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Abstract

The development of effective drug delivery systems is very challenging due to poor solubility, low membrane permeabil-
ity, instability, and short biological half-life of active substances. Conventional drug delivery systems lack the features of
extended drug release and targeted drug delivery. These issues can be solved by cyclodextrins and derivatives. Benefits
include higher bioavailability, targeted drug delivery, non-toxicity, inclusion complex ability, and higher aqueous solubility.
Cyclodextrin-conjugated nanoparticles combine the advantages of cyclodextrins and nanoparticles: enhanced water solubility
and drug loading, targeted drug delivery with minimum toxicity to normal cells, greater surface area, improved drug loading
and higher stability than other nanocarriers such as microparticles and liposomes. Here, I review cyclodextrin-containing
nanoparticles and their applications in advanced drug delivery such as anticancer drugs, gene delivery, protein, and peptide
drug delivery. Furthermore, this review also describes cyclodextrins applications using polymeric, gold, silver, magnetic, and
lipid-based nanoparticles. Additionally, I present potential pharmaceutical applications of amphiphilic cyclodextrin-based
nanoparticles in anticancer, antimicrobial, gene delivery, and miscellaneous administration routes of cyclodextrin-based
nanoparticles such as nasal and transdermal.
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Abbreviations

MCF-7 Michigan cancer foundation-7
MDR1  Multidrug resistance protein 1
mRNA  Messenger ribonucleic acid
siRNA  Small interfering ribonucleic acid

ions, protein, and oligonucleotides (Lysik and Wu-Pong
2003). Inclusion complexes are formed when the “guest”
molecule, usually a drug, is partially or fully included inside
the “host’s cavity” (Szente and Szejtli 1999). Owing to the
hydrophobic cavity, cyclodextrins as ghosts offer the guest
a suitable environment for interaction (Fig. 1). The outer
hydrophilic surface of cyclodextrins is compatible with

Introduction

Cyclodextrins are cyclic oligomers obtained from starch by
enzymatic degradation and were discovered in 1891 by the
French pharmacist Villiers (Crini et al. 2021). Cyclodex-
trins have remarkable capability to establish supramolecular
host—guest interactions because of their toroidal shape and
non-polar inside (Morin-Crini et al. 2021; Petitjean et al.
2021). Cyclodextrin molecules contribute distinguished
advantages due to their novel architectural features to form
inclusion complexes with several kinds of molecules like
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water, which allows hydrogen bonding cohesive interactions
(Challa et al. 2005). Cyclodextrin-conjugated nanoparticles
offer numerous advantages such as enhanced drug solubil-
ity, improved encapsulation efficiency, and drug loading and
serve as drug carriers to a specific target site such as cancer
cells with minimum toxicity to normal cells, greater surface
area over microparticles, and higher stability over liposomes.

This review discusses cyclodextrin-based nanoparticles to
explain their versatility and high potential for advanced drug
delivery, protein and peptide delivery, and gene delivery. It
also highlights the role of cyclodextrins in specific types of
nanoparticles such as gold, silver, and magnetic, polymeric,
and lipid-based nanoparticles. Additionally, pharmaceutical
applications of amphiphilic cyclodextrin nanoparticles and
miscellaneous administration routes of cyclodextrin-based
nanoparticles are also discussed. This article is an abridged
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Fig. 1 Inclusion complex of cyclodextrins. A complex is formed
when the “guest” molecule, such as a drug, is partially or fully
included inside the host’s cavity. Cyclodextrins have various practical
applications in different fields such as pharmaceuticals, food, cosmet-

version of the chapter published by Pandey (2020) in the
series Environmental Chemistry for a Sustainable World.

