole to afford the reaction product 
(Kumar et al. 2018)

Fig. 13  Functionalization of indoles with chromenes promoted by water extract of lemon. Indoles were treated with substituted chromene deriv-
atives during 6 h at room temperature, affording the corresponding products in 70–90% yields (Vasantha et al. 2020)
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In this context, an elegant synthetic pathway to obtain 
phenols via ipso-hydroxylation of arylboronic acids was 
reported by Saikia et al (2015a). The reaction involves the 
treatment of aryl/heteroarylboronic acids with 30% aqueous 
hydrogen peroxide as an oxidant in the presence of water 
extract of rice straw ash. This straightforward procedure 
allowed the preparation of desired phenols in very high 
yields (Fig. 14, method A).

Furthermore, water extract of rice straw ash was also 
recovered from the reaction media and reused for the next 
transformations. In this study, it was observed that this 
extract maintained its efficiency until the 5th cycle without 
significant loss of extract activity.

Further studies developed by the same group demon-
strated that water extract of banana peel ash is also green 
catalytic alternative for the ipso-hydroxylation of arylbo-
ronic acids (Saikia et al. 2016). In fact, 12 different examples 
of functionalized phenols were obtained from 90 to 97% 
yields under optimized reaction conditions (Fig. 14, method 
B). Moreover, the reusability of water extract of banana peel 
ash was also evaluated and the extract conserved its catalytic 
activity until the 5th reaction run.

Another interesting work for the preparation of phenol 
derivatives was described by Saikia and Borah (2015). In 
this study, the authors reported a new protocol for the prepa-
ration of respective phenols through the oxidation of aro-
matic aldehydes using hydrogen peroxide–water extract of 
rice straw ash as an oxidative system via the Dakin reaction 
(Fig. 15, method A). Alternatively, the Dakin reaction was 
also described employing water extract of banana peel ash 
under aerobic conditions (Saikia et al. 2015b). In this regard, 
hydrogen peroxide–water extract of banana also proved to 
be a very efficient system, affording phenol derivatives in 
90–98% yields (Fig. 15, method B).

Regardless of the use of agro-waste extracts in the Dakin 
reaction, mechanistically, the extract has shown two impor-
tant roles. First, the extract is mainly responsible for deproto-
nation of hydrogen peroxide due its well-known base nature. 
Furthermore, in the last step of the mechanism the extract 
most likely acts in hydrolyses of the aldehyde affording the 
corresponding product. Additionally, grape pomace extract 
was also applied in the oxidation of arylboronic acids, which 
efficiently replaced the activity of tannic acid in this reaction 
(Scoccia et al. 2016).

Fig. 14  Ipso-hydroxylation of arylboronic acids in agro-waste 
extracts. Water extract of rice straw ash and water extract of banana 
peel ash were efficient catalytic media for the ipso-hydroxyla-

tion of arylboronic acids, affording the corresponding products in 
90–98%yields. Both aqueous extracts were recovered and reused in 
further experiments without significant loss of activity
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On the other hand, benzamide derivatives have become 
attractive target molecules that have innumerous biologi-
cal and pharmacological properties, including antimicrobial 
(Narayana et al. 2004), anticonvulsant (Foster et al. 1999), 
analgesic (Coats et al. 2004) and antitumor activities (Xu 
et al. 2006). In this regard, the synthesis of these kinds of 
compounds has been widely explored (Wang et al. 2011; 
Zeng and Guan 2011; Bhunia et al. 2017; Mitrofanov et al. 
2017; Balbom et al. 2019). Generally, benzamide derivatives 
are conveniently obtained by reaction of aromatics and ali-
phatics alcohols with aniline (Wang et al. 2011), Beckmann 
rearrangement (Owston et al. 2007) or aminocarbonylation 
of aryl halides (Wu et al. 2010).

