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Abstract
Pure water will become a golden resource in the context of the rising pollution, climate change and the recycling economy, 
calling for advanced purification methods such as the use of nanostructured adsorbents. However, coming up with an ideal 
nanoadsorbent for micropollutant removal is a real challenge because nanoadsorbents, which demonstrate very good per-
formances at laboratory scale, do not necessarily have suitable properties in in full-scale water purification and wastewater 
treatment systems. Here, magnetic nanoadsorbents appear promising because they can be easily separated from the slurry 
phase into a denser sludge phase by applying a magnetic field. Yet, there are only few examples of large-scale use of magnetic 
adsorbents for water purification and wastewater treatment. Here, we review magnetic nanoadsorbents for the removal of 
micropollutants, and we explain the integration of magnetic separation in the existing treatment plants. We found that the use 
of magnetic nanoadsorbents is an effective option in water treatment, but lacks maturity in full-scale water treatment facili-
ties. The concentrations of magnetic nanoadsorbents in final effluents can be controlled by using magnetic separation, thus 
minimizing the ecotoxicicological impact. Academia and the water industry should better collaborate to integrate magnetic 
separation in full-scale water purification and wastewater treatment plants.
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Introduction

Water is needed for umpteen day-to-day domestic, commer-
cial and industrial activities. Yet, over the years, pollution 
of water has kept increasing to such an extent where matters 
have worsened into water stress and water scarcity condi-
tions in many regions of the world. The release of untreated 
wastewater poses two major global ecological problems. One 
which encompasses the entire set of the potential damaging 

and irreversible impacts on the different components of 
the food web and ecosystems (Tijani et al. 2016; Arslan 
et al. 2017; Shao et al. 2019; Xu et al. 2019; Gautam and 
Anbumani 2020; Varjani and Sudha 2020; Rogowska et al. 
2020; Golovko et al. 2020). Second, a much useful resource, 
which is in the form of untreated wastewater, is lost. This 
poses additional stress on rural and urban clean water supply 
chains. As a consequence, to sustain development within a 
circular economy, more clean water has to be tapped from 
the existing freshwater reserves to meet growing water 
demands. Circular economy is a resource recovery strategy 
which has been recently used in brine (saline wastewater) 
treatment as well (Panagopoulos and Haralambous 2020a, 
b). There is hence an absolute need to capture untreated 
wastewaters as much as possible to then treat them using 
the best-in-class treatment systems for eventually meeting all 
sanitary norms, effluent discharge standards and regulations.

During the last two decades, there has been a grow-
ing thrust in harnessing nanoscience and nanotechnology 
for designing myriad nanostructured materials which can 
potentially serve as more effective adsorbents for water 
purification and wastewater treatment (Santhosh et  al. 
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2016; Mohammed et al. 2018; Villaseñor and Ríos 2018; 
Alvarez et al. 2018; Madhura et al. 2019; Bahadori et al. 
2020; Soares et al. 2020; Scaria et al. 2020; Borji et al. 
2020; Jain et al. 2020; Siddeeg et al. 2020). Nanoadsor-
bents can effectively deliver ultrahigh adsorption capabili-
ties, fast removal kinetics, high removal efficiencies and 
selectivities for a very broad spectrum of micropollutants 
(such as pesticides residues in water (Valenzuela et al. 
2020), the pharmaceutical drug diclofenac (Zhao et al. 
2021a), the antidiabetic pharmaceutical agent metformin 
hydrochloride (Çavuşoğlu et al. 2021), and heavy metals 
(Singh et al. 2021)), and even be potential candidates for 
the selective and reversible adsorption of coronaviruses 
from contaminated waters (Ciejka et al. 2017; Carvalho 
and Conte‐Junior 2021). However, these excellent adsorp-
tion characteristics and performances for micropollutants 
removal are largely reported for controlled experimental 
conditions. Despite the limitations of laboratory scale 
adsorption analysis, a vast body of scientific insights has 
been garnered in the literature with regard to the synthe-
sis, characterization, and examination of nanoadsorbents 
for their respective capability to sequester micropollut-
ants. Subsequently, there is substantial potential for the 
scientific, engineering and technology development com-
munities to further tune in their efforts and harness the 
‘gold mine’ of nanoadsorbents for micropollutants removal 
in full-scale water purification and wastewater treatment 
facilities.

At present, the preferred commercial adsorbent waste-
water treatment at the industrial scale is activated carbon. 
However, its widespread use is limited by its high cost 
(Crini et al. 2019). The current quest is in producing an 
ideal nanoadsorbent. There are a number of key features 
sought in an ideal nanoadsorbent (e.g., mesoporous nano-
particles, hydrogel, polymeric nanoparticles, aerogel or 
carbon nanotube-type materials) intended for scavenging 
different target micropollutants from contaminated waters 
and wastewaters under variable chemical, physical, biolog-
ical and microbiological conditions. These are, inter alia:

(i)	 High adsorption and removal capacities
(ii)	 Chemical stability, thermal stability and adequate selec-

tivity
(iii)	 High recovery rate of spent adsorbents, regeneration 

and recyclability
(iv)	 Adequate tunability of porosity
(v)	 Scope for modification of surface chemistry by specific 

types of functionalization
(vi)	 High mechanical strength, structural integrity and 

shape recovery potential
(vii)	Self-healing (Perera and Ayres 2020) and self-cleaning 

properties (Shen et al. 2019; Xiong et al. 2020)

(viii)	 Amenability for being produced in bulk through 
green synthetic routes

(ix)	 Ability for being integrated in large-scale water/waste-
water treatment processes

(x)	 Low-cost bulk production and regeneration

An ideal nanoadsorbent would competitively solve a rea-
sonable part of the core technical, economic and secondary 
pollution issues related to existing conventional water puri-
fication and wastewater treatment methods and conventional 
adsorbents. For example, a novel iron oxide–hydrotalcite 
modified with dodecylsulfate and β-cyclodextrin magnetic 
adsorbent gave maximum adsorption capacities significantly 
superior to those reported for certain activated carbon-type 
and activated char adsorbents in the removal of phenol 
(216.08 mg g−1) and p-cresol (272.48 mg g−1) present in 
pulp and paper industry wastewater (Balbino et al. 2020). 
The latter maximum adsorption capacities are higher than 
the following ones: 144.93 mg g−1 for phenol by activated 
carbon (Zhang et al. 2016a), 129.24 mg g−1 for p-cresol by 
composite alginate beads-MnO2 activated carbon (Shim 
et al. 2019), and 32.77 mg g−1 for p-cresol by coconut shell-
activated char (Zhu and Kolar 2014). More recently, the 
maximum removal capacity of Pb2+ and methylene blue on 
novel MoO3 nanobelts was 684.93 and 1408 mg g–1, respec-
tively, while that of Au3+ and methylene blue on novel MoS2 
nanoarrays was 1280.2 and 768 mg g–1, respectively (Zhou 
et al. 2022). MoO3 nanobelts and MoS2 nanoarrays could be 
easily synthesized, were high scalable, had good chemical 
stability, gave high repeatability, and these characteristics 
made them promising candidates for wastewater treatment 
(Zhou et al. 2022).