Cyclodextrin nanoparticles as drug delivery
system

The cyclodextrins have the exceptional ability to trap a
guest molecule inside of their hydrophobic cavity and have
been significantly exploited by pharmaceutical research-
ers to enhance the bioavailability, aqueous solubility, and
stability of several therapeutic agents (Arora et al. 2019).
Cyclodextrin-based nanoparticles can improve bioavailabil-
ity, modify drug metabolism, reduce toxicity, and increase
the biological half-life of drugs after systemic administra-
tion (Bilensoy 2011; Crini et al. 2018). Cyclodextrins act as
true carriers by dissolving and delivering hydrophobic drug
molecules through the aqueous exterior of lipophilic biologi-
cal membrane barriers, e.g., mucosa. In general, only dis-
solved drug molecules can partition into the barrier and then
penetrate through the mucosa. In addition, cyclodextrins
are known to self-assemble to form nanosized aggregates
in aqueous solutions and thus have the potential of being
developed into novel drug delivery systems (Messner et al.
2010). This characteristic is promising for a broad range
of nanotechnology domains such as drug delivery, cancer
therapy, gene delivery, and biosensing. Cyclodextrin-based
nanoparticles facilitate a novel drug delivery system with the
advantages of both components: The cyclodextrin molecules
offer enhanced water solubility and drug loading, while the
nanoparticles afford targeted drug delivery.

Anticancer drugs

Nanotechnology-based drug delivery system provides an
exceptional platform for the delivery of anticancer agents
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Inclusion complex

ics, hygiene and toiletries, agrochemistry, catalysis, chromatography,
biotechnology, nanotechnology, medical imaging, textile industry,
and soil and water treatment

to enhance their targeting ability and bioavailability. Oral
administration of paclitaxel is still considered one of the
most suitable and safe modes of delivery. Hamada et al.
(2006) studied the aqueous solubility behavior of antican-
cer agent paclitaxel employing 11 kinds of cyclodextrins
and the bioactivity of the paclitaxel-cyclodextrin inclu-
sion complex. They have reported that 2,6-dimethyl-p-
cyclodextrin was most effective, and paclitaxel showed
significant solubility in 2,6-dimethyl-f-cyclodextrin aque-
ous solution. Moreover, this inclusion complex revealed a
1.23-fold polymerization activity as paclitaxel in a tubu-
lin assay. One of the main advantages of loading antican-
cer drugs into nanoparticles is to enhance their cellular
uptakes by bypassing the different multidrug-resistant
mechanisms. For example, paclitaxel isolated from Taxus
brevifolia is a potent anticancer agent approved for the
treatment of a large number of solid tumors. But hydro-
phobic nature of paclitaxel results in low bioavailabil-
ity. Therefore, to overcome the issue of hydrophobicity,
Bilensoy et al. (2008a, b) have developed amphiphilic
cyclodextrin as a nanoparticulate carrier system for pacli-
taxel drug delivery. This yielded nanospheres via nano-
precipitation technique with good cytotoxicity against
L.929 cells, high encapsulation efficiency, prolonged drug
release, and a threefold increase in the loading capacity
of nanoparticles when formed directly from the inclu-
sion complex. In another approach, Agiieros et al. (2009)
investigated the concept of utilizing cyclodextrin—polyan-
hydride nanoparticles for oral delivery of paclitaxel. The
addition of cyclodextrin increases the solubility of pacli-
taxel by developing an inclusion complex, and the use of
polyanhydride enhances intestinal permeability. In conclu-
sion, cyclodextrin-based nanoparticles improve solubility
and increase the targeting ability and bioavailability of
anticancer drugs.
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Proteins and peptides