From an environmental point of view, Sun and cowork-
ers reported a straightforward approach for the hydration 
of nitriles, which was promoted by water extract of pomelo 
peel ash (Sun et al. 2019). The methodology was very effi-
cient, furnishing the respective benzamide derivatives in 

good yields without using any base, metal or organic solvent 
(Fig. 16). This protocol was also applicable for the prepa-
ration of selected aliphatic amides under similar reaction 
conditions.

Aiming to increase the versatility of the protocol, the 
authors also studied the recyclability of the extract. After 
completion of the reaction, the water extract of pomelo peel 
ash was recovered and reused for subsequent runs. In fact, 
the reused aqueous extract was very efficient until the fourth 
reaction run. In addition to the reusability study, three exper-
iments were realized on a gram scale, and the corresponding 
amides were obtained in very good yields.

Bora and coworkers have notably developed convenient 
applications of calcined burnt peel ashes or their respec-
tive extracts for the preparation of a diversity of target mol-
ecules (Laskar et al. 2019b; Dewan et al. 2018). Recently, 
Das’s group has reported a general and robust alternative for 
the construction of new carbon–oxygen bonds using water 

Fig. 15  Dakin reaction promoted by extract of rice straw ash and water extract of banana peel ash. Phenols were efficiently achieved through the 
oxidation of aromatic aldehydes using 2 equivalents of hydrogen peroxide in the presence of water of agro-waste extracts
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extract of teak leaf (Das et al. 2020c). More specifically, 
the protocol was highly efficient for the hydration of nitriles 
and ipso-hydroxylation of arylboronic acids, affording the 
desired products in very good yields under mild reaction 
conditions (Fig. 17).

Notably, the authors found a dual role of water extract 
of teak leaf in all these transformations, acting as a base 
as well as solvent in the reaction media. In addition to car-
bon–oxygen bond formation water extract of teak leaf was 
also applicable as a greener alternative for N-arylation of 
imidazoles with phenylboronic acids and condensation of 
Knoevenagel condensation of aryl aldehydes with malon-
onitrile under similar reaction conditions.

Carbon–nitrogen bond formation

Peptides represent an interesting class of nitrogen com-
pounds that have shown great relevance from synthetic and 
biological points of view (Lenstra et al. 2014). Therefore, 
the preparation of peptides via carbon–nitrogen bond forma-
tion between two amino acid molecules has become particu-
larly useful in modern organic chemistry (Bader et al. 2020; 
Gisemba and Aldrich 2020). Generally, traditional proto-
cols for peptide synthesis require the use of bases, activating 
agents and coupling agent catalysts (Todorovic 2020).

In contrast, Konwar’s group described an eco-friendly 
methodology for the peptide bond formation reaction 
using water extract of banana peel ash and ethylene glycol 
without any external base (Konwar et al. 2016). Several 
reaction parameters were tested for the peptide coupling 
reaction and the combination of water extract of banana 
peel ash and N-ethyl-N'-(3-dimethylaminopropyl) carbo-
diimide hydrochloride (EDC.HCl) in the presence of eth-
ylene glycol proved to be the best option at room tempera-
ture. Remarkably, different benzoyl-protected amino acids 
smoothly reacted with amino acid methyl ester hydrochlo-
ride salts, affording the corresponding peptides in 58–95% 
yields (Table 1).

In addition, the recyclability of the water extract of 
banana peel ash/ethylene glycol catalytic system was also 
evaluated and it was efficient until the third reaction run. 
More recently, banana peel ash/ethylene glycol catalytic 
system has also been described as a green approach for 
the amide bond formation under microwave irradiation 
(Kamanna et al. 2020).