Accordingly, more research efforts have been deployed 
in formulating green schemes for the synthesis of novel 
nanoadsorbents which could compete with activated carbon. 
Nanoadsorbents have relatively very large specific surface 
areas (Mashile et al. 2020; He et al. 2021), and their surface 
chemistry and functionality can be engineered to augment 
their adsorption capacities in comparison with conventional 
and commercially used adsorbents (Vikrant and Kim 2019). 
Nanoadsorbents used for scavenging micropollutants are 
capable of exhibiting higher adsorption capacities (Wad-
hawan et al. 2020), strong reactivity (Lu et al. 2016), and 
specific affinity toward the targeted micropollutants (Zhang 
et al. 2016b). These nanomaterials can also have multiple 
active sorption sites and tuneable porosity (El-sayed 2020). 
One specific class of nanoadsorbents is magnetic nanoadsor-
bents (Mahamadi 2019; Franzreb 2020; Vicente-Martínez 
et al. 2020; He et al. 2021; Jiang et al. 2021; Peralta et al. 
2021; Mohammadi et al. 2021; Nithya et al. 2021; Álvarez-
Manzaneda et al. 2021; Plohl et al. 2021). According to a 
recent review, research on the preparation and use of mag-
netic adsorbents has been progressing fast, and has yielded 
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more than eightfold rise in the number of publications in 
the period from 2010 to 2020 (Reshadi et al. 2020). In this 
review, we discuss a few research and development perspec-
tives with respect to the potential use of novel high-perfor-
mance magnetic nanoadsorbents for micropollutant removal 
and the integration of magnetic separation in the existing 
water purification and wastewater treatment plants (Fig. 1).

Magnetic nanoadsorbents

Magnetic nanoadsorbents are emerging as significantly 
effective functional materials with exceptional micropollut-
ant sequestration capabilities and fast adsorption kinetics at 
the laboratory scale (Abdel Maksoud et al. 2020; D’Cruz 
et al. 2020; Hu et al. 2020; Mittal et al. 2020; Ahmad et al. 
2020a; Wang et al. 2020b, d; Jafari et al. 2020; Keykhaee 
et al. 2020; Icten and Ozer 2021; Xin et al. 2021). Mag-
netic nanoadsorbents are generally characterized with high 
specific surface areas (e.g., 1188 m2 g–1 for magnetic coal-
based activated carbon (Liu et al. 2021)), high pore volumes 
(Gupta et al. 2017; Yeap et al. 2017; Masunga et al. 2019; 
Li et al. 2020; Azam et al. 2020; Pan et al. 2021), robust 
structures (Lingamdinne et al. 2019a), and extensively inter-
connected porous networks (Tan et al. 2020; Fan et al. 2021) 

which collectively promote ultrahigh adsorption capacities 
for micropollutants.

Besides the redox activity and surface charge properties 
(Abdel Maksoud et al. 2020), low-cost synthesis and non-
toxicity (Leone et al. 2018), high selectivity (Song et al. 
2018; Asadi et al. 2020; Nisola et al. 2020; Wang et al. 
2020c, 2021; He et al. 2021; Luan et al. 2021), binding spec-
ificity (Vishnu and Dhandapani 2021), and excellent reus-
ability (D’Cruz et al. 2020; Hu et al. 2020; Li et al. 2020; 
Ahmad et al. 2020b; Vu and Wu 2020; Wang et al. 2020c; 
Nkinahamira et al. 2020; Tabatabaiee Bafrooee et al. 2021), 
a key feature of magnetic nanoadsorbents is that they can be 
separated in situ from adsorption-remediated waters in the 
form of a magnetic nanoadsorbent(s)–adsorbate(s) sludge 
by applying a strong enough magnetic field (Ambashta and 
Sillanpää 2010; Zaidi et al. 2014; Simeonidis et al. 2015; 
Moharramzadeh and Baghdadi 2016; Wanna et al. 2016; Tri-
pathy et al. 2017; Mirshahghassemi et al. 2017; Yeap et al. 
2017; Augusto et al. 2019; Kheshti et al. 2019a; Mashile 
et al. 2020; Brião et al. 2020; Balbino et al. 2020).

The opportunity to separate the micropollutant(s)-loaded 
spent magnetic nanoadsorbents from the purified water/
wastewater to produce clean water is an enormous prospect 
for Research and Development in the area of water science 
and technology. The latter concepts motivate the follow-
ing discussions which are focused on the potential of using 

Fig. 1   Conceptual representation of the use of magnetic nanoadsor-
bents and integration of magnetic separation in existing wastewater 
treatment facilities for micropollutant removal. This concept is envi-
sioned in three major phases. First, the effluent from the secondary 
treatment stage is treated with selected magnetic nanoadsorbent. 
This phase will be an advanced treatment. Second, the treated efflu-
ent from the advanced treatment phase is processed in an integrated 

magnetic separation system, where the micropollutant-laden magnetic 
nanoadsorbents are decoupled from the purified wastewater. Third, 
the purified water and micropollutant-loaded magnetic nanoadsor-
bents are separated in two different streams for further use and pro-
cessing. The micropollutant-loaded magnetic nanoadsorbents are then 
regenerated. Created with BioRender.com.
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magnetic nanoadsorbents effectively in full-scale water puri-
fication and wastewater treatment systems, and on the pros-
pect of integrating magnetic separation in such systems to 
recuperate spent magnetic nanoadsorbents. Magnetic separa-
tion has some attractive advantages in comparison with the 
conventional processes. These merits are broadly related to: 
(i) the possibility of carrying out an integrated one-step cap-
ture and purification of specific species, (ii) the processing 
of high throughputs, and (iii) the low energy requirements 
and associated costs entailed by semi-continuous or continu-
ous processes ran at relatively low pressure (Schwaminger 
et al. 2019).

