Environmental Chemistry Letters (2022) 20:813-839
https://doi.org/10.1007/510311-021-01313-9

REVIEW q

Check for
updates

How application of agricultural waste can enhance soil health in soils
acidified by tea cultivation: a review

Viet San Le'%* . Laetitia Herrmann'~ . Lee Hudek' - Thi Binh Nguyen® - Lambert Brau’ - Didier Lesueur'3#3

Received: 30 July 2021 / Accepted: 27 August 2021 / Published online: 24 September 2021
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021

Abstract

Tea is one of the world’s most consumed beverages and an important crop of many developing countries. Intensive tea
cultivation has negative impacts on soil health properties and the environment. While soil acidification in tea plantations
is a known severe issue, there is a lack of literature analysis of the ways in which soil acidification affects soil health, tea
productivity and the environment, and suitable methods to control this issue. Here, we review the mechanisms of tea soil
acidification and consequences, the potential of common agricultural wastes for ameliorating soil acidity and enhancing
soil health and crop productivity, as well as reducing environmental pollution under tea cultivation. We show that intensive
application of mineral nitrogen is the main cause of soil acidification in tea plantations, while tea plants also play a part in
accelerating tea soil acidity. Agricultural waste and byproducts have a great potential to correct soil acidity, and to enhance
soil health, tea productivity and quality. These soil amendments also have drawbacks such as metal and pathogen pollution,
and supplementary costs.
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Introduction

Soil acidification has been a major threat to soil health and
environmental sustainability in various agricultural systems
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nitrogen (N) is the main cause of the issue (Li et al. 2016;
Yan et al. 2018).

The use of agricultural organic waste products to amelio-
rate soil acidification has been recognized in agriculture sys-
tems worldwide (Cai et al. 2015; Cornelissen et al. 2018; Dai
et al. 2017). By definition, agricultural wastes or agricul-
ture by-products are the unwanted residues generated from
agriculture activities, such as crop residues, animal manure,
forest waste, vegetable matter and weeds (Dai et al. 2018;
Ramirez-Garcia et al. 2019). Animal wastes, green manures
and products derived from these wastes such as biochars
and compost are generally alkaline in nature and have high
pH buffering capacity which can neutralize soil acidification
(Cai et al. 2021; Rayne and Aula 2020). Also, the presence
of basic cations such as Mg** and Ca®*, and organic ani-
ons in these materials contribute to increased soil pH (Cai
et al. 2021; Tang et al. 2013). In addition to increasing soil
pH, agricultural wastes have long been known to enhance
soil health, including soil physical, chemical and biological
properties (Bhatt et al. 2019; Cai et al. 2021; Rayne and Aula
2020). Globally, an estimated of 1 billion tons of agricultural
wastes per year is generated, which China, USA and India
being the largest agricultural waste-producing nations world-
wide (Fig. 1) (Clauser et al. 2021; Obi et al. 2016), and this
figure has been projected to increase rapidly because of the
growing demand of agricultural products (Dai et al. 2018;
Wei et al. 2020). Thus, the utilization of agricultural wastes
as soil amendments could be a win—win strategy, which can
benefit not only soil health but also reduce the pressure of
using fossil fuels, mitigate serious environmental problems
and human health threats (Bijarchiyan et al. 2020; Mpatani
et al. 2021).

Studies on the utilization of agricultural wastes and its
components to alleviate soil acidification caused by tea
cultivation have been well reported in China, but poorly
implemented in other parts of the world. Among these soil
amendments, biochar application is considered as the most
effective way to counter low soil pH, resulting in subse-
quent benefits to soil health and tea productivity (Wang
et al. 2018; Wang et al. 2014; Yan et al. 2021). Several
studies have also reported the positive impacts of organic
manures on acidification of tea soil (Lin et al. 2019; Qiu
et al. 2014), while the benefit of plant residues varied
significantly. Recent reviews have highlighted the poten-
tial of biochar in mitigating soil acidification (Dai et al.
2017) and the effects of organic manure on soil health
(Bhatt et al. 2019; Rayne and Aula 2020). However, to
the best of our knowledge, there has not been any reviews
published that specifically focus on the mechanisms and
consequences of acidification in tea plantation soils, the
advantages and drawbacks of using agricultural wastes and
other relevant options in alleviating soil acidification as a
result of long-term tea cultivation. This review provides a
comprehensive overview of mechanisms and consequence
of soil acidification by tea cultivation, the utilization of
agricultural wastes and its products on mitigating soil
acidification and enhancing soil health properties under
tea plantations.

Total production volumes from 2010-2018

Fig. 1 Total production volumes Kilotons
of manures and crop residues in 400.000 —
the world’s largest agricultural ’
waste generating countries from 350,000
2010 to 2018. Manures and crop ’
residues were measured by kilo-
tons of N content and nutrients, 300,000
respectively. Of these countries,
China, India, Vietnam, Indo- 250,000
nesia and Argentina have been
also the top global tea producers 200,000
in the same period. Data were
based on FAO (2021) 150,000 —
100,000 —
50,000 |
0 -
S
(\‘& &«%o “b(‘}'
& & F
>
N F

@ Manure (N content)

@ Springer

S & & & & &
ST A
g@ R

u Crop residues (Nutrients)



Environmental Chemistry Letters (2022) 20:813-839

815

Soil acidification by tea cultivation and its
consequences

Ocean and soil acidification

Ocean and soil acidification have been widely reported as
the most critical issues, affecting the sustainability of numer-
ous ecosystems and regions around the world (Ochedi et al.
2021; Yan et al. 2020). Ocean acidity has increased by ~25%
since 1860s, and the soil pH values of 50% of total arable
land worldwide are below 5.5 (Dai et al. 2017; Hall et al.
2020). Ocean acidification appears due to rising atmospheric
carbon dioxide (CO,) concentrations and absorption by sea-
water, which subsequently leads to a fall of pH and carbon-
ate ion concentrations in surface seawater (Agostini et al.
2018; Sharma and Dhir 2021). Ocean takes up around 25%
of global anthropogenic CO,, making it the largest atmos-
pheric CO, absorbent on Earth (Hauck and Volker 2015).
Among the CO, emission sources, agriculture directly con-
tributes around 14% of the total amount globally, and this
proportion is likely to be exceeded in the future (Ayyildiz
and Erdal 2021). Intensive agriculture and land use practices
have been also the main causes of global soil acidification,
particularly inappropriate use of ammonium-based ferti-
lizers (Cai et al. 2015; Dai et al. 2017). Additionally, soil

nutrient leaching, product removal, acidic parent materials,
acid deposition and host plants are all likely to be significant
factors resulting in soil pH reduction (Tang et al. 2013; Yan
et al. 2020).