On the other hand, β-amino carbonyl/nitrile compounds 
have gained special attention since they are useful syn-
thetic intermediates in several organic transformations 
(Yadav et al. 2003). In this context, Talukdar and Deka 
(2020) reported a convenient protocol for the synthesis of 

Fig. 16  Synthesis of benzamide 
derivatives promoted by water 
extract of pomelo peel ash. The 
desired amides were achieved 
in 41–96%yields at 150 °C via 
hydration of nitriles. Water 
extract of pomelo peel ash was 
recovered and efficiently reused 
until the fourth reaction run
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these compounds by the aza-Michael reaction catalyzed 
by water hyacinth ash.

Interestingly, amines reacted very smoothly with α,β-
unsaturated carbonyl/nitrile compounds affording the cor-
responding Michael adducts in very good yields, under neat 
conditions (Fig. 18). Moreover, Baylis–Hillman adducts 
were also appropriate substrates furnishing the desired prod-
ucts from 87 to 96% yields under optimized conditions.

It is well recognized that the development of new syn-
thetic strategies for the preparation of aryl azides is very 
important, since these kinds of compounds are versatile 
building blocks in organic synthesis (Bräse and Banert 2010; 
Ge et al. 2020). Because of the importance of aryl azides, 
several methodologies for the preparation of these kinds of 
compounds have been described (Jin et al. 2011; Hajipour 
and Mohammadsaleh 2014; Prieto et al. 2017).

In this context, Saikia described a copper-catalyzed 
approach for the synthesis of aryl azides by the treatment 
of aryl boronic acids with sodium azide in the presence 

water extract of banana peel ash (Saikia 2018). Remarkably, 
potassium and sodium carbonates present in water extract of 
banana peel ash most likely act as a base in this transforma-
tion. This protocol was applicable for a variety of substituted 
aryl boronic acids containing both electron-releasing and 
electron-withdrawing groups, affording the corresponding 
aryl azides in excellent yields. Some representative examples 
are illustrated in Fig. 19.

Very recently, Vekateswarlu and coworkers have 
described a sustainable protocol for the preparation of chiral 
tert-butanesulfinyl aldimines mediated by water extract of 
pomegranate ash (Naidu et al. 2021). Notably, water extract 
of pomegranate ash efficiently catalyzed the condensation 
of tert-butanesulfinamides and aldehydes in the presence of 
water and ethanol, affording desired products in up to 99% 
yields (Fig. 20).

The authors also proposed a plausible reaction mechanism 
for this transformation. The catalytic cycle of the reaction 
starts with the deprotonation of the tert-butanesulfinamide 

Fig. 17  Synthesis of amides and phenols promoted by water extract of teak leaf. Amides were obtained in 74–96% yields by the hydration of 
nitriles at 60 °C. Phenols were achieved in 86–97% yields by ipso-hydroxylation of arylboronic acids at room temperature
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by the base from water extract of pomegranate ash, fur-
nishing the respective intermediate A. Subsequently, this 
intermediate undergoes to a nucleophilic addition step with 
aldehyde, generating α-sulfinylamino alkoxide B. This tran-
sitory specie is readily converted into α-sulfinylaminol C 
with concomitant regeneration of the base, completing the 
catalytic cycle. Finally, C is readily converted into respec-
tive tert-butanesulfinyl aldimines through the elimination 
of water.

Moreover, the regeneration of the base in the reaction 
media was also supported by further recyclability studies, 

which showed water extract of pomegranate ash efficiency 
until 5th catalytic cycle.

Carbon–sulfur bond‑forming reactions

Organosulfur compounds have shown unique properties 
and have been notably used as privileged substrates in the 
synthesis of several bioactive substances (Nielsen et al. 
2017; Colle et al. 2013). They have also been employed as 
valuable intermediates in a wide range of organic reactions 
(Prochnow et al. 2019; Amri and Wirth 2021), including 

Table 1  Synthesis of several  peptidesa

Reaction conditions: benzoyl-protected amino acid (1 mmol), amino acid methyl ester hydrochloride (1.5 mmol), N-ethyl-N'-(3-dimethylamino-
propyl) carbodiimide hydrochloride (1 mmol) in water extract of banana peel ash (3 mL) and ethylene glycol (0.2 mL)