The use of magnetic nanoadsorbents and the integration 
of magnetic separation for water purification and wastewa-
ter treatment can be envisaged at the tertiary effluent treat-
ment level whereby effluent from the upstream secondary 
treatment units is polished through selective adsorptive 
sequestration of the target micropollutant(s). Yet, the mode 
of seeding of magnetic nanoadsorbents and the incorpora-
tion of magnetic separation at other possible points/locations 
within the wastewater treatment plants will surely require 
more investigation, scenario formulation and system analy-
sis. This is because each wastewater treatment plant has its 
own sets of specific processes and type of wastewaters.

Ecotoxicity assessments of the sludge and purified water 
after the magnetic separation should also be part of an over-
all environmental safety-environmental impact monitoring 
plan. Based on the results obtained thereof, there can be the 
scope to reengineer the synthesis of magnetic nanoadsor-
bents into more benign schemes. Pristine magnetic nanoad-
sorbents can be functionalized with diverse moieties to bring 
out their favorable adsorption characteristics .(Augusto et al. 
2019; Manyangadze et al. 2020; Wu et al. 2020; Dai et al. 
2020; Nnadozie and Ajibade 2020; Safari et al. 2020; Bi 
et al. 2021; You et al. 2021; Aryee et al. 2021), and also 
increase their stability relative to oxidation with improved 
selectivity for one specific metal ion (Wadhawan et  al. 
2020). However, functionalized magnetic nanoadsorbents 
can be very expensive, and this economic feature limits their 
use in water purification and wastewater treatment processes 
at the industrial scale (Augusto et al. 2019).

Developments with magnetic 
nanoadsorbents and magnetic separation

In this section, the discussions are focused on the exami-
nation of magnetic nanoadsorbents at laboratory scale, 
pilot-type magnetic separation systems and their respective 
configuration, inventions and patents for magnetic separator 
systems, magnetic separation processes in large-scale water 
purification, and finally on the related gaps and research and 
development opportunities.

Magnetic nanoadsorbents at laboratory scale

Empirical investigations reported in the literature provide 
interesting scientific insights into the significantly diverse 
aspects of the adsorption dynamics of different adsorb-
ate–magnetic nanoadsorbent combinations (Sivashankar 
et al. 2014; Mehta et al. 2015; Tamjidi et al. 2019; Kumar 
et al. 2020; Hassan et al. 2020; Mashkoor and Nasar 2020; 
Bharti et al. 2020; You et al. 2021). For example, doping 
Ag ions onto Fe3O4 nanoparticles had decreased particle 
sizes, but enhanced the magnetic characteristics of the 
as-prepared nanocomposites (Najafpoor et al. 2020). The 
Ag-magnetic nanoparticles had considerably higher effi-
cacy for disinfecting effluent and in advanced treatment 
through an increased removal of chemical oxygen demand 
as well (Najafpoor et al. 2020). The switching from mag-
netic nanoparticles to Ag-loaded magnetic nanoparticles 
led to a 0.06 increase in total coliforms, fecal coliforms, 
and heterotrophic bacteria log reductions, and a 6.16% rise 
in the removal of chemical oxygen demand (Najafpoor 
et al. 2020).

In another study, a Fe3+-stabilized magnetic polydo-
pamine composite (specific surface area=32.7  m2  g–1 
and total pore volume =0.1943  cm3  g–1) demonstrated 
excellent adsorption capability for methylene blue in sin-
gle adsorbate aqueous solutions (maximum adsorption 
capacity=608.8 mg g–1) for pH ranging 3–10 and at 45 °C 
(Chen et  al. 2020). Encouragingly, the nanocomposite 
could selectively capture methylene blue from mixed dye 
aqueous systems (methylene blue/methyl orange, methyl-
ene blue/carmine, and methylene blue/Rhodamine B) and 
complex aqueous solutions having ionic strengths as high 
as 0.5 mol L–1 sodium chloride as well (Chen et al. 2020). 
The enhanced and selective adsorption of methylene blue 
occurred as a result of the synergistic effects of multiple 
mechanisms (Chen et al. 2020). In the case of the methylene 
blue/methyl orange mixed dye system, the faster and selec-
tive uptake of methylene blue was attributed to the strong 
electrostatic interactions between the negatively charged 
adsorbent and the cationic methylene blue molecules (Chen 
et al. 2020). In the case of methylene blue/Rhodamine B, 
the poor adsorption of Rhodamine B was set on account of 
mainly steric hindrance generated by the longer lateral alkyl 
chain connected to the N+ center, which in turn considerably 
weakened π–π stacking interactions and electrostatic attrac-
tions between Fe3O4/polydopamine-Fe3+ and the Rhodamine 
B molecules (Chen et al. 2020). Besides maintaining a four-
cycle adsorption–desorption adsorptive efficiency greater 
than 80% of its initial uptake performance for methylene 
blue in simulated textile effluent, the nanocomposite could 
yield a superior adsorption performance than commercial 
powder-activated carbon in column adsorption setup (Chen 
et al. 2020).
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The application of magnetite particles for treating real 
wastewater samples was investigated, and the variation 
of removal performances was assessed for samples with-
drawn from three different points of a wastewater treat-
ment facility (Castelo-Grande et al. 2021). Results, in gen-
eral, indicated that magnetite particles had a very good 
behavior with regard to reduction in detergents and chemi-
cal oxygen demand, whereas removals of total nitrogen 
and phosphates, and those of most heavy metals examined 
(which included chromium, zinc, lead, copper and cobalt), 
were high to moderate (Castelo-Grande et al. 2021). The 
type of wastewater varied significantly among the sam-
pling points in terms of the phosphates, total nitrogen, 
chemical oxygen demand, and detergents’ concentrations. 
Interestingly, the results provided preliminary insights 
which wastewater treatment plant managers may consider 
when selecting which contaminants to remove using mag-
netite-based adsorption, and when choosing an optimal 
point for integrating magnetic seeding in the overall plant 
process operations (Castelo-Grande et al. 2021).