Soil acidification in tea plantations
Tea plant

Tea (Camellia synesis Kotze) is one of the oldest and most
popular beverages in the world and is an important crop
being cultivated in around 50 countries (Gebrewold 2018).
Global tea production in 2019 was more than 9.2 million
tons, valued at approximately $US55.3 billion (Fig. 2)
(Allied Market Research 2020; Food and Agriculture Organ-
ization (FAO) 2021).

Tea plants are native to the Asia continent, but they can
adapt to a wide range of soil and climatic conditions (Rana
et al. 2021; Yan et al. 2018; Yao et al. 2012). This perennial
crop requires acidic soils for optimum growth and productiv-
ity, with the optimal soil pH for tea plants being between 4.5
and 6, and the plant themselves are capable of acidifying soil
(Fig. 3) (Gebrewold 2018; Li et al. 2016). Being a woody
perennial, tea plants can retain their productivity for decades
and thus have long-term interactions with soil organisms and
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Fig.2 Map of the 20 world’s largest tea-producing nations in 2019.
China was the largest tea producer worldwide in 2019, followed by
India, Kenya, Sri Lanka and Vietnam. Most of the global tea produc-

1- China 6- Turkey 11- Argentia 16- Malawi

2- India 7- Indonesia 12- Japan 17- Mozambique
3- Kenya 8- Myanmar 13- Indonesia 18- Rwanda

4- Sri Lanka 9-Iran 14- Tanzania 19- Nepal

5- Vietham 10- Bangladesh 15- Thailand 20- Ethiopia

ers are in Asia and Africa continents. The top 20 global tea-producing
countries contributed to around 70% of total global tea production
volume in the same year. Data was retrieved from FAO (2021)

@ Springer



816

Environmental Chemistry Letters (2022) 20:813-839

Fig.3 Main causes of soil
acidification by tea cultivation.
Heavy addition of N fertilizers
is the main reason causing soil
acidification, and the accumula-
tion of organic and carbonic
acids released by tea roots also
play a part in acidifying tea
plantation soils
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physicochemical processes, affecting soil health and plant
productivity (Arafat et al. 2020; Yan et al. 2020).

Soil acidification by tea cultivation practices

Soil acidification in tea plantations results predominantly
from inappropriate management practices, particularly the
intensive overuse of mineral N (Li et al. 2016; Yan et al.
2018). Tea growers apply N to ensure high tea productiv-
ity and as a replacement for soil nutrient loss. In Japan, tea
fields are amended with more than 1000 kg/ha of N fertiliz-
ers per annum (Abe et al. 2015; Zou et al. 2014) and a major-
ity of tea farmers in China apply a large amount of nitro-
gen to ensure high tea yield and maintain soil fertility (Yan
et al. 2018). A recent study has shown that nitrogen fertilizer
application rate can even reach 1200 kg/ha in Chinese tea
plantations (Wu et al. 2016). Soil pH significantly reduces
when N fertilizers such as ammonium nitrate and urea is
applied above 50 kg/ha/year, and increased N addition will
accelerate soil acidification (Tian and Niu 2015). Moreover,
heavy N application results in greater decrease in the sub-
soil pH compared with that of the topsoil (Ni et al. 2018).
When fertilizers are applied at 2700 kg/ha, only 18.3% of
applied nitrogen were absorbed by tea plants, and of that,
about 52% of nitrogen were stored in the soil, and 30% were
lost through runoff, polluting surrounding watercourses and
soils (Chen and Lin 2016; Xie et al. 2021).

The main mechanisms of soil acidification resulting
from inappropriate management practices in tea cultiva-
tion are shown in Fig. 3. When NH,*-N fertilizer is applied,
tea plants directly take up the nutrient and tea roots subse-
quently excrete an equivalent proton into the rhizosphere,
causing the concentration of hydrogen ions to increase.
NH, ™ nitrification leads to a net production of 2 mol H* for
each mol of NH,* applied, contributing to the decrease in

@ Springer

the soil pH (Hui et al. 2010; Li et al. 2016; Yan et al. 2020).
Cai et al. (2015) estimated that an application rate of 300 kg/
ha/year of N fertilizers could produce 21.4 kmol H*/ha/year
by the nitrification processes. N fertilizer application in the
long term also promoted the accumulation of exchangeable
AP* including hydrolysis, which further generated H* and
aggravated the acidification of tea plantation soils (Zhang
et al. 2020). Finally, increasing tea plant age and planting
density also result in an increase of organic and carbonic
acids induced by tea roots into the rhizosphere, which facili-
tate soil acidification (Hui et al. 2010). Tea plantation soil
is not acidified at planting densities of 5000 plants/ ha (Li
et al. 2016).