Cyclodextrin complexation represents an effective strategy
for improving protein therapy by stabilizing them against
aggregation, thermal denaturation, and degradation. Proteins
are mostly hydrophilic and too bulky to be wholly included
in the cavity of cyclodextrins. Nevertheless, the hydrophobic
side chains in the peptides may penetrate into the cavity of
the oligosaccharide, leading to the formation of non-cova-
lent inclusion complexes, which improves the stability of
proteins. Da Silveira et al. (1998) have prepared and evalu-
ated nanoparticulate systems of progesterone composed of
poly(isobutyl cyanoacrylate) and cyclodextrins for enhanc-
ing the loading of the particles with substances. The authors
have demonstrated that an increase in hydroxypropyl-$-
cyclodextrin concentration resulted in small nanoparticles
of size less than 50 nm and a 50-fold increase in proges-
terone loading compared to nanoparticles prepared without
cyclodextrins. Cyclodextrins are believed to enhance nasal
absorption of peptides by opening tight junctions and/or
solubilizing membrane components (Merkus et al. 1999).
In light of these facts, Zhang et al. (2011) fabricated a novel
nanoparticle system based on the coupling of cyclodextrin
and hyperbranched polyglycerols to enhance the nasal trans-
port of insulin. The in vitro release study showed significant
release rate of insulin under acidic conditions than physi-
ological conditions. In vitro cytotoxic evaluation against
Caco-2 cells exhibited that hyperbranched polyglycerol-S-
cyclodextrin had significant biocompatibility. Moreover,
the capacity of hyperbranched polyglycerol-#-cyclodextrin
nanoparticles to penetrate the nasal mucosal epithelia was
proved by confocal laser scanning microscopy. Glutathione
is the main thiolated small peptide in mammalian cells used
to treat drug poisoning and protection against cytotoxic
chemotherapy and radiation trauma. However, glutathione
inclusion and preservation into conventional pharmaceutical
dosage forms are challenging tasks due to low and variable
oral bioavailability, non-enzymatic pH-dependent oxida-
tion, chemical and enzymatic degradation of glutathione
in the jejunum (Langie et al. 2007). Therefore, to resolve
these issues, Trapani et al. (2010) have developed new nano-
particles containing chitosan or cyclodextrin and demon-
strated that chitosan nanoparticles containing the anionic
cyclodextrin sulfobutylether 7 m-f-cyclodextrin seem to be
significant potential oral glutathione carriers, as they com-
bine enhanced glutathione loading along with the ability to
improve glutathione permeabilization through the intestine,
as observed in a frog intestinal sac model. More recently,
He et al. (2019) reported a novel oral protein delivery sys-
tem of ovalbumin with improved intestinal permeability and
enhanced antigen stability. Results of the in vivo study of
nanoparticles revealed that ovalbumin-loaded cyclodextrin/
chitosan nanoparticles possess the capacity to induce an

intestinal mucosal immune response and could serve as a
potential antigen-delivery system for oral vaccination. The
above examples reveal that cyclodextrin-containing nano-
particles significantly increase drug-loading capacity and
enhance stability and intestinal permeability of protein and
peptide molecules.

Cyclodextrin nanoparticles as gene delivery
systems

Gene therapy offers advantages over conventional protein
therapy such as improved bioavailability and reduced sys-
temic toxicity. Therefore, to avoid the toxicity issue of viral
vectors, researchers have developed cyclodextrin-based
nanoparticles as non-viral vectors. Teijeiro-Osorio et al.
(2009) first investigated a new generation of hybrid poly-
saccharide nanocarriers composed of chitosan and anionic
cyclodextrins, to evaluate their ability to penetrate epithelial
cells and improve gene expression in the Calu-3 cell culture
model. Furthermore, hybrid chitosan and anionic cyclodex-
trins nanoparticles were developed and loaded with plas-
mid deoxyribonucleic model that encodes the expression
of secreted alkaline phosphatase. Results of cellular uptake
studies revealed that the nanoparticles were efficiently inter-
nalized by the cells and confirm their potential as gene vec-
tors. The application of small interfering ribonucleic acid
(siRNAs) is a promising approach to restrict the mutation
of protein. The major hindrance in siRNA-based strategies
is the lack of efficient and non-toxic transportation vectors
to ensure target delivery to the nervous system. This stimu-
lated Godinho et al. (2013) to develop modified amphiphi-
lic f-cyclodextrins as novel siRNA neuronal carriers. The
results showed that the cyclodextrin formed nanosize par-
ticles significantly reduced the expression of the huntingtin
gene in rat striatal cells and human Huntington’s disease
primary fibroblasts. These findings firmly support the util-
ity of modified f-cyclodextrins as safe and effective siRNA
delivery vectors. In another study to facilitate the delivery of
siRNA, cationic cyclodextrin conjugated with polyethylene
glycol chain to expedite the attachment of targeting group
anisamide. Parenteral administration of anisamide-tagged
PEGylated (polyethylene glycol chain conjugated) cyclo-
dextrin nanoparticles presented notable tumor inactivation
with diminished toxicity when investigated preclinically in
a rodent prostate tumor model, hence serving as an excellent
drug delivery system of siRNA delivery for prostate cancer
therapy (Guo et al. 2012). The siRNAs generally exhibit
weak cell penetration with limited stability; the inclusion
of cyclodextrins as a key excipient can aid in the delivery
of oligonucleotides. Zokaei et al. (2019) recently developed
chitosan f-cyclodextrin complexes as a tropical agent. These
polymer cyclodextrin complexes loaded with the messenger
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ribonucleic acid (mRNA) cleaving DNAzyme that targets
the mRNA of the multidrug resistance protein 1 (MDR1)
gene in the doxorubicin-resistant breast cancer cell line
(MCF-7/DR). Results proved the downregulation of MDR1
mRNAs in MCF-7/DR/DNZ by a real-time polymer chain
reaction, compared to the MCF-7/DR as control. To sum
up, results substantiate chitosan f-cyclodextrin complexes in
association with chemotherapy drug for cancer therapy and
notably valuable at the delivery of DNAzyme in reviving
chemosensitivity. These findings reveal that cyclodextrin-
based nanoparticles are promising non-toxic transporta-
tion vectors that facilitate safe, effective, and targeted gene
delivery.