Some recent high-performance supermagnetic nanoad-
sorbents examined for scavenging heavy metals and/or 
organic micropollutants are Fe3+-stabilized magnetic poly-
dopamine composite (Chen et al. 2020), comb polymer-
functionalized magnetic nanoparticles (Liu et al. 2020a), 
magnetic porous NiLa-layered double oxides (Vu and Wu 
2020), magnetic β-cyclodextrin polymer (Hu et al. 2020; 
Nkinahamira et al. 2020), magnetic activated carbon-Fe3O4 
(D’Cruz et al. 2020), cyanopropylsilane-functionalized 
TiO2 magnetic nanoparticles (Mousavi et al. 2019), mag-
netic graphene oxide modified by β-cyclodextrin (Wang 
et al. 2020a), hexadecyltrimethylammonium bromide-sur-
face-functionalized magnetic UiO-66@UiO-67 composite 
adsorbent (Li et al. 2020), magnetic core-shell MnFe2O4@
TiO2 nanoparticles loaded on reduced graphene oxide 
(Chang et al. 2021), magnetic graphene oxide decorated 
with persimmon tannins (Gao et al. 2019), magnetic mont-
morillonite nanocomposite (Fatimah et al. 2021), magnetic 
Fe3O4 nanocubes coated by SiO2 and TiO2 (Khalaf et al. 
2019), ferrihydrite-loaded magnetic sugar cane bagasse 
charcoal adsorbent (Xin et al. 2021), ethylenediamine-
functionalized magnetic graphene oxide for arsenic(III) 
removal from aqueous solutions (Tabatabaiee Bafrooee 
et al. 2021), and last but not least MnFe2O4/multiwalled 
carbon nanotubes (Zhao et al. 2021b). The list of recent 
magnetic nanoadsorbents is very long indeed. Hence, 
there is a vast body of findings in the literature reporting 
excellent micropollutant adsorption performances of dif-
ferent magnetic nanoadsorbents exhibiting high adsorp-
tion capacities, very fast adsorption kinetics, selectivity 
and good reusability (Table 1) (Xu et al. 2017; Yang et al. 
2017a, 2019; Ul-Islam et al. 2017; Surendhiran et al. 2017; 
Ma et al. 2018; Biehl et al. 2018; Wang et al. 2018; Chen 

et al. 2018; Yao et al. 2019; Chavan et al. 2019; Sarkar 
et al. 2019; Fu et al. 2021; Li et al. 2021a). 

Many reviews have discussed the adsorption perfor-
mances of many magnetic nanoadsorbents under different 
experimental conditions using aqueous solutions contain-
ing one or more micropollutant(s). Reviews have also been 
performed on the synthetic methods of magnetic nanoadsor-
bents and chemical reagents/reactants used, the functionali-
zation and surface chemistry modifications of pristine mag-
netic nanoparticles, regeneration methods and reusability 
of magnetic nanoadsorbents, and the concerns around the 
commercialization of industry-ready magnetic separation 
equipment.

Although promising findings have been extensively com-
piled based on laboratory-scale investigations with magnetic 
nanoadsorbents in recent reviews with regard to excellent 
adsorption capacities, rapid adsorption kinetics, good selec-
tivity and recyclability (Sivashankar et al. 2014; Mehta et al. 
2015; Tamjidi et al. 2019; Kumar et al. 2020; Hassan et al. 
2020; Mashkoor and Nasar 2020; Bharti et al. 2020; You 
et al. 2021; Faraji et al. 2021; Jain et al. 2021), there are still 
a number of hurdles which tend to retard the use of magnetic 
nanoadsorbents at the commercial scale for water purifica-
tion and wastewater treatment systems. These limitations 
are related to their mechanical properties, chemical stability, 
scale-up and optimization of synthetic processes, possible 
downstream toxicity levels, and efficacy of regeneration 
methods and reusability (You et al. 2021). In addition, the 
estimation of the costs involved in the scaling-up of syn-
thetic schemes for magnetic nanoadsorbents’ production and 
the development of customized magnetic separation systems 
is challenging.

Magnetic nanoadsorbents have been observed to lose 
their adsorptive capacity after multiple reuse cycles (Meng 
et al. 2018; Wanjeri et al. 2018; Aliannejadi et al. 2019; Ma 
et al. 2019; Baig et al. 2020; Masjedi et al. 2020; Rezaei 
et al. 2020; Peralta et al. 2021). For example, ibuprofen 
uptake by an as-prepared hybrid silica-based magnetic 
nanoadsorbent experienced a drastic 42% decline in the 
second cycle, implying that the regeneration reagent used 
(ethanol) had not extracted all of the ibuprofen adsorbed in 
the previous adsorption step (Peralta et al. 2021). Naphtha-
lene removal efficiency by a highly branched dendrimeric 
magnetic nanoadsorbent decreased in the last use cycles 
to reach 54% by the tenth cycle (Aliannejadi et al. 2019). 
Fe3+ removal efficiency by a magnetic core-shell Fe3O4@
mSiO2-NH2 adsorbent was reduced by about 8% after cycle 
1, followed by a decrease of less than 2.5% in the next three 
cycles (Meng et al. 2018). The removal efficiency of Cr6+ 
ions by a corn straw-derived porous carbon adsorbent from 
aqueous solutions was 91.57% at the end of a first adsorp-
tion–desorption cycle, and remained above 70.65% after 
three cycles (Ma et al. 2019). However, Cr6+ ion removal 
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efficiency declined to 52.39% in the fourth adsorption–des-
orption cycle (Ma et al. 2019). Hence, it becomes signifi-
cantly relevant to reinstate, and if required to significantly 
reengineer possibly through functionalization (Sahoo and 
Hota 2018; Manyangadze et al. 2020; Peralta et al. 2020, 
2021), the physical and chemical characteristics of the mag-
netic nanoadsorbents to sustain their effective reuse. Thus, 
regeneration potential, regeneration method and recovery 
efficiency for reuse are three critical factors, among oth-
ers, which will guide the selection of a magnetic nanoad-
sorbent for a specific industrial-scale water purification and 
wastewater treatment process. These aspects are particularly 
crucial from the economic dimension given the high costs 
which can be involved (Neha et al. 2021).

There are many spent magnetic nanoadsorbent regenera-
tion methods among which the chemical method appears to 
be popular (Meng et al. 2018; Campos et al. 2019; Gagliano 
et al. 2020; Sahoo et al. 2020; Bakhshi Nejad and Moham-
madi 2020; Biata et al. 2020; Jain et al. 2021; Peralta et al. 
2021). Other adsorbent regeneration methods are thermal 
(Aguedal et al. 2019), supercritical extraction (Momina et al. 
2018), microbial regeneration (Momina et al. 2018), solvent 
extraction (Dutta et al. 2019), and microwave and ultraviolet 
irradiation (Sun et al. 2017). Accordingly, the utilization of 
regenerated magnetic nanoadsorbents can have an impact on 
the efficiency of the water purification and wastewater treat-
ment processes where they are put to use. This is because the 
quality of the exhausted nanoadsorbent regeneration process 
is influenced by pH (Momina et al. 2018; Wen et al. 2020), 
molecular structure of adsorbate (Gagliano et al. 2020), 
functional groups present (Meng et al. 2018), temperature 
(Aguedal et al. 2019; Jiang et al. 2019) and surface charge 
(Meng et al. 2018). Thus, an optimization of the regenera-
tion method for a specific exhausted magnetic nanoadsor-
bent becomes necessary. Such an optimization will be vital 
for ensuring a maximum possible stability, selectivity and 
improved adsorption efficiency of the regenerated magnetic 
nanoadsorbent during its next set of multiple adsorptive 
interactions with the target micropollutant(s).