Soil acidification by tea plants

Acidification of soils may naturally occur in soils cultivated
with tea—even without any imposed N proton additions, and
this issue becomes more challenging with increasing tea
plantations (Arafat et al. 2017; Han et al. 2007; Li et al.
2016). In tea plantations, soil pH in the topsoil naturally
decreased by 0.071 units per annum, and the values follow-
ing 13, 34 and 54 years of tea cultivation were 1.1, 1.62 and
2.07 units, respectively (Hui et al. 2010; Ni et al. 2018).
The acidification rate observed in the cultivated soil lay-
ers (0-10 cm) could reach 4.40 kmol H*/ha/year during
the 0—13 years of tea cultivation period (Hui et al. 2010).
Organic acids secreted by tea roots such as malic acid, cit-
ric acid and oxalic acid are the main proton source for soil
acidification in the tea tree—soil systems (Fig. 3) (Yan et al.
2018). Tea roots also excrete carbonic acids and polyphe-
nols which can aggravate soil acidification, and affect soil
nutrient release and subsequent element uptake (Ni et al.
2018; Wang et al. 2013). Additionally, the accumulation
of chemical compounds such as epigallocatechin gallate,
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epigallocatechin, epicatechin gallate, catechin and epicat-
echin, found in the tea residues also negatively affect soil
pH and soil health properties (Arafat et al. 2020). Thus, in
summary, intensive application of N fertilizers is the main
cause of soil acidity under tea plantations, and the accumula-
tion of acid excreted by tea plants promotes the acidification.

Consequences of acidification in tea plantation soils
Soil chemical parameters

Soil acidification negatively affects chemical processes and
properties of tea plantation soils (Fig. 4). One of the most
serious challenges of soil acidification under tea cultivation
can be the reduction and imbalance of nutrient base cati-
ons, including Ca?*, Mg?*, Na* and K™ (Alekseeva et al.
2011; Ni et al. 2018; Zhang et al. 2020). Under heavy N
application, released protons (H*) may replace the soil
exchange base cations, which may have leached with the
NO;™ as accompanied cations due to the charge balance in
soil solutions (Cusack et al. 2016; Ni et al. 2018). Moreover,
a significant increase of AI>* and Mn?* has been widely
recorded in acidic tea plantation soils, which could lead to
Al and Mn toxicity (Alekseeva et al. 2011; Hui et al. 2010).
Under acidic soil conditions, mineral Al solubilizes into tri-
valent AI’*, which is highly toxic to animals, plants and
microorganisms (Ziota-Frankowska and Frankowski 2018).
Gruba and Mulder (2015) indicated that the concentration
of exchangeable Al maximizes in soils with a pHy,o = 4.2.
Similarly, with decreasing soil pH, the amount of exchange-
able Mn?" increases in the soil solution (Millaleo et al.
2010). High concentration of AI** can inhibit the expansion,
elongation and division of root cells, reducing water and
nutrient uptake by the root systems (Wang et al. 2015). Simi-
larly, high levels of Mn** in soil is one of the main factors

Fig.4 A summary of the main
consequences of soil acidifica-

causing nutrient imbalances, especially with divalent cations
such as Mg?*, Zn?* and Ca®* (Venkatesan et al. 2010). Soil
acidification can also promote the dissolution of minerals
and movement of Fe in the profile, resulting in reduction in
the ferrimagnetic mineral content (Alekseeva et al. 2011).
Increased Al and Mn toxicity have been considered as the
most serious consequences of soil acidification by tea culti-
vation regarding soil chemical property.

Soil biological parameters

Soil pH is a crucial factor affecting soil organisms (Li et al.
2018; Neina 2019). Mulder et al. (2005) indicated that soil
acidification has a close inverse relationship with bacterial,
fungal, nematode and arthropod abundance. Long-term soil
acidification is responsible for reduction of soil microor-
ganisms, which are regulating the reduction in soil pH by
both ecological and evolutionary mechanisms because of
the environmental changes (Zhang et al. 2015). In tea plan-
tations, a low soil pH (pH <4) could lead to a loss of up to
70% of important soil biota (Han et al. 2007). Likewise,
soil fauna communities were significantly higher in the soil
with pH 7.0 (21 classes) compared to acidic soil with pH
2.5 (11 classes) and pH 3.5 (14 classes). In this study, in
terms of total individuals, the figures were 3710 (pH 7.0),
759 (pH 3.5) and 645 (pH 2.5) (Wei et al. 2017). Severe soil
acidification also leads to significant decreases in soil enzy-
matic activities, microbial activities and microbial biomass
(Li et al. 2017; Zhang et al. 2015). Arafat et al. (2019) found
a close association between the decline of some beneficial
fungus such as Mortierella elongatula and Mortierella
alpina and a low soil pH caused by long-term tea monocul-
ture. Soil acidification also enhances the environment for
growth of some soilborne pathogen diseases. For instance,
when soil pH reduced from 5.07 to below 3.5 as a result

Tea growth and quality
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of 35 years of continuous tea monoculture, the abundance
of some pathogenic bacterial species including Fusarium
oxysporum, Fusarium solani and Microidium phyllanthi,
which are responsible for diseases in tea plants such as root
rot and die back, was significantly increased (Arafat et al.
2019). Investigating the relationship between soil acidity and
bacterial wilt disease, Li et al. (2017) found that the propor-
tion of soil affected by bacterial wilt much higher when the
soil pH lower than 5.5 and significantly less as the soil pH
increases. Likewise, the highest population of Xiphinema
chambersi was found in soil with a pH 4.5, and the figure
decreased when soil pH increased from 4.5 to 6.4 (Chen
et al. 2012). Thus, soil acidification by tea cultivation could
not only impact soil beneficial microbial diversity, but also
promote the development of some potentially pathogenic
microbes (Fig. 4).

Tea productivity and quality

Although tea plants prefer acidic soil for optimal growth
and productivity, severe soil acidity negatively effects plant
performance and quality (Fig. 4). When the soil pH is lower
than 4.0, tea plant growth is inhibited, affecting both the
quality and quantity of tea production (Li et al. 2016; Yan
et al. 2020). Heavy N addition also significantly decreases
the polyphenol/free amino acid ratio and affects other tea
quality indicators by altering the relative content of chemi-
cal constituents (Qiao et al. 2018). High concentrations of
Mn** negatively affect tea quality indicators such as amino
acid composition and reduce the chlorophyll and carotenoid
content of tea leaves (Venkatesan et al. 2010). Free A" at a
concentration of more than 1 mM retards tea growth, while
the concentration of 10 mM leads to defoliation of tea plants
(Fung et al. 2008).