Entry R1 R2 Yield (%)

 
1 -H -H 95
2 -CH3 -CH3 71
3 -H -CH3 67
4 -CH3 -H 76
5 -CH2Ph -H 58
6 -CH2Ph -CH3 61
7 -CH(CH3)2 -H 76
8 -CH(CH3)2 -CH3 72
9 -CH2CH(CH3)2 -H 68
10 -CH2CH(CH3)2 -CH3 77

Fig. 18  Aza-Michael reaction catalyzed by water hyacinth ash. The treatment of amines with α,β-unsaturated carbonyl/nitrile compounds in the 
presence of water hyacinth ash furnished the corresponding Michael adducts in 82–97% yields
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cross-coupling reactions (Qin et al. 2021) and total synthesis 
(Silva et al. 2018; Pearson et al. 2004).

Because of organosulfur importance, several strategies 
to accomplish these kinds of compounds have been widely 
reported in the literature (Azeredo et al. 2013; Zupanc and 
Jereb 2021; Lanfranco et al. 2021). Among them, hydrothi-
olation reaction have become one of the most useful and 
atom economical pathway to afford the desired organosulfur 
compounds under greener conditions (Rocha et al. 2017; 
Peixoto et al. 2020; Shigeno et al. 2021).

Similarly, the development of new synthetic methods 
for new carbon–sulfur bond formation using water of agro-
waste extracts has become particularly valuable in organo-
sulfur chemistry (Leitemberger et al. 2019). In this context, 
our research group has reported a straightforward method-
ology for the hydrothiolation of alkynes in the presence of 
agro-waste extracts (Godoi et al. 2019). In particular, water 
extract of rice straw ash proved to be the best aqueous extract 
option for the synthesis of the desired vinyl thioethers. Gen-
erally, terminal alkynes and thiol derivatives were excellent 
reaction partners, affording the corresponding products in 
good yields with high stereoselectivity (Fig. 21). Moreover, 
water extract of rice straw ash could be easily recovered 
from the reaction media and reused for further reactions. 
Indeed, this aqueous extract conserved its activity up to the 
fourth cycle, furnishing the corresponding thioether with 
good yield and high stereoselectivity.

Very recently, we have elucidated the main behavior of 
by water extract of rice straw ash in the hydrothiolation of 
alkynes, combining the experimental design and some well-
known techniques of characterization and metal quantifica-
tion (Silveira et al. 2021). In fact, experimental evidence 
supported by inductively coupled plasma optical emission 
spectrometry and X-ray fluorescence analysis revealed a 

slight variation in the concentration between the metals 
present in the rice ashes and in their water extracts. None-
theless, these differences in metallic compositions might be 
associated with different factors including the pH of soils, 
differences in rice species, precipitation, weather as well as 
cultivation form (Zhang et al. 2020; Makela et al. 2016).

Furthermore, the effect of the metals from by water 
extract of rice straw ash on the hydrothiolation of pheny-
lacetylene was also investigated by employing ANOVA 
response, coefficient of determination, linear regression 
model and Fischer’s test. The combination of statistical 
analysis and experimental design allowed us to correlate 
the concentration and effects of the independent variables 
present in the aqueous extract. In this regard, calcium (II) 
was found to be the most important metal for the hydrothi-
olation reaction when by water extract of rice straw ash was 
used as a solvent.

Notably, a good agreement between our experimental 
results and this theoretical analysis was observed. Based on 
these findings as well as control experiments, a plausible 
mechanism for the hydrothiolation of alkynes was also pro-
posed (Fig. 22). Remarkably, a synergistic effect between by 
water extract of rice straw ash and light would be responsible 
for the generation of thiyl radical (I) in the reaction media. 
Next, this sulfur intermediate would react with II giving the 
respective species III. Then, this radical reacts with thiol 
furnishing the corresponding product with concomitant 
regeneration of thiyl radical, completing the mechanism.