Pilot‑scale magnetic separation systems

As compared to the number of laboratory-scale studies 
which have examined the performance of magnetically sep-
arable adsorbents, there are relatively fewer studies which 
have reported the pilot-scale behaviors of novel magnetic 
adsorbents utilized in micropollutant removal. The following 
discussions revisit some salient aspects of these studies, and 
highlight a number of favorable findings and system-specific 
limitations. For example, an open-gradient magnetic separa-
tor consisting of identical electromagnets operating as the 
capture elements was designed, optimized, and experimen-
tally examined for water purification under turbulent water Ta
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flow regimes (Belounis et al. 2015). The optimization was 
based on the assessment of capture efficiencies of different 
separator configurations, and took into consideration the fol-
lowing parameters: capture element sizing, particle radius, 
particle mass density, particle magnetic permeability, chan-
nel diameter, water mass density and water dynamic viscos-
ity, and average flow velocity (Belounis et al. 2015).

Recently, a laboratory-scale magnetic separator (μ-Jones) 
simulating large-scale wet magnetic separator systems was 
designed to demonstrate that magnetic extraction of vivian-
ite from sludge was achievable (Prot et al. 2019). A number 
of interesting findings were reported in the latter work, and 
they demonstrated proof-of-concept of magnetic separation 
to some reasonable extent. Among the results obtained, mag-
netic separation was able to concentrate vivianite by a factor 
2–3 and could also decrease organic content from 40 to 20% 
(Prot et al. 2019). Besides allowing recovery of total phos-
phorus as vivianite, implementation of magnetic separation 
at wastewater treatment plants could decrease the amount of 
waste sludge, and also augment its heating value by lower-
ing its mineral content (Prot et al. 2019). Encouragingly, 
preliminary cost analysis indicate that these advantages (par-
ticularly the projected decrease in waste sludge volume) are 
in balance with putting into place a magnetic separator when 
the associated investment and operation costs are accounted 
for (Prot et al. 2019).

In a study which dealt with the removal and recovery of 
dissolved phosphate from wastewater in a pilot-scale system 
using ZnFeZr@Fe3O4/SiO2 adsorbent with magnetic har-
vesting, some operational limitations were observed (Drenk-
ova-Tuhtan et al. 2017). Thus, besides the favorable removal 
performance observed on the whole in the pilot-scale tests 
(viz. an effective 50-time upscaling of the proposed technol-
ogy by remediating 1.5 m3 wastewater in twenty cycles), 
some of the limitations were:

(1)	 A decline in adsorption efficiency because of a consist-
ent loss of adsorbent particles as cycle 10 was reached,

(2)	 The high-gradient magnetic separation was confronted 
with discontinuous operation because of the need to 
effect regular flushing, which in turn induced the dilu-
tion of particle concentrate, and

(3)	 Desorption efficiency varied more than in the labora-
tory-scale tests, possibly because of the higher mass of 
adsorbent particles per unit volume of desorption solu-
tion, which led to incomplete regeneration of the adsor-
bent in some cycles (Drenkova-Tuhtan et al. 2017).

An accurate estimation of running costs was not workable 
at that stage of the process development (Drenkova-Tuhtan 
et al. 2017). However, the pilot-scale findings pointed toward 
the principal operating costs being those for the replacement 
of lost or exhausted adsorbent particles, followed by those 

for energy and chemicals consumption (Drenkova-Tuhtan 
et al. 2017).

A preliminary assessment of a pilot-scale magnetic 
separator demonstrated that magnetizable clays could be 
effectively used for the treatment of textile dyeing waste-
water on magnetic drum separators (Salinas et al. 2018). 
The magnetic drum separator had a rotating drum (external 
diameter=20 cm, depth=12.5 cm, and with an arrangement 
of fifty neodymium magnets of 5 × 2 × 0.5 cm on its inner 
side) mounted on a cylindrical plastic container by a metal 
shaft (Salinas et al. 2018). The magnetic clay was separated 
from the drum by a plastic blade and recuperated in a plas-
tic container (Salinas et al. 2018). With the magnetic drum 
separator operated at a flow rate of 0.08 L min–1, 62% dye 
removal could be obtained, and the outlet effluent dye con-
centration was 92 ppm for a 10 min residence time on the 
separator (Salinas et al. 2018). In another study, the separa-
tion efficiency for magnetic hydrogel adsorbing Cr(VI) was 
more than 97% throughout the twenty cycles of treatment 
in an industrial wastewater treatment prototype (Tang et al. 
2014). The prototype had a 5-L magnetic separation unit 
comprising an electromagnetic system at the bottom for gen-
erating a magnetic field of strength ~200 mT (Tang et al. 
2014). This unit generated a magnetic field that had zigzag 
pathways for maximizing the magnetic hydrogel’s capture 
(Tang et al. 2014).

In a recent insightful work which highlights the merits 
of cooperative magnetophoresis, an in-line, wastewater-
cooled electromagnetic collection system has been devel-
oped (Hutchins and Downey 2020). This new system could 
produce collections at very high efficiencies consistently 
more than 98% (with a magnetic core of 200 wires (Core 
I)) when paired with magnetite nanoparticles because of 
the intimate contact induced when placing the coil directly 
in the copper(II)-containing wastewater flow (Hutchins and 
Downey 2020). The water cooling feature of the electromag-
netic collection system enabled the onset of a much more 
powerful magnetic field that, in turn, tends to allow the use 
of pipes with larger diameters and accommodate flows at 
higher fluid velocities (Hutchins and Downey 2020). The 
latter are two important requisites for an effective industrial-
scale application of a magnetic separation system. Interest-
ingly, flows of up to 8.1 L min–1 with up to 80 gram-particles 
could produce the target benchmark collection efficiency of 
98% (Hutchins and Downey 2020). However, the decrease 
in collection efficiencies for particles of greater masses was 
attributed to the excess build-up of particles on the core 
wires, and at a specific point in this fluid-velocity-dependent 
build-up, the fluid drag force becomes greater than the mag-
netophoretic force, and the magnetite particles are carried 
into the flow (Hutchins and Downey 2020).