Management cost and environmental risks

Despite the limited study on the management and other asso-
ciated costs of soil acidification in the tea farming industry,
research conducted on negative impacts of soil acidification
on other agricultural sectors has highlighted the issues this
causes. For instance, the annual loss of agricultural produc-
tion due to soil acidification in New South Wales, Australia,
was around $387 million (Li 2020). Likewise, soil acidifi-
cation resulted in an estimated economic value decrease of
$US214,000 per hectare (ha) in the forest industry in Amer-
ica (Caputo et al. 2016). Lime has been considered as the
most effective ameliorant to control acidic soils, but it is still
too costly for farmers in many countries, due mainly to its
transportation costs (Cai et al. 2015; Tang et al. 2013). In tea
plantation soils, acidification also occurs at the subsoil layers
(100-120 cm); thus, deep incorporation of lime and other
alternatives could be very expensive or even impractical due

@ Springer

to the costs of suitable machinery (Li et al. 2016; Tang et al.
2013). Tea soil acidification can also promote the accumu-
lation of chemical elements such as arsenic (As), mercury
(Hg), lead (Pb), chromium (Cr), cadmium (Cd) and nickel
(Ni) in the soil and tea leaves, increasing the human health
and environmental risks of heavy metals (Bayrakli and Den-
giz 2020; Zhang et al. 2020). It has been reported that more
than 75% of soil Cd, Hg, Pb and Zn under acidic tea plan-
tations exceeded uncultivated background concentrations,
possibly due to the acidic environment promoted weathering
pedogenic process releasing heavy metals (Tao et al. 2021).

Agricultural wastes for correcting tea soil
acidification and enhancing soil health

Agricultural wastes for soil acidification and soil
health

Agricultural wastes such as organic manures have been
considered as a significant resource for agriculture for over
hundred years (Rayne and Aula 2020), and since the down-
sides of agrochemical intensification on human beings and
the ecosystem have become the global issue, the potential
role of these alternate materials is being scrutinized increas-
ingly closely (Chen et al. 2018; De Corato 2020). Most of
agricultural wastes are widely available, cheap, biodegrad-
able and rich in organic matter and nutrient and thus can
be recycled as fertilizers or soil amendments (Kaur 2020;
Onwosi et al. 2017; Saliu and Oladoja 2021). The nutrient
compositions of agricultural wastes and products derived
from these resources vary greatly and depend on multiple
factors, such as their original sources, animal diets, waste
storage and management, as well as production procedures
(Amoah-Antwi et al. 2020; Dai et al. 2017; Rayne and Aula
2020). Common agricultural by-product and their compo-
nents applied to agricultural soils as fertilizers and amend-
ments are illustrated in Fig. 5.

There are various types of agricultural organic wastes
applied to croplands, but they can be divided into two
different groups based on their origins and common uses
(Fig. 5). Organic manures include animal wastes from live-
stock and poultry industries, and green manures are mainly
leguminous and forage crops (Maitra et al. 2018; Rayne and
Aula 2020). Globally, animal waste has been predominantly
attributed to manures from livestock and, in 2018, contrib-
uted around 35 million tons of N applied to croplands glob-
ally, compared to more than 13 million tons from poultry
(FAO 2021). Organic manures can be applied to soils or
used as main materials for compost production, the natural
biological processes of decomposing organic wastes involv-
ing numerous microbial species (Azim et al. 2018; Bhatt
et al. 2019; Sanchez et al. 2015). Compared to manures and
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compost, plant straws and other organic biomass such as
wood chips and tree pruning residues are not often applied
directly to soils as fertilizers, but can also be incorporated as
mulches, mainly for enhancing soil structure and water reten-
tion (Amoah-Antwi et al. 2020; Siedt et al. 2020). Alterna-
tively, using agricultural by-products to produce biochar has
been also an increasingly accepted way of recycling wastes.
Biochar could be best described as a “soil conditioner,” a
carbon-rich product produced by thermochemical decompo-
sition of organic matter under low oxygen environment and
high temperature, normally from 300 to 700 °C (Peng et al.
2018; Verheijen et al. 2010). Feedstocks for biochar produc-
tion consist of various biomass types, including municipal
wastes and agro-industrial residues, and the feedstock types
are important factors affecting biochar properties (Amoah-
Antwi et al. 2020; Gunarathne et al. 2019; Guo et al. 2020).
Details of elemental properties of some common agricultural
wastes, compost and biochar are summarized in Table 1.
The various agricultural wastes have differing effects on
alleviating soil acidification. Organic compost and biochar
produced from organic manures and plant residues are natu-
rally alkaline and have a higher pH value compared to that in
the acid soils, so the addition of these organic amendments
can increase soil pH to some extent (Cornelissen et al. 2018;
Shi et al. 2019). Additionally, organic manure and its com-
ponents naturally contain some basic cations such as Mg?™,
Ca*, Na®* and K*, which can form carbonates or oxides
and then subsequently react with the H* in the acidic soils

and lead to the acid neutralization (Dai et al. 2017; Rayne
and Aula 2020). In contrast, some studies showed that the
decomposition of some mulching materials such as woody
chips, crop straw and pine bark could generate organic and
carbonic acids, which facilitate soil acidity (Arafat et al.
2020; Zhao et al. 2018). Nevertheless, numerous studies
have reported the neutral to positive effects of mulching
practices on soil acidification (Cu and Thu 2014b; Ni et al.
2016; Sadek et al. 2019; Vijay 2014).