Role of cyclodextrin in magnetic
nanoparticles

The magnetic nanoparticles offer several advantages over
other types of nanomaterials, such as narrow size distribu-
tion, high colloidal stability, low toxicity, and high spe-
cific surface area to render them suitable for biomedical
applications (Ahmed et al. 2014). Additionally, magnetic
nanoparticles displayed the phenomenon of superparamag-
netism: They are promptly magnetized under the influence
of the external magnetic field and vice versa. This unique
characteristic allows the nanoparticles to localize at the
targeted site in vivo in response to the externally applied
magnetic field. Silica is generally added to the surface of
the nanoparticles to prevent their oxidation that leads to
demagnetization, which subsequently maintains the sta-
bility of magnetic nanoparticles. Wang et al. (2003) first
proved the role of cyclodextrin to enhance the stability of
magnetic nanoparticles in an aqueous medium. They have
modified the surface properties of these magnetic nanoparti-
cles through the formation of an inclusion complex between
surface-bound surfactant molecules and a-cyclodextrin,
thus improving oleic acid stabilized nanoparticles disper-
sion for a prolonged period in water. Banerjee and Chen
(2007) have developed cyclodextrin-citrate-gum Arabic
modified magnetic nanoparticles for hydrophobic drug
delivery. The results showed that cyclodextrin-citrate-gum
Arabic-modified magnetic nanoparticles exhibited a consid-
erable adsorption capability for ketoprofen as compared to
gum Arabic-modified magnetic nanoparticles. Therefore,
this system seems to be a very promising vehicle for the
administration of hydrophobic drugs. A decade later, Chen
et al. (2017) have amalgamated double-layer polymer-coated
magnetic targeted nanoparticles (coated with f-cyclodextrin
and polymer chitosan) to ensure stability and biocompat-
ibility of the nanoparticles and effective drug delivery of
ibuprofen, a hydrophobic drug delivery. They noted that
nanocarriers exhibited sufficient magnetic properties, high
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drug-loading capacity, and significant in vitro drug release.
Recently, the same authors have developed f-cyclodextrin-
based magnetic nanocarriers via a molecular docking tech-
nique. Herein, the introduction of the molecular docking
technique establishes a method to fast select an effective
p-cyclodextrin-based surface coating for the development of
high-performance magnetic nanoparticles (Chen et al. 2019).
In another study, Ding et al. (2015) developed a novel hydro-
gel of poorly soluble drug 5-fluorouracil, based on chitosan
crosslinked carboxymethyl-f-cyclodextrin polymer-modified
Fe;O, magnetic nanoparticles. Experimental results showed
that the nanocarriers displayed a high loading efficiency
and pH-dependent swelling and diffusion-controlled drug
release. This report tentatively proposed the mechanism of
5-fluorouracil encapsulated into the magnetic chitosan nan-
oparticles. Camptothecin, a hydrophobic anticancer agent,
acts by inhibiting the enzyme topoisomerase I. The primary
mechanism of action of camptothecin involves cell death
at the S-phase of the cell cycle (Behera and Padhi 2020).
The bioactive lactone form of camptothecin rapidly hydro-
lyzes to the inactive carboxylate form under physiological
conditions, thus limiting the delivery and therapeutic appli-
cation of camptothecin in cancer therapy (Pandey 2021).
Therefore, to overcome these limitations, Enoch et al. (2018)
synthesized f-cyclodextrin-based magnetic nanoparticles of
camptothecin. The fabricated nanoparticles showed super-
paramagnetic behavior. Further research showed that coating
the magnetic nanoparticles with the cyclodextrin—tethered
polymer improves the drug-loading capacity, sustained
drug release, and enhanced cytotoxicity. Wang et al. (2018)
fabricated a magnetic and pH-sensitive composite nanopar-
ticulate system prepared by double emulsion technique and
incorporating acetylated f-cyclodextrin as a key ingredient
to recognize the pH response and Fe;O, as a component
to realize magnetic response. Results showed irreversible
pH response property and reversible magnetic responsive
properties at different pH environments for the composite
nanoparticle. Moreover, drug release behavior exhibited pH-
dependent property through preliminary in vitro evaluation.
In conclusion, cyclodextrin-containing magnetic nanopar-
ticles significantly improve the solubility of hydrophobic
drugs, increase stability, modify drug release, and enhance
the cytotoxicity of anticancer drugs.