Recently, an innovative, scalable and optimized per-
manent magnetic nanoparticle recovery apparatus (called 
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“MagNERD” having a maximum fluid volume of 1110 mL) 
has been developed (Powell et al. 2020). This device was 
examined using experimental investigations and compu-
tational fluid dynamics modeling approaches for its per-
formance in separating, capturing and reusing superpara-
magnetic Fe3O4 nanoparticles from treated water in-line 
for continuous flows (Powell et al. 2020). Results indicated 
that the efficiency of the novel MagNERD system in recov-
ering the magnetic nanoadsorbents was dependent on the 
configuration of the device and hydraulic flow conditions, 
and magnetic nanoadsorbents uptake (Powell et al. 2020). 
The MagNERD system had successfully removed more than 
94% of As-bound Fe3O4, after mixing simulated drinking 
water consisting of arsenic with the magnetic nanoadsor-
bents used (Powell et al. 2020). In addition, this device was 
able in removing Fe3O4 in nanopowder form for as high as 
more than 95% at elevated concentrations of 500 ppm at 
1 L min–1, and from different types of water (e.g., brackish 
water and ultrapure water) (Powell et al. 2020).

Magnetic separator inventions and patents

There are also some patents which describe interesting mag-
netic separator inventions having different geometries and 
different operating principles for prospective applications in 
water purification and wastewater treatment (Lombardi and 
Morley 2017; Liu et al. 2020b, WATER ONLINE 2008). 
One of these inventions reports the design of devices and 
development of procedures for undertaking in-line water 
treatment through the application of strong magnetic fields, 
which in turn exert an influence on corrosion, separation of 
toxins, suppressing of bacteria and bio-fouling, and preven-
tion or considerable decrease in mineral scaling arising from 
fluid flow in or around the components in the equipment 
(Lombardi and Morley 2017).

There have been commercial applications of magnetic 
seeding for the treatment of drinking water with (e.g., 
‘Comag’ process) and without (e.g., ‘Sirofloc’ technology) 
magnetic separation (Cort 2008, 2010). Interestingly, there is 
also an invention which is a ‘hybrid’ treatment system com-
bining magnetic separation with activated sludge treatment 
designed to remove dissolved aqueous pollutants from a 
wide range of contaminated waters (municipal wastewaters, 
industrial wastewaters, combined sewer overflows, potable 
waters, any other waters containing dissolved inorganic or 
organic contaminants) (Cort 2009). In another example, the 
invention is particularly relevant for high flow water treat-
ment applications which have to be efficient and simple; 
and for specific operational requirements, this invention can 
also combine vortex separation with magnetic separation to 
improve magnetic seed material cleaning and lower solids 
load on the final magnetic collector system (Cort 2007).

Magnetic separation in large‑scale water 
purification

We have also come across a few full-scale case studies which 
have reported the application of magnetic separation in water 
purification. For example, a high-gradient magnetic separa-
tion system equipped with superconducting magnet (3 T, 
0.68 m long and 0.4 m bore NbTi solenoid) was designed to 
purify paper mill wastewater continuously (Nishijima and 
Takeda 2006). The main features and performances to be 
achieved by this magnetic separation system were: (1) reduc-
ing the chemical oxygen demand of the purified effluent to 
less than 40 ppm and to be recyclable, and (2) processing 
wastewater flows above 2000 tons on a daily basis (Nishijima 
and Takeda 2006). In another example, one supermagnetic 
separation system was used by the Shandong New Dragon 
Energy Limited Liability Company (design treatment capac-
ity = 34,000 m3 day–1) in March 2010 for treating under-
ground mine water (Zhang et al. 2020).

In another investigation, a high-gradient magnetic sepa-
ration (employing a 6-T cryo-cooled Nb-Ti superconduct-
ing magnet) was used to remove impurities from the con-
denser water (containing mostly hematite and maghemite) 
in a thermal power plant (Lee et al. 2011). In the test runs, 
the condenser water turbidity was decreased up to 99.6%, 
and more of the iron oxides could be scavenged at higher 
magnetic field strengths (1-6T) (Lee et al. 2011). Back in 
1978, a report (EPA600/2-78/209, and under the Contract 
No. 68-03-2218) described the preliminary on-site stage 
testing of magnetic separation for seeded water treatment 
involving magnetite (Allen 1978). The investigations were 
conducted with a SALA high-gradient magnetic separator 
pilot unit on combined sewer overflows and raw sewage at 
SALA Magnetics, Inc. in Cambridge, Massachusetts, and at 
on-site places in the Boston area (Allen 1978). Although the 
on-site findings reported did not match those recorded with 
uniform batch samples in house, they were still good enough 
in demonstrating that high-gradient magnetic filtration was 
effective on fresh combined sewer overflows and raw sewage 
(Allen 1978). In addition, the on-site results indicated that 
the magnetic filtration-based treatment system could easily 
adapt to flow rate conditions and dynamic solids loading 
usually observed with storm water and integrated wet and 
dry treatment systems (Allen 1978).

A water treatment system in a thermal power plant was 
equipped with a high-gradient magnetic separation system 
utilizing a solenoidal superconducting magnet (model num-
ber JMTD-10T100E3, bore diameter=10 cm, height=46 cm) 
and magnetite for enhancing the efficiency of operations 
(Shibatani et al. 2016). The flow velocity was 0.6 ms–1 and 
the magnetic flux density applied was 2.0 T. In the high-
gradient magnetic separation investigations which could be 
run at high-pressure and high-temperature, a reduction in 
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the separation rate and an increase in pressure loss had been 
warded off, and the total amount of captured scale had aug-
mented by reason of an appropriate filter design (Shibatani 
et al. 2016). The standard deviation of magnetite capture rate 
was 3.4 when the filter material was galvanized iron (16.3 g 
of magnetite captured in this case), whereas the capture rate 
was significantly higher at 29 when the filter material used 
was stainless steel 430 (11.2 g of magnetite captured) (Shi-
batani et al. 2016). At 10 ppm of magnetite, blockage of 
the magnetic filters occurred. In the former magnetic filter 
design, the starting separation rate was 89% which remained 
quasi-constant for the first 10 minutes, but then decreased 
to 64% over the next 10 minutes (Shibatani et al. 2016). For 
this same filter system, pressure loss gradually rose from 
9.5 to 10.5 kPa and remained practically constant after 15 
minutes. Based on the findings, the galvanized iron mag-
netic filter system (with a diameter of 51 mm) was thence 
deemed convenient for extended continuous operation for 
scale removal in the feed-water system of the plant (Shiba-
tani et al. 2016).