With regard to soil physical aspects, plant residues,
organic fertilizers and biochar applications can benefit the
soil hydrothermal environment, soil structure and water
holding capacity (Kader et al. 2017; Siedt et al. 2020; Wang
et al. 2020). In terms of soil chemical properties, adding
organic fertilizers and biochar significantly improves soil
organic matter, soil macronutrients and micronutrients,
and reduces Al and Mn toxicity risks and nutrient leaching
(Ding et al. 2020; Gong et al. 2020; Patra et al. 2021; Siedt
et al. 2020; Zhongqi et al. 2016). Recently, a number of
studies have reported the positive impacts of agricultural
residue practices on soil organism abundance and func-
tional diversity, such as the applications of organic mulches
(Xiang et al. 2021; Zhang et al. 2020b), biochar and com-
post (Amoah-Antwi et al. 2020; Liu et al. 2021) and organic
manures (Rayne and Aula 2020; Su et al. 2021). Despite the
preference in using synthetic fertilizers, agricultural wastes
and products derived from these resources are being used
intensively as soil amendments and fertilizers, to partially or
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fully substitute for chemical fertilizers (Amoah-Antwi et al.
2020; Lin et al. 2019; Shaji et al. 2021). However, since the
nutrient compositions and efficacy of agricultural wastes and
its products varied significantly (Table 1), they cannot be
applied in a homogenous manner (Dai et al. 2017; Rayne and
Aula 2020). Therefore, having a good understanding of char-
acters of agricultural wastes and its components would be
important to increase their application efficiency and reduce
the pollutant risks to ecosystems (Amoah-Antwi et al. 2020;
Ayilara et al. 2020; Cai et al. 2021).

Organic fertilizer and organic tea management
practices

Applying animal manure to tea plantation soils could be an
effective solution not only for ameliorating soil acidification,
improve soil health of tea plantations but also as a waste
management tool. Manures from various animals such as
sheep, pig, cow and chicken used as organic fertilizers or
compost for tea gardens significantly increased pH of acid
soils, compared to their chemical nutrient counterparts (Cai
et al. 2015; Gu et al. 2019; Ji et al. 2018; Lin et al. 2019;
Qiu et al. 2014). For example, Gu et al. (2019) indicated
that long-term applications of animal manure resulted in a
significant increase in the soil pH (5.36), compared to that
in non-fertilizer (4.71) and chemical fertilizer practices
(4.31). Likewise, application of pig manure over 18 years
increased soil pH by 1.1 units (Cai et al. 2015). Additionally,
the replacement of chemical fertilizer by organic fertilizer in
organic and agroecological tea cultivation has also had posi-
tive impacts on soil pH and other soil health indicators (Li
et al. 2014; Viet San et al. 2021; Yan et al. 2020). Analyzing
more than 2000 tea soil samples collected from conventional
and organic tea plantations, Yan et al. (2020) concluded that
conventional tea cultivation which employ heavy application
of synthetic fertilizers caused severe soil acidification, while

Fig. 6 Effects of different
fertilizer type applications on

organic tea management approach did not result in signifi-
cant soil acidification. Similarly, our recent study showed
that agroecological tea management practices with chicken
and buffalo manures as main nutrient supplies significantly
improved soil pH compared to conventional tea cultivation
which employs intensive chemical NPK (unpublished data).
As outlined above, the mitigation of acidification of tea plan-
tation soils by organic substance addition could be by alka-
line matter and basic cations from added organic fertilizers,
which can neutralize the soil acidity (Ji et al. 2018). Moreo-
ver, other chemical processes involving manure supplemen-
tation such as organic anion decarboxylation and organic
N ammonification may play a part in reducing soil acidity
(Xiao et al. 2013; Xu et al. 2006). Organic fertilizer can also
support soil buffering action, thus reducing soil acidification
(Chen et al. 2009). More examples of positive effects of
organic manure and compost usage on soil acidification are
indicated in Fig. 6 and Table 2.

Apart from ameliorating soil acidification, recycling
organic amendments as the partial or full substitutes for
chemical fertilizers can bring about a range of benefits for
other aspects of tea plantation soil health and the environ-
ment. Organic fertilizer applications consistently improved
soil OM, soil OC, soil exchangeable cations such as Ca*™,
Mg?*, Na* and K*, and nutrient availability, while reducing
risks of Al toxicity, heavy metal accumulation, greenhouse
gas emissions and nutrient runoff such as N and P (Table 2)
(Cai et al. 2015; He et al. 2019; Ji et al. 2018; Lin et al. 2019;
Qiu et al. 2014). Sustainable effects of adopting organic soil
amendments in tea plantation soils on biological soil health
have been also clearly indicated. Organic materials such
as sheep, cow, chicken manures or compost significantly
improved soil fauna communities, soil microbial diversity
and functional structures (Gui et al. 2021; Li et al. 2014; Lin
et al. 2019; Zhang et al. 2020a). Organic fertilizers are natu-
rally rich in nutrients contain more organic matter compared

Relationship between different fertilization regimes and soil pH

soil pH under tea cultivation. 30 _ Lin et al. (2019)*

Organic fertilization consist-
ently resulted in grater soil pH
in comparison with chemical
fertilizer and non-fertilizer
practices. Heavy uses of
synthetic fertilizers also led to
highest reduction in the soil pH,
compared to other fertilization
approaches. Adapted from Lin
et al. (2019), Cai et al. (2015),
Jietal. (2018) Gu et al. (2019),
Qiu et al. (2014), He et al.
(2019). (*) the data for non-

Trial duration (year)

- —

Cai et al. (2015)

8 Chemical NPK
Jietal. (2018)

Guetal. (2019) 8 Organic fertilizer

m Non- fertilizer

fertilizer management practice
not available
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N to chemical compound; thus, the replacement of organic