Carbon–bromine bond formation

It is well known that aromatic and heteroaromatic bro-
mides are important substrates in a wide range of organic 
reactions (Chang et al. 2012; Yang et al. 2013; Uchida 

Fig. 19  Synthesis of aryl azides in water extract of banana peel ash. The desired products were efficiently obtained in very high yields through a 
copper-catalyzed reaction between aryl boronic acids and sodium azide
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and Togo 2019; Mondal et al. 2021). In this regard, the 
aromatic electrophilic substitution has become the most 
straightforward protocol to synthesize these bromides 
derivatives (Mendoza et al. 2016; Xiao et al. 2021; Scham-
mel et al. 2021).

Within this context, Appa et al. (2019b) developed a con-
venient methodology for the monobromination of aromatic 
compounds employing N-bromosuccinimide in the presence 
of water extract of pomegranate ash. Although the role of 
this extract was not fully understood, the authors presented 
a plausible reaction pathway for the bromination reaction 
(Fig. 23). It was believed that the metal basic species from 
water extract of pomegranate ash would be responsible for 
the generation of succinimide and the bromine intermedi-
ate. Subsequently, this intermediate undergoes electrophilic 

substitution reaction, furnishing the respective aromatic 
compound as a final product.

Multicomponent reactions for carbon–
carbon and carbon–heteroatom bond 
formation

Domino processes have emerged as a useful tool for the 
synthesis of a variety of target molecules and have become 
one of the most efficient methods for the generation of 
new carbon–carbon and carbon–heteroatom bonds (Shy-
laja et al. 2018; Yang et al. 2017; Pan et al. 2021). In this 
context, multicomponent reactions (MCRs) have presented 
major advantages over conventional stepwise approaches, 

Fig. 20  Synthesis of chiral tert-butanesulfinyl aldimines catalyzed by water extract of pomegranate ash. Tert-butanesulfinamides react efficiently 
with different aldehydes, giving the desired products in 91–99% yields (Naidu et al. 2021)
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and they have been demonstrated to be a useful method to 
prepare complex organic substances with high atom effi-
ciency (Fontecha-Tarazona et al. 2015; Cioc et al. 2014; 
Hayashi 2016).

Bordoloi and coworkers described a suitable approach 
for the preparation of functionalized imidazole and dihy-
dropyrimidine derivatives through a three-component trans-
formation promoted by water extract of pomelo (Tamuli 
et al. 2017). Of particular importance, both methodologies 
required only equivalent amount of water extract of pomelo 
to provide the respective products efficiently without the use 
of any extra additives, cocatalysts or solvents. The general-
ity of the reaction was also evaluated and both electron-
donating and electron-withdrawing substituents attached to 
the aromatic ring of benzaldehyde furnished the respective 
products in very high yields (Fig. 24).

More recently, Hiremath and Kamanna (2020) have 
reported another interesting multicomponent reaction pro-
moted by agro-waste extracts. In this regard, a microwave-
assisted synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-di-
ones through condensation of aldehyde with malononitrile 
and phthalhydrazide catalyzed by water extract of mango 
peel ash was described. By this three-component process, 
the desired products could be efficiently achieved in good 
yields employing water extract of mango peel ash as a base 
source (Fig. 25).