Gaps and development openings

Based on our analysis of the literature so far, we infer there 
is reasonable ground for developing a large-scale (industrial) 
usage of magnetic nanoadsorbents for water purification 
and wastewater treatment together with the incorporation 
of magnetic separation operating downstream for recover-
ing the spent magnetic nanoadsorbents (Lee et al. 2011; Liu 
et al. 2013; Simeonidis et al. 2015; Roy et al. 2017; Mirshah-
ghassemi et al. 2017; Lompe et al. 2018; Lingamdinne et al. 
2019b, a; Augusto et al. 2019; Huang et al. 2019; Prot et al. 
2019; Cui et al. 2020; Ghernaout and Elboughdiri 2020; 
Abdel Maksoud et al. 2020; Kheshti et al. 2020; Powell et al. 
2020; Salehin et al. 2020; Khan et al. 2020; Hussen Shadi 
et al. 2020; Acosta et al. 2020; Rais et al. 2021; Leonel et al. 
2021).

Yet, there appears to be a major lacuna in the develop-
ment and implementation of a mature combined magnetic 
nanoadsorbent-based adsorption–magnetic separation in 
water purification and wastewater treatment processes that 
are intended to operate at high capacity and under continu-
ous flows at the industrial scale (Augusto et al. 2019; Pow-
ell et al. 2020). This gap gives way to substantial hope for 
more research and development and progress in the area of 
water science and water treatment technology using mag-
netic nanoadsorbents and magnetic separation downstream 
the unit operations housing the magnetic nanoadsorbents-
based adsorption processes.

Three major interconnected components will require 
substantial research and development efforts toward the 
potential integration of magnetic nanoadsorbents’ use and 

magnetic separation in real-scale/industrial-scale water 
and wastewater depuration systems. These are:

1.	 Maximizing the capture of untreated wastewaters and 
channeling them to the large-scale water and wastewater 
treatment facilities

2.	 Selecting intelligent magnetic nanoadsorbent(s) for 
industrial application

3.	 System modeling, simulation and process optimization 
of real water/wastewater remediation systems using 
magnetic nanoadsorbents and magnetic separation

Further research and development can generate more 
real-world investigations of pilot-scale ‘intelligent’ mag-
netic nanoadsorbents-based adsorption system for their 
system design and optimization on a case-to-case basis. A 
case-to-case basis approach seems much plausible because 
the research and development investigations will need to 
consider the existing water purification and wastewater 
treatment processes, and then factor in the significant vari-
abilities that can occur in physicochemical and biologi-
cal characteristics of contaminated waters (e.g., ground-
waters (Subba Rao et al. 2017; Yetiş et al. 2019; Ferrer 
et al. 2020; Gnanachandrasamy et al. 2020) and drinking 
water (Navab-Daneshmand et al. 2018; Kumar et al. 2019; 
Jehan et al. 2019)) and wastewaters (e.g., landfill leachates 
(Augusto et al. 2019) and complex textile wastewaters con-
taining dyes (Bhatia et al. 2017; Huang et al. 2020)) being 
treated. The findings can then be used to formulate appro-
priate engineering project opportunities that enable the 
use magnetic nanoadsorbents and integration of magnetic 
separation in existing water purification and wastewater 
treatment units. Hence, we equally envision that innova-
tive magnetic nanoadsorbent-based adsorption units and 
magnetic separation systems are retrofitted in the existing 
tertiary (de Andrade et al. 2018), or quarternary water/
wastewater treatment units (Gawel 2015).

The word ‘intelligent’ has been used above to bring 
in the notion of a system using magnetic nanoadsorbents 
which can adequately self-modulate their properties and 
adsorption performances in response to external biologi-
cal, chemical and/or physical stimuli normally encoun-
tered in real contaminated waters/wastewaters. The 
‘intelligent sensing’ can be a response of the intelligent 
magnetic nanoadsorbent toward a single stimulus or more. 
The stimuli can be:

	 (i)	 Physical such as exposure to variations in light inten-
sity (Xu et al. 2020), temperature (Ebadollahzadeh 
and Zabihi 2020; Li et al. 2021b), magnetic field 
strength (Flores López et al. 2018) and hydrody-
namic mechanical shear forces which can get onset 
during continuous turbulently mixed reactor-type 
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(Xie et al. 2017; Jun et al. 2020) or bed-type adsorp-
tion processes (Niksefat Abatari et al. 2017);

	 (ii)	 Chemical because of fluctuations in pH (Reguyal and 
Sarmah 2018), variations in ionic strength (Zhang 
et al. 2019), and due to variable concentrations of 
competing/coexisting species such as ammonium 
(Mazloomi and Jalali 2017), phosphate, sulfate, 
nitrate (Tuutijärvi et al. 2012; Rashid et al. 2017), 
multiple organic pollutants, e.g., dyes, pharmaceu-
ticals and agrochemicals (Hlongwane et al. 2019), 
natural organic matter such as humic substances 
(Reguyal and Sarmah 2018; He et al. 2018), and 
alkali and alkali-earth metal ions (e.g., K+, Mg2+, 
Ca2+) (Quiroga-Flores et al. 2020), transition (e.g., 
Co2+, Cd2+, Ni2+) metal ions (Quiroga-Flores et al. 
2020) and/or ions with a radioactive character (e.g., 
Sr2+ (Vivas et al. 2020), Cs+ (Işık et al. 2021) or 
uranyl ion ( UO

2

2+ ) (Yang et al. 2017b)); and
	 (iii)	 Microbiological due to potential interactions of mag-

netic nanoadsorbents with a multitude of microor-
ganisms to form microbial aggregates which in turn 
can protect them (Tang et al. 2018).

Though relatively novel, there are already such intel-
ligent magnetic materials which have been examined for 
their adsorption performance in water and wastewater 
remediation (Yu et al. 2020; Ciğeroğlu et al. 2021; Leo-
nel et al. 2021; Yang et al. 2021). Therefore, we think it 
is opportune to borrow insights from these repositories of 
scientific data to design and scale-up intelligent magnetic 
nanoadsorbents-based adsorption units for application in 
full-scale water purification and wastewater treatment sys-
tems. These units will have to be stable, robust and ade-
quately effective in producing final effluents which comply 
with the prevailing effluent discharge limits and regulatory 
standards of the target micropollutants.