. g amendments provides more organic matter in the soils (Wu

§ g - = et al. 2020; Xie et al. 2019). Richer soil organic contents will

é’ %‘3 § ”;J attract soil fauna and facilitate the activities of soil microbial

& i 2 communities in converting soil nutrients, which ultimately

Table 2 (continued)

&

Other positive and/or negative
impacts on soil, tea plants and

the environment

Soil pH effect

Experiment type. Application

rate/time

Soil type
Location

Material/practice

Springer

Data not provided Decreased the population of

Greenhouse trial

Acidic histosols

China

Intercropping with aromatic

tea green leafthoppers while

Trial time: 2 years

plants (Cassia tora, Medicago
sativa, Leonurus artemisia,
and Mentha haplocalyx)

increasing the natural enemies

of tea pests such as spiders,
lacewings and parasitoids

Soil pH at three soil depths Increased soil OM, available P

Field experiment

Yellow soil
China

Intercropping with fruit trees

and K while reducing heavy

(0-10, 10-20 and 20-30 cm)

Trial time: 30 years

(loquat, waxberry and citrus)

metal (Cr, Cd, As, Hg and Pb)
Improved tea quality indica-

significantly increased by inter-
cropping practices, compared

tors such as amino acid and

catechin

to that in mono tea plantations

Tian et al. (2013)

Increased soil pH at all observed  Significantly increased soil OC,

Field experiment

China

Agroforestry

OM and total N contents, soil

soil depths (by 0.65 units
at 0-10 cm layer, 0.15 at

Growing distance:

(tea—Gingko

microbial biomass and enzyme

activity
Enhanced soil productivity and

10x 10 m and 6 X6 m

Trial time: 11 years

tree (Ginkgo
biloba L))

10- 20 cm layer and 0.35 at

20-30 cm layer)

sustainability

increase soil nutrient of tea plantation soils (Fan et al. 2017,
Xie et al. 2019, 2021). These positive changes, in turn, will
result in increasing soil organism diversity and community
structure (Gu et al. 2019; Wu et al. 2020).

There do exist some concerns for recycling animal
manures and organic compost which need further consid-
eration. Firstly, organic fertilizer such as rapeseed cake had
inconsistent effect on soil pH (Xie et al. 2019, 2021). This
discrepancy may result from the dissimilarity of chemical
composition of the product and other conditions such as soil
type, application rate and management practices (Gu et al.
2019; Wu et al. 2020). Secondly, it has been reported that
organic manure cannot ameliorate deep soil acidification in
tea plantations (Li et al. 2016). In this case, biochar or a
combined utilization of manure and biochar may be an effec-
tive solution to not only mitigate soil acidification but also
enhance soil health and tea productivity (Dai et al. 2017;
He et al. 2019). Thirdly, long-term application of animal
manure and compost to manage acidic tea soils and restore
soil health could led to the risks of heavy metal accumula-
tion and manure-borne pathogen contamination (Cai et al.
2021; Li et al. 2020). For heavy metal contamination, Ji et al.
(2018) indicated that 10-year application of pig manure did
not result in increase of most heavy metals, and Lin et al.
(2019) found that sheep manure and rape cake application
reduced levels of Cd, Pb and As in soils as well as in tea
leaves. To date, however, the relationship between animal
manure, compost and pathogenic diseases of tea plants
has been poorly understood. Thus, an integrated approach
including appropriate application rates, reducing chemical
inputs and concentrations of heavy metals in animal feed
could be all necessary to minimize the environmental risks
from using these organic materials as soil amendments and
increase their efficacy (Cai et al. 2021; Ji et al. 2018).

Biochar amendment

Among the ameliorants of soil acidification, biochars could
be one of the most effective options as it can also improve
soil quality, plant productivity and contribute to a reduc-
tion in greenhouse gas emissions (Akhil et al. 2021; Siedt
et al. 2020; Zhang et al. 2018). In tea farming, biochars
produced from plant residue such as rice, wheat straw and
bamboo residues have been commonly incorporated as soil
amendment (Chen et al. 2021; Ji et al. 2020b; Wang et al.
2018). Depending on biochar types and application rates,
soil condition, tea management practices and the application
duration, the liming effect of biochars varied significantly
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(Wang et al. 2014; Yan et al. 2021). As shown in Fig. 7,
applying biochars at rates of from 1 to 5% of soil dry weight
can significantly increase soil pH from 0.2 to more than 1
units within a few months (Ji et al. 2020a; Oo et al. 2018;
Wang et al. 2018; Zheng et al. 2019). Studies conducted in
tea plantations also demonstrated the positive outcomes of
biochar utilization for correcting soil acidification caused
by tea cultivation (Table 2) (He et al. 2019; Ji et al. 2020b;
Yang et al. 2021).

Biochar ameliorates soil acidification by its natural alka-
linity, high pH value and pH buffering capacity. Biochar
generally has an alkaline pH value; thus, soil amended with
this product can become less acidic (Table 1). For instance,
a meta-analysis by Dai et al. (2017) indicated that biochar
applications significantly increased soil pH by up to 2 units,
and in most cases, the pH of biochars is greater than 7.0,
which is at least 1.5 units higher than the pH in acid soils.
Moreover, mineral constituents of biochar including basic
cations such as Ca, Mg, K, Na and alkaline oxides that origi-
nated from feedstocks can mitigate soil exchangeable acidity
(mainly H* and AI**) in the soil and ultimately increase soil
pH (Dai et al. 2017; Patra et al. 2021; Yuan et al. 2011).
In addition, soil pH buffering capacity is an important fac-
tor contributing to biochar amelioration of soil. Shi et al.
(2019) illustrated that rice straw and peanut straw biochar
application increased pH buffering capacity by 22% and
32%, respectively. It has been verified that the increase in
CEC of the soil by biochar incorporation, driven by proto-
nation—deprotonation processes, was the main mechanism
of increasing soil pH buffering capacity (Shi et al. 2017,
Xu et al. 2012). Biochar application also suppressed soil
nitrification by limiting the availability of NH; or NH,* for
oxidation because of the surface adsorption or increased
emissions of NH; due to enhanced soil pH (Wang et al.
2018; Yang et al. 2015). This in turn generally reduces the
proton (H") released into soil and ultimately increase soil
pH (Shi et al. 2019).