Role of cyclodextrin in polymeric
nanoparticles

The inclusion property of cyclodextrin renders polymeric
nanoparticles to conveniently deliver hydrophobic mol-
ecules to the targeted site by encapsulating the drugs in the
hydrophobic cyclodextrin cavity. The polymeric nanoparti-
cles have cyclodextrin casting outer shells, while the core
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of the polymeric nanoparticles is composed of natural or
synthetic polymer. Thus, the drugs can be loaded in the core
of the polymeric nanoparticles, or they can be conjugated
with the cyclodextrin in the outer shell. Nanoparticulate
systems can be prepared either by dispersion of preformed
polymers or polymerization. Among the polymers used in
nanoparticle preparation are poly(cyanoacrylates) which
are particularly interesting because of their biodegrada-
bility and very simple polymerization process. One of the
major drawbacks of this type of nanoparticle is related to the
difficulty of entrapping in hydrophobic drugs. Da Silveira
et al. (1998) first proposed cyclodextrin to overcome this
problem. The authors proposed the possibility of preparing
nanoparticles of poly-(isobutyl cyanoacrylate) in the pres-
ence of hydroxypropyl-#-cyclodextrin by anionic polym-
erization of isobutyl cyanoacrylate. Later, Ren et al. (2009)
dissolved adamantane-end-capped poly(e-caprolactone) and
poly(vinylpyrrolidone)-cyclodextrin in N-methyl-2-pyrro-
lidone, a common solvent for both polymers. Further addi-
tion of this mixed polymer solution in solvent results in
self-assembled polymeric nanoparticles. The summary of
various major cyclodextrin-based polymeric nanoparticles
loaded with pharmaceuticals including natural compounds
and techniques of drug inclusion is illustrated in Table 1.

Cyclodextrin-based lipid nanoparticles

Lipids generally obtained from the natural origin are non-
toxic, biodegradable, and biocompatible. These properties
make lipids superior to polymers. Hence, the lipid-based
nanoparticulate system provides a better platform for safe
and effective drug delivery (Chaudhari et al. 2020). The
association of cyclodextrin into lipid nanoparticle formula-
tions not only promotes the hydrophobic drug loading within
the aqueous components of the lipid cyclodextrin nanopar-
ticles but also maintains the targetability of nanoparticles.
To ensure stable encapsulation, McCormack and Gregori-
adis (1994) suggested an approach wherein cyclodextrin/
drug inclusion complexes are embedded into liposomes.
This strategy is designated as drug-in-cyclodextrin-in-lipo-
some. Arima et al. (2006) developed PEGylated (polyeth-
ylene glycol chain conjugated) liposomes entrapping the
doxorubicin complex with y-cyclodextrin and evaluated the
antitumor effect of doxorubicin in rodents bearing colon-
26 tumor cells. The findings of the study displayed retar-
dation in tumor growth and an increase in drug retention.
Curcumin, a well-known bioactive compound, possesses
antibacterial, anti-inflammatory, antioxidant, and antitumor
activity. But, curcumin exhibits instability and poor solubil-
ity. Therefore, to resolve these issues, Dhule et al. (2012)
fabricated curcumin-loaded cyclodextrin-based liposomal
nanoparticles and studied them to treat osteosarcoma. The