System modeling, numerical simulation, and process 
optimization (Liu et al. 2019; Powell et al. 2020) will be 
integral components in the design of these units. This is 
because a balance will need to be constantly maintained 
amidst the interplay of the key process and design param-
eters. Some of these main parameters/features are: particle 
size of magnetic nanoadsorbents (Hutchins and Downey 
2020), the geometry and configuration of the adsorp-
tion units, the dispersion or immobilization of magnetic 
nanoadsorbents, the spatial distribution of magnetic 
nanoadsorbents within the adsorption unit(s), the ten-
dency for magnetic nanoadsorbents to aggregate or get 
leached, the susceptibility of magnetic nanoadsorbents to 
be biodegraded by indigenous or survivor microbes, and 
the overall adsorption behavior of magnetic nanoadsor-
bents in real water purification and wastewater treatment 
conditions. Controlling and minimizing agglomeration and 

precipitation of magnetic nanoadsorbents are important 
as well.

Moreover, the production of magnetic nanoadsorbents at 
the kilogram scale (and hopefully at the ton scale) under 
optimized operating conditions will have to be established 
as mature processes (Cheong and Moh 2018; Lorignon et al. 
2020). In addition, it will be critical to ensure that the mag-
netic nanoadsorbents being produced in bulk have preserved 
enough of those outstanding properties and are effective in 
delivering those adsorption performances observed at labo-
ratory scale for the target micropollutant(s). These require-
ments, when fulfilled, can assist in paving the way to the 
commercial use of magnetic nanoadsorbents in full-scale 
water purification and wastewater treatment facilities.

In addition, the development of optimized high-gradient 
magnetic separators (Kakihara et al. 2004; Baik et al. 2013; 
Simeonidis et al. 2015; Tripathy et al. 2017; Mirshahghas-
semi et al. 2017; Han et al. 2017; Ebeler et al. 2018; Kheshti 
et al. 2019a, 2020; Powell et al. 2020) occupies a core seg-
ment of the research and development efforts needed to 
mature the use of magnetic nanoadsorbents for application 
in water purification and wastewater treatment at the indus-
trial scale. It is critical to design energy-efficient magnetic 
separation systems which respond favorably to the energy 
requirements of retrofitting such systems in the water puri-
fication and wastewater treatment industry.

The design of the magnetic separator system will have to 
be properly tuned for the following parameters on a case-
to-case basis as well: its optimal geometry in relation to 
aqueous stream flow patterns (Kheshti et al. 2019b), poten-
tial flocculation and coagulation behaviors (Lv et al. 2019, 
2021; Sun et al. 2021), flow paths (Kakihara et al. 2004; 
Tang et al. 2014) and effects of turbulences and variable 
fluid shear forces; concentrations and mass loading of mag-
netic nanoadsorbents (Powell et al. 2020); the magnetic 
field strength distributions, flow velocity profiles and liquid 
streamlines being developed during the magnetic separation; 
the exposure intensity; effects of any residual magnetization 
arising from presence of mechanical components (Powell 
et al. 2020); colloidal stability and magnetic separability 
(Hutchins and Downey 2020); and residence time distribu-
tions with or without effluent recirculation.

Research directions

Based on the findings of this review, we are of the mind the 
above points carry reasonable weight for warranting compre-
hensive pilot-scale and in situ experimentation, and system 
design and optimization of magnetic nanoadsorbent-based 
adsorption units and magnetic separation systems for ena-
bling their integration in existing full-scale water purifica-
tion and wastewater treatment facilities. Retrofitting existing 
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water treatment facilities with optimized magnetic nanoad-
sorbent-based adsorption units and magnetic separation 
systems can potentially yield higher purification efficien-
cies. In addition, the recovery of micropollutant-saturated 
magnetic nanoadsorbents can be achieved at potentially 
higher capture efficiencies. In addition, by optimizing the 
operational parameter and design settings of the magnetic 
separation systems, the residual concentration of magnetic 
nanoadsorbents in the final-treated effluent can be brought to 
a safe minimum, and possibly to trace levels. Accordingly, 
we identify the following key research avenues:

•	 Active involvement and contribution of interdisciplinary 
expertise, namely from physics, materials science and 
engineering, environmental chemistry, chemical process 
design and engineering, control system engineering, toxi-
cology, environmental economics, and plausibly policy 
making as well for materializing the commercial produc-
tion and use of magnetic nanoadsorbents.

•	 It will be a significant research and development chal-
lenge to tailor make optimized and economic magnetic 
nanoadsorbents’ regeneration routes when planning their 
use in large-scale water purification and wastewater 
treatment systems. Thus, defining the finite frequency at 
which the regenerated magnetic nanoadsorbents can be 
economically replaced in a process becomes important.

•	 It is of the utmost importance to keep on demonstrating 
the ‘proof-of-concept’ of yet more innovative magnetic 
separation systems capable of treating high flow rates 
continuously and in-line in existing full-scale water puri-
fication and wastewater treatment facilities on a case-to-
case basis.

•	 The lifecycle environmental impacts of the use of mag-
netic nanoadsorbents and magnetic separation systems in 
large-scale water purification and wastewater treatment 
systems have to be comprehensively elucidated.

•	 More collaboration of key industry partners and the 
research community will be equally crucial in research 
and development activities related to the design and 
pilot-scale testing of effective magnetic separation sys-
tem in the existing water treatment facilities.

Conclusion

Demonstration of the aforementioned ‘proof-of-concept’ can 
hopefully help in dispelling doubts and reducing risk-related 
reluctance (Kiparsky et al. 2016; Trapp et al. 2017; Sherman 
et al. 2020) of the water treatment industry toward retrofit-
ting of the existing installations. Accordingly, stronger ‘uni-
versity-utility’ collaborations (Brown et al. 2020) have to be 
developed for harnessing the potential of selected ‘super’ 
magnetic nanoadsorbents in large-scale water purification 

and wastewater treatment systems. We look forward to a 
mature utilization of magnetic nanoadsorbents for target 
micropollutant removal coupled with a viable integration of 
magnetic separation in the existing full-scale water purifica-
tion and wastewater treatment facilities gradually becoming 
a “disruptive innovation” (Si and Chen 2020) in the water 
treatment sector.
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