Biochar addition also enhanced soil quality indicators,
tea growth and productivity, as well as reduced the environ-
mental risks from pollution by heavy metals and greenhouse
gases such as CO, N,0O and NO (Chen et al. 2021; Ji et al.
2020a; Yan et al. 2021). Consistently, biochar incorporation
in soil improved soil OC, soil nutrient availability includ-
ing Ca, Na, Mg, P and K contents, soil total N and C (Yan
et al. 2018; Wang et al. 2014; Zheng et al. 2019). While the
impact of biochar on soil fauna has been poorly investigated,
this carbon-rich material has significant effects on enhancing
soil microbial diversity and community structure (Table 2)
(Jietal. 2020a; Yang et al. 2021; Zheng et al. 2019). Biochar
itself is a source of nutrients, including microminerals, trace
elements, ash and so on. So its application also supplies
essential agronomic benefits to farmers (Rawat et al. 2019).
More importantly, biochar can absorb fertilizers and slowly
release these into the soil, which helps to not only retain
the nutrient availability in the soil but also reduce fertilizer
leaching and drainage, which then contribute to environmen-
tal pollution (Rawat et al. 2019). Since soil pH and nutrient
status has a close correlation with soil microorganism, the
changes in soil chemical and physical properties as a result
of biochar application could be the key driven factor for the
alteration of soil biological properties (Cheng et al. 2019;
Yang et al. 2021).

Several downsides of biochar incorporation need to be
considered to improve its effectiveness and reduce the det-
rimental effects on the environment. Biochar has been con-
sidered as the most expensive soil management solution,
particularly for large-scale use in agriculture (Siedt et al.
2020). Since the application rate of biochar normally ranges
from 10 to 150 tons/ha and controlling strongly acid soils
may require large quantity of biochar, which leads to an
increased costs for energy inputs, feedstocks, transportation
and incorporation (Dai et al. 2017). Furthermore, most stud-
ies on biochar application for managing soil acidification
in tea farming to date have been conducted in controlled

Fig. 7 Effects of biochar Seil pH change
application rate on pH of tea 55
plantation soils. Data collated N
from recent publications: Chen [ "7 -*-Yanetal. (2021)
et al. (2021), Ji et al. (2020a), s T T -=-Chen et al. (2021)
Ooetal. (2018), Wangetal. | =77 """ )
(2018), Wang et al. (2014), o -e-Jietal. (2020a)
Wang et al. (2014), and Zheng 1 I S - Zheng et al. (2019)
etal. (2019) ® e .
4l .. """, e = =Wang J et al. (2018)
- -
---7 e -+-0o et al. (2018)
3.5 s'"":—:;’: Y —-Wang L et al. (2014)
-e-Wang Y etal. (2014)
3 ; : T T T
0 1 2 3 4

Biochar application rate (%, w/w)

@ Springer
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conditions in China, suggesting that further research either
in long-term field conditions or in other tea-producing areas
would be needed. Overall, biochars indicate a great potential
in ameliorating soil acidification and improving tea planta-
tion soil health; however, more comprehensive and reliable
evidence should be provided to validate these advantages.

Plant residues for organic mulching practices

Organic mulching practices employing plant residues and
other agricultural wastes have received limited attention to
date. Some studies conducted on tea fields indicated that
mulching materials such as Fern (Gleichenia linearis) and
tea pruning materials can alleviate soil acidity (Cu and Thu
2014a; b). Other materials such as crop straws and legume
residues also had positive effects on increasing pH of tea
plantation soils, in either field or laboratory trial conditions
(Table 2) (Wang et al. 2009; Xianchen et al. 2020). In con-
trast, there have been a number of investigations revealing
the negative impacts of organic mulching on soil pH from
other cropping systems. Otero-Jiménez et al. (2021) found
that rice straw mulch and rice straw burning significantly
reduced soil pH by 0.55 and 0.19 units, respectively, and
the application of wheat straw mulching reduced soil pH by
0.11 units (Mehmood et al. 2014). Finally, some studies have
demonstrated that plant residues have no significant effects
on soil pH (Igbal et al. 2020; Ni et al. 2016). Positive effects
of crop residues in increasing soil pH could be mainly due to
the decarboxylation of organic anions, which can neutralize
soil exchangeable H* and AI**, and also reduce the toxicity
of Al species to plant roots (Dai et al. 2017). Declines in
soil pH following application plant residue mulches could
be attributed to the release of H* from nitrification of NH,™,
which is produced during the mineralization of organic N
in the residues (Dai et al. 2017). Decomposition of crop
residues may also produce some organic and carbonic acids,
potentially causing soil acidity (Arafat et al. 2020).