resulting 2-hydroxypropyl-y-cyclodextrin/curcumin-lipo-
some complex exhibits promising cytotoxic potential. Ji
et al. (2016) practiced the use of cyclodextrin to enhance
the tumor-targeting ability of the lipid nanoparticles on
the outside of the liposomal wall. The surface of the lipo-
some consisted of pirfenidone-loaded f-cyclodextrin linked
with a cleavable peptide, along with arginyl—glycyl-aspar-
tic acid peptide to target pancreatic tumor cells, while the
interior of the liposome carried the chemotherapeutic agent
gemcitabine. Results showed this integrated nanomedicine
effectively targets and kills pancreatic tumor cells, moreo-
ver, facilitating a promising strategy for the improvement of
pancreatic cancer therapy. Solid lipid nanoparticles represent
an alternative carrier system to conventional colloidal car-
riers due to their specific features such as the use of natural
fabrication components, size and related narrow distribu-
tion, enhanced stability, and increased permeation through
biological barriers. Skiba et al. (1993) first described the
development and application of a novel cyclodextrin-based
dispersible colloidal system in the form of spherical par-
ticles of matrix type with size ranging from 90 to 900 nm
(nanospheres), which might contain an active pharmaceuti-
cal ingredient. This nanoparticulate system was used as a
carrier for numerous pharmaceuticals and cosmetic agents.
Nanostructured lipid carriers represent an upgraded genera-
tion of lipid nanoparticles, which overcome the major draw-
back of solid lipid nanoparticles, particularly the tendency
of discharge of the drug during storage as an outcome of
their highly ordered crystalline composition. A summary of
recently developed cyclodextrin-based solid lipid nanopar-
ticles, lipid nanoparticles, and their therapeutic applications
is illustrated in Table 2.

Role of cyclodextrins in gold and silver
nanoparticles

In recent years, gold and silver nanoparticles have been widely
investigated for nanomedicine due to their superior optical,
chemical, and biological properties. Gold and silver cyclo-
dextrin nanoparticles are commonly produced by connecting
cyclodextrin to the metallic core using a linker, such as ada-
mantane, which forms a strong stable complex with the cyclo-
dextrins. Liu et al. (1998) first developed a novel technique for
the surface derivatization of gold colloidal particles to prepare
gold colloidal particles of diameter higher than 10 nm. They
demonstrated aqueous solubilization of aliphatic thiols by
a-cyclodextrin, which effectively binds to the aliphatic chains
and carries the hydrophobic thiol molecules to the surface of
the gold particles. Wang et al. (2016a, b) described an easy
method to produce the host—guest assembly of gold nanopar-
ticles induced by intracellular glutathione. Results showed
that the synthesized aggregates retained for a long time in
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Table 1 (continued)

Reference

Outcomes offered by

Technique

Pharmaceuticals

Cyclodextrin

Polymer

cyclodextrin-based polymeric

nanoparticles

Guo et al. (2017)

Promising carrier for poor

Neutralization agitation

Hydroxypropyl-f-cyclodextrin Formononetin

Poly (lactic acid and glycolic

lipophilic and poor hydro-

philic drugs

method

acid)

Garcia-Gonzélez et al. (2016)

Enhanced internalization

Emulsion evaporation process

p-Cyclodextrin

Poly (lactic acid and glycolic

of nanoparticles into the

Caco-2 cells

acid)

Novel vehicle for the skin Conte et al. (2015)

Melting/sonication procedure

Hydroxypropyl-f-cyclodextrin Zinc (II) phthalocyanine as

Poly (ethylene glycol)-poly

delivery of highly lipophilic

compounds

drug carrier

(e-caprolactone)