Very recently, Hiremath and Kantharaju (2020) have 
described a high-yielding three-component approach for the 
preparation of 2-amino-4H-pyran and tetrahydrobenzo[b]
pyran derivatives employing water extract of muskmelon 
fruit shell ash as a catalyst. The synthesis of both 2-amino-
4H-pyran and tetrahydrobenzo[b]pyran derivatives is 

Fig. 21  Hydrothiolation of 
terminal alkynes promoted by 
water extract of rice straw ash. 
Several thioethers were pre-
pared by reacting alkynes with 
thiols at room temperature. The 
aqueous extract was recovered 
from the reaction media and 
reused up to 4th run without 
significant loss of its activity 
(Leitemberger et al. 2019)
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Fig. 22  Plausible reaction mechanism for the hydrothiolation of phe-
nylacetylene. The thiyl radical (I) generated in the reaction media 
reacts with II to afford the intermediate III. Subsequent reaction of 

this intermediate with 4-methylbenzenethiol provides the desired 
product, completing the mechanism (Silveira et al. 2021)

Fig. 23  Reaction pathway 
of bromination of aromatic 
compounds in water extract 
of pomegranate ash. The base 
from water extract of pomegran-
ate ash reacts with N-bromosuc-
cinimide to form succinimide 
and the bromine intermediate. 
Next, this intermediate under-
goes electrophilic substitution 
reaction to afford the desired 
product (Appa et al. 2019b)

Fig. 24  Three-component transformation promoted by water extract 
of pomelo. Imidazole derivatives were obtained by the reaction 
between aldehydes and 1,2-diketone in the presence of ammonium 

acetate. Aldehydes were condensed with 1,3-diketones and urea to 
give the respective dihydropyrimidines in 89–98% yields
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accomplished with in situ generation of benzylidene malo-
nonitrile via Knoevenagel condensation (Fig. 26).

A wide range of desired products were synthesized under 
standard conditions and the reaction well-tolerated electron-
withdrawing as well as electron-donating substituents in the 
aldehyde moiety. Moreover, the reusability of water extract 
of muskmelon fruit shell ash was also evaluated and it shows 
high efficiency until the 4th reaction cycle without signifi-
cant decrease in the yield value of desired product.

Water extract of tamarindus indica seed ash also proved 
to be a suitable aqueous extract for the one-pot three-compo-
nent synthesis of 4H-pyran derivatives (Halder et al. 2020b). 
The protocol was simple and convenient to prepare a range 
of 4H-pyran derivatives in up to 95% yield through a one-pot 
reaction between 1,3-cyclohexanediones, aryl aldehydes and 
malononitrile in the presence of water extract of tamarindus 
indica seed ash and ethanol as a reaction media.

Mechanistically, tamarindus indica seed ash is essential 
for the abstraction of proton from malononitrile which is 

subsequently converted into intermediate A by a Knoeve-
nagel-type condensation reaction. Next, this intermediate 
reacts with 4-hydroxycoumarin by a Michael addition reac-
tion mediated by base, giving the species B. Finally, the 
intramolecular cyclization reaction followed by an isomeri-
zation step affords the desired 4H-pyran derivative (Fig. 27).

Dwivedi and coworkers described a one-pot methodol-
ogy for the preparation of pyrano[2,3-c]pyrazole employ-
ing arylidene malononitrile and pyrazolone assisted by 
water extract of banana peels ash (Dwivedi et al. 2019b). 
The variation of the reaction scope in terms of arylidene 
malononitrile moiety demonstrated that a broad range of 
functional groups could be tolerated and 17 different exam-
ples were efficiently synthesized in excellent yields (Fig. 28). 
Mechanistically, water extract of banana peels ash showed 
an important role in this reaction, acting as a base source in 
the first step, generating enol A, which further undergoes 
Michael addition with arylidene malononitrile to furnish 
intermediate B. Subsequently, this intermediate abstract a 

Fig. 25  Synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-diones pro-
moted by water extract of mango peel ash. The condensation reac-
tion of aldehyde with malononitrile and phthalhydrazide catalyzed by 

water extract of mango peel ash provided the desired products in up 
to 89% yield in only 6 min (Hiremath and Kamanna 2020)

Fig. 26  Synthesis of 2-amino-4H-pyran and tetrahydrobenzo[b]pyran 
derivatives in water extract of muskmelon fruit shell ash. First, ben-
zylidene malononitrile in generated in  situ by condensation of alde-

hyde with malononitrile. Next, benzylidene malononitrile is smoothly 
converted into corresponding products by reaction with dicarbonyl 
compounds
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proton from extract to generate the species C, which is sub-
mitted to intramolecular cyclization to provide D. Finally, 
through an isomerization step, the corresponding product is 
conveniently obtained.