The potential of crop residue mulching in enhancing other
soil health indicators has been widely recognized. Plant
residues improve soil moisture content, soil structure and
regulate soil temperature, support soil microbial activities
and improve soil nutrient availability, as well as suppress
weeds and reduce soil erosion, all of which contribute to
enhance soil health and crop productivity (Chatterjee et al.
2017; Kader et al. 2017; Ngosong et al. 2019). These ben-
efits have also been demonstrated in tea cultivation systems.
Covering the surface of tea plantation soils with rice straw
and tea pruning residues significantly reduced soil tempera-
ture variation, soil compactness and soil bulk density, while
increasing soil water retention and soil moisture (Cu and
Thu 2014b; Xianchen et al. 2020). Organic mulches can also
enhance soil nutrient availability (Ca®* and Mg?*, available
N, P, K) soil OM content but reduce soil Al* concentration
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(Cu and Thu 2014a; Wang et al. 2009; Xianchen et al. 2020).
Enrichment of soil microbial diversity and community struc-
ture as a result of mulching material addition have been
reported in these studies (Cu and Thu 2014a; b) (Table 2).
Organic mulch cover creates favorable moisture and ther-
moregimes in soils by controlling surface evaporation rates
and alter soil temperatures, by reducing temperature in the
summer and raising it in the winter (Kader et al. 2017).
Under appropriate soil microclimatic conditions, plant lit-
ter can decompose and add nutrients to soils. Plant residues
and other organic mulch materials generally contain higher
level of nutrients compared with inorganic mulch materials,
but the influence of organic mulching application on soil
nutrients has been also determined by other factors such as
soil characteristics, climatic conditions (Igbal et al. 2020;
Kader et al. 2017). In addition, soil physicochemical condi-
tions including soil moisture, soil temperature and soil nutri-
ents play a crucial part in governing soil organisms (Kader
et al. 2017; Onwuka and Mang 2018; Tan et al. 2018). For
example, Brockett et al. (2012) concluded that soil moisture
is the major factor affecting the community structure of soil
microbes as well as enzyme activities. Examples of plant
residue mulching and the summary of beneficial impacts of
organic mulching, organic fertilizer and biochar applications
in tea plantation soils are shown in Fig. 8.

However, some of mulching materials such as crop straws
generally decompose quickly and thus need to be frequently
incorporated for long-term use. This may require extra
labor and investments, preventing farmers from adopting
them in the long run (Amoah-Antwi et al. 2020; Dai et al.
2017). Extensive use of plant residues such as tea pruned
litters to mulch tea soils could also lead to a decrease in
the soil pH and the accumulation of active allelochemicals,
which can cause soil sickness and tea growth deterioration
(Arafat et al. 2020). Too much organic mulch could also
result in other issues such as excess moisture and nitrogen,
pests and anaerobic conditions, damaging the plant root
and negatively affecting its growth and productivity (Igbal
et al. 2020; Kader et al. 2017). Overall, organic mulching
employing plant residues is an effective soil management
tool to improve soil physicochemical properties, but its role
in controlling tea soil acidity needs further investigations.

Intercropping and agroforestry

Tea plants intercropped with loquat, waxberry and citrus
significantly improve soil pH, organic matter, N, P and K
availability, tea quality indicators, and reduces soil heavy
metal concentrations compared with monoculture tea gar-
dens, regardless of sampling seasons (Wen et al. 2019).
Similarly, Xianchen et al. (2020) found that interplant-
ing of Vulpia myuros at the density of 22.5 kg/seeds/ha in
tea plantations significantly increased soil nutrients (OM,
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Fig.8 Application of plant residues (rice straw, Acacia bark and
woodchips) and organic manure (poultry manures) in tea plantations
(a) and beneficial effects of some soil amendments derived from agri-

available N, P, K), soil water holding capacity while reduc-
ing soil temperature fluctuations and soil compactness at all
observed soil depths (0-10 and 10-20 cm). In terms of soil
organism, intercropping adoption in tea cultivation enriched
soil enzyme activity and regulated tea pests (Xianchen et al.
2020; Zhang et al. 2017) (Table 2). In addition, tea—Ginkgo
tree (Ginkgo biloba L.) agroforestry significantly increased
soil pH (5.86 vs 5.21), soil organic carbon (17.92 vs 16.38
and total N (1.91 vs 1.79) compared with single tea planta-
tions (Tian et al. 2013). The increase in the soil pH in the
Ginkgo—tea agroforestry is likely due to the alkaline matter
formed during the decomposition of Ginkgo tree residues
which neutralizes soil acidity (Tian et al. 2013). Intercrop-
ping and agroforestry might increase overall ecosystem
productivity and nutrient retention by increasing species
diversity, increase soil organic matter by plant residues and
attribute to the decomposition of fine roots in the deep min-
eral layers and surface leaves of trees (Brooker et al. 2015;
Cong et al. 2015; Dollinger and Jose 2018). Among these
impacts, organic matter enrichment could play a key role,
containing basic cations and contributing to increasing the
supply of important nutrients (Cardinael et al. 2020; Doll-
inger and Jose 2018).

Conclusion

Soil acidification is becoming an increasingly severe prob-
lem in many tea growing countries, resulting in serious
impacts on soil chemical properties, tea productivity and
quality and the environment. To date, however, how low
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pH affects tea soil biological and physical properties as
well as its management cost have been poorly explored.
Agriculture wastes and products have demonstrated a great
potential to mitigate soil acidification by tea cultivation
and improve tea soil health. Being naturally alkaline with
high pH value and buffering capacity, these materials
could supply alkaline matter and essential elements to
neutralize soil acidity and alter soil properties, positively
influencing soil nutrient availability, enrich soil organisms
and ultimately improve tea yield and quality indicators.
While promising, their expanded uses would need further
understanding to improve their application efficacy while
reducing any potential negative consequences on the envi-
ronment. In addition, the risks of introduction of heavy
metal and pathogens from animal manures, compost and
biochar applications have been widely reported (Alegbel-
eye and Sant'Ana 2020; Dai et al. 2017), but how they
could affect soil and tea plants have not been clearly under-
stood. Moreover, most of reports on effective impacts of
biochar for correcting soil acidification have been the out-
comes of laboratory or glasshouse studies; thus, the results
need to be validated in field conditions (Dai et al. 2017).
Finally, the majority of studies on utilizing agricultural
wastes in tea cultivation to date have been implemented
in China, with specific but limited soil characteristics,
climate conditions and tea management practices. It has
been clearly indicated that differences in such conditions
could significantly affect the effectiveness of these soil
acidification ameliorants (Gu et al. 2019; Siedt et al. 2020;
Wau et al. 2020). This research gap highlights the need and
opportunities for further investigations in other systems to
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provide comprehensive knowledge and reliability in recy-
cling these soil amendments.
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