cancer cells and provoke apoptosis of cells when exposed to
near-infrared irradiation. f-cyclodextrin-functionalized gold
nanoparticles are more efficient in anticancer therapy when
incorporated with anticancer agents. For example, Bakar et al.
(2015) reported decreased breast cancer cell (MCF-7) prolif-
eration by complexing various ligands (pinoresinol, laricires-
inol, and secoisolariciresinol), with thiolated-f-cyclodextrin
and decorating them on the exterior of gold nanoparticles.
Conventional anticancer molecules such as doxorubicin, pacli-
taxel, and docetaxel were incorporated into the #-cyclodextrin-
functionalized gold nanoparticles and targeted to cancer cells.
The findings of cell line studies showed that the doxorubicin-
loaded f-cyclodextrin gold nanoparticles enhanced the cellular
uptake and exerted a significant antiproliferative effect. Simi-
larly, Wang et al. (2016a, b) constructed a twofold nanoparticu-
late delivery system based on host—guest nanoplatforms loaded
with anticancer agent docetaxel and genetic material siRNA
using gold nanorods coated with polyethylenimine-grafted
p-cyclodextrin. The developed gold nanoparticles upon expo-
sure to near-infrared laser irradiation generate a significant
hyperthermia effect to trigger siRNA and docetaxel release
from the cyclodextrin and remarkably inhibit lung metastasis
of 4T1 breast tumors. In another study, Gannimani et al. (2016)
coupled the antibacterial properties of silver nanoparticles and
hydrophobic drug carrier characteristic of cyclodextrin to fab-
ricate supramolecules to provide cutting-edge for antibacterial
efficacy of chloramphenicol. Likewise, Gaurav et al. (2015)
utilized f-cyclodextrin to solubilize clotrimazole, an antifungal
agent, and then attach to albumin-stabilized silver nanoparti-
cles. These hybrid nanoparticles exerted a synergistic effect
when evaluated for antifungal activity against candida yeast
cells. Zhai et al. (2017) investigated the uptake of biocompat-
ible nanoparticles into viable cells in a microfluidic chip by
utilizing surface-enhanced Raman spectroscopy, which modi-
fied the surface of f-cyclodextrin-capped silver nanoparticles
using para-amino thiophenol and folic acid. The para-amino
thiophenol molecules serve as the Raman reporter, while the
folic acid fragments have a high proclivity for folate receptors
that are over-expressed on the surface cancerous cells so that
the nanoparticles can penetrate the cells and be observed by
the Raman reporter. The above findings delineate that surface
functionalization of gold and silver nanoparticles by cyclodex-
trins improves solubility, enhances permeability, and modifies
drug release with retaining safety and efficacy.

Pharmaceutical applications of amphiphilic
cyclodextrin nanoparticles

The potential use of cyclodextrin in a biological sys-
tem needs amphiphilic properties because natural cyclo-
dextrin has relatively low solubility both in water and in
organic solvents, thus limiting their uses in pharmaceutical

@ Springer
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Table 2 Formulations of cyclodextrin-based solid lipid nanoparticles and lipid nanoparticles loaded with various drugs, utilizing the advantages
of both cyclodextrin and nanolipid carriers by incorporating the drug—cyclodextrin inclusion complex into the lipid nanoparticles

Type of lipid nanoparticle

Cyclodextrin

Active ingredients

Therapeutic use

Reference

Solid lipid nanoparticles

2-Hydroxypropyl-f-
cyclodextrin

Diclofenac sodium

Colon-specific drug delivery

Spada et al. (2012)

Solid lipid nanoparticles 2-Hydroxypropyl-$- Paclitaxel Anticancer agent Baek et al. (2015)
cyclodextrin

Solid lipid nanoparticles Hydroxypropyl-beta-cyclo- Hydrochlorothiazide Antihypertensive and diuretic ~ Cirri et al. (2017)
dextrin and sulfobutyl-
ether-beta-cyclodextrin

Solid lipid nanoparticles Carboxymethyl-$- Famotidine H, receptor (antagonistic Mady et al. (2010)
cyclodextrin effects on gastric secretion)

Solid lipid nanoparticles p-Cyclodextrin Simvastatin Antihyperlipidemic Vakhariya et al. (2017)

Solid lipid nanoparticles Tetradecyl-y-cyclodextrin Resveratrol Antioxidant activity Carlotti et al. (2012)

Solid lipid nanoparticles Hydroxypropyl-$- Indomethacin Nonsteroidal anti-inflamma-  Hippalgaonkar et al. (2013)
cyclodextrin tory drug

Nanostructured lipid carriers Methylated-f-cyclodextrin Oxaprozin Nonsteroidal anti-inflamma- ~ Mennini et al. (2016)

Nanostructured lipid carriers Hydroxypropyl-$-
cyclodextrin and sulfobutyl-
ether-f-cyclodextrin

Hydroxypropyl-$-
cyclodextrin

Nanostructured lipid carriers

Nanostructured lipid carriers S-Cyclodextrin- Ketoprofen
epichlorohydrin polymer
Nanostructured lipid carriers Cyclodextrin and derivatives ~ Vinpocetine

Hydrochlorothiazide

Lippia origanoides
(essential oil)

tory drug

Antihypertensive and diuretic ~ Cirri et al. (2018)