On the other hand, Bendre’s group described a one-pot 
methodology for the synthesis of 3-carboxycoumarins pro-
moted by water extract of banana peels (Bagul et al. 2017). 
In this regard, alkali metal carbonates such as sodium car-
bonate and potassium carbonate present in water extract of 
banana peels solution act as internal bases in the conden-
sation reaction. A series of 3-carboxycoumarins were syn-
thesized via Knoevenagel condensation and intramolecular 
cyclization of 2-hydroxybenzaldehydes with meldrum’s 
acid in very good yields (Fig. 29, method A).

Later, the same research group also described the prep-
aration of 3-carboxycoumarins in the presence of water 
extract of rice straw ash (Patil et al. 2018). In this study, 
the corresponding 3-carboxycoumarins were synthesized 
in up to 94% yield using 10% of water extract of rice straw 
ash in ethanol at room temperature (Fig. 29, method B).

Additionally, water extract of lemon fruit shell ash has 
also been applied as a basic catalytic medium in the same 
condensation reaction (Khatavi and Kantharaju 2018). The 
protocol resulted in good to excellent isolated yields of the 

desired 3-carboxycoumarins within 3–6 min under micro-
wave irradiation (Fig. 29, method C).

More recently, interesting results have also been dem-
onstrated by Kantharaju et al. (2019). In this regard, water 
extract of nilgiri bark was employed as a green catalyst alter-
native for the preparation of 3-carboxycoumarins. The reac-
tion proceeded well, affording the corresponding products 
in good yields at room temperature (Fig. 29, method D). 
In addition to the production of 3-carboxycoumarins, the 
methodology was extended to the synthesis of benzylidin-
emalononitrile derivatives. As an aside study, Kantharaju’s 
group also reported the synthesis of these compounds in 
the presence of water extract of banana peel ash under the 
grindstone method (Kantharaju et al. 2019).

Owing the alkaline nature of water of agro-waste extracts 
it also been employed as based catalysts in the prepara-
tion of chromene scaffolds. In this regard, the synthesis of 
2-amino-4H-chromene derivatives was reported via a mul-
ticomponent reaction promoted by bael fruit extract (Shinde 
et al. 2017). Notably, a wide range of desired products were 
achieved through the condensation of aryl aldehydes with 
malononitrile and naphthol derivatives promoted by bael 
fruit extract (Fig. 30, method A). The authors also investi-
gated the recyclability of extract, and the catalytic system 

Fig. 27  Plausible mechanism for the synthesis of 4H-pyran deriva-
tives. Benzylidene malononitrile (a) is generated through Kno-
evenagel condensation of aldehyde with malononitrile. Next, this 

intermediate reacts with 4-hydroxycoumarin to afford the species b. 
Finally, the final product is achieved by the intramolecular cyclization 
reaction of b followed by an isomerization step
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proved to be efficient until the 5th cycle. In further studies, 
the same group also described the effect of bael fruit ash in 
this reaction (Patil et al. 2021).

Likewise, 2-amino-4H-chromene derivatives were also 
successfully obtained via multicomponent process in the 
presence of water extract of pomegranate peel ash (Hire-
math et al. 2019). The methodology was applicable for a 
broad scope of chromene scaffolds which were delivered 
in very good yields under microwave irradiation (Fig. 30, 
method B).

Water extract of agave leaf ash has also provided to be 
very efficient for the synthesis of 2-amino-4H-chromene 
derivatives (Patil et al. 2019). Hence, aryl aldehydes reacted 
smoothly with malononitrile and naphthol derivatives in the 
presence of water extract of agave leaf ash, affording the 
corresponding products in very high yields (Fig. 30, method 
C). In addition, this protocol was also highly useful for the 
synthesis of pyrano[2,3c]pyrazoles under similar reaction 
conditions.

More recently, water extract of banana peel ash has also 
been applied as a green catalyst for the multicomponent 

synthesis of 2-amino-3,5-dicarbonitrile-6-thio-pyridine 
derivatives (Allahi and Akhlaghinia 2020). This method-
ology allowed the preparation of a variety of the desired 
products in very good yields by a one-pot process.

In terms of the reaction mechanism, it was assumed that 
water extract of banana peel ash would act as a base due to 
the presence of metal carbonates in the extract composi-
tion. Thus, the generation of the species A was proposed 
by deprotonation of the acid proton from malononitrile, 
which is further converted into respective Knoevenagel 
adduct B by a condensation step. Next, the Knoevenagel 
adduct undergoes a Michael addition reaction with another 
equivalent of A to give compound C. This intermediate 
reacts with the thiolate anion to afford intermediate D. 
Subsequently, an intramolecular cyclization reaction fol-
lowed by protonation generates the most stable tautomeric 
form of dihydropyridine (E). Last, the formation of desired 
product was assumed to occur through an air oxidative 
aromatization step (Fig. 31).

Fig. 28  Synthesis of pyrano[2,3-c]pyrazole promoted by water extract 
of banana peels ash. Deprotonation of pyrazolone generates enol a, 
which further undergoes to conjugate addition with arylidene malo-
nonitrile to give the intermediate b. This intermediate is further pro-

tonated to generate the specie c, which is converted into d by intra-
molecular cyclization step. Finally, the corresponding product is 
achieved through an isomerization step (Dwivedi et al. 2019b)
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Conclusion

In summary, in this review a significant increase in the devel-
opment of environmentally benign synthetic approaches for 
the generation of new carbon–carbon and carbon–heter-
oatom bonds was observed. The recent literature has dem-
onstrated a series of advantages of the use of agro-waste 
extracts as a green alternative for carbon–carbon and car-
bon–heteroatom bond-forming reactions. In this context, the 
use of these biomass residues in organic synthesis has sev-
eral benefits, including: (1) easy access from natural waste 
feedstock, (2) mild conditions, (3) high catalytic efficiency 
and (4) recyclability.

In spite the well effectiveness of agro-waste extracts in 
a series of transformations, some articles are focus only on 
development of synthetic methodologies and the role of 
metal in the reaction media is not fully discussed. Also, the 
organochalcogen chemistry might be further explored, since 
only few works have been reported to date. On the other 
hand, the employment of agro-waste extracts in the reaction 
medium overcome any limitation in the protocols reported 
in the literature once these aqueous extracts are nontoxic, 
highly recyclable, simple workup, biodegradable and readily 
available from natural waste feedstock. Thus, owing to the 
notable applications of these extracts, a great trend is grow-
ing the studies on this topic and extending to other areas of 
chemistry.

Fig. 29  Synthesis of 3-carboxycoumarins promoted by agro-waste 
extracts. 2-Hydroxybenzaldehydes were successfully converted into 
respective 3-carboxycoumarins in the presence of meldrum’s acid 

and different water agro-waste extracts, including nilgiri bark, lemon 
fruit, banana peel and rice straw ashes
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Fig. 30  Synthesis of chromene scaffolds in agro-waste extracts. 
2-Amino-4H-chromene derivatives were obtained through the con-
densation of aryl aldehydes with malononitrile and naphthol deriva-
tives under conventional heating in the presence of bael fruit or agave 

leaf extracts (methods A and C, respectively). The combination of 
water extract of pomegranate peel ash and microwave irradiation was 
efficient for the preparation of desired chromene scaffolds in 86-9o% 
yields (method B)
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