Follicular accumulation and  Pires et al. (2019)

controlled delivery

Nonsteroidal anti-inflamma-  Cirri et al. (2012)

tory drug

Protective and anti-aging Lin et al. (2014)

agent

formulations. Amphiphilic or ionizable cyclodextrins can
modify the rate or time of drug release and bind to the sur-
face membrane of cells that may be used for the enhance-
ment of drug absorption across biological barriers (Bilensoy
and Hincal 2009). According to the chemical structure of the
amphiphilic cyclodextrin, different carrier systems could be
obtained such as solid lipid nanoparticles, bilayer vesicles,
liposomes, and nanoparticles (Donohue et al. 2002). Their
unique properties can improve the drug-loading capacity,
cellular interaction and tumoral penetration, drug release
profiles, and cytotoxicity of drug delivery systems. Table 3
summarizes the various potential pharmaceutical applica-
tions of amphiphilic cyclodextrin-based nanoparticles such
as anticancer, cholesterol-targeted, folate-targeted, and
amphiphilic cyclodextrin nanoparticles for gene delivery.

Miscellaneous

As per the biopharmaceutical classification system of drugs,
poor drug solubility or poor mucosa permeability attributes
of drugs limit their pharmaceutical applications. These
cyclodextrin-based polymeric nanoparticles represent a
more reliable drug delivery system when compared with
control nanoparticles; they displayed homogeneous bio-
adhesive interactions with the gastrointestinal mucosa due

@ Springer

to the presence of several hydroxyl groups in cyclodextrin
nanoparticles, which would promote hydrogen bonding with
the gut, subsequently enhancing the bioadhesive potential
(Agiieros et al. 2011). Furthermore, Luppi et al. (2011)
examined the potential of different cyclodextrins in nasal
drug delivery using albumin nanoparticles for the treatment
of the most common neurodegenerative disorder Alzhei-
mer’s disease to validate their effect on the drug release,
mucoadhesiveness of nanoparticles, and permeability of
model drug tacrine. Maestrelli et al. (2006) synthesized
chitosan nanoparticles in the presence of cyclodextrin as
a nanocarrier system for transdermal drug delivery of the
triclosan (an antifungal agent) and furosemide (a diuretic).
This nanocarrier system exhibited fast release followed by
a delayed release of drug. It confirms the inclusion of the
drug inside the cyclodextrin cavity and later encapsulation
inside the chitosan polymer. Similarly, Khalil et al. (2012)
formulated nanoparticles of warfarin, an anticoagulant
drug, by loading it in chitosan—cyclodextrin-complexed
nanoparticle systems for transdermal drug delivery. The
results of in vitro release studies and ex vivo permeation
studies of nanoparticles paved the new way for the delivery
of hydrophobic drugs. Datz et al. (2018) have synthesized
a new fi-cyclodextrin-based biocompatible and multifunc-
tional substance that cross-linked with rigid organic linker
molecules to yield thermostable, readily water-dispersible
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Table 3 (continued)

&

References

Historical landmarks

Outcomes offered by amphiphi-
lic cyclodextrin nanoparticles

Indication

Amphiphilic cyclodextrin

Drug/mechanism

Springer

Varan et al. (2018)

First report on the 3D multicel-

Stronger anti-tumoral activity

Anticancer

p-Cyclodextrin

Paclitaxel

lular tumor mode

in the 3D multicellular tumor

mode

particles having a nanosize range approximately 150 nm.
In the next step, these nanoparticles covalently linked with
dye molecules to enable effective tracking of them during
in vitro cell experiments. Results showed the successful
nuclei staining with Hoechst 33,342 dye, including effec-
tive cell killing with the doxorubicin cargo molecules and ,
therefore, representing a promising approach for the devel-
opment of novel theranostic systems. The above examples
confirm that cyclodextrin-based nanoparticles significantly
enhance the bioadhesive potential and permeability of drug
molecules and, thus, act as a promising carrier for nasal and
transdermal drug delivery.

Conclusion

There is a significant discussion about the potential advan-
tages, characteristics, and therapeutic applications of cyclo-
dextrin-based nanoparticles reported in previous years.
Cyclodextrin-based polymeric nanoparticles, including new
generation nanoparticles such as magnetic, gold, and silver
nanoparticles, have emerged as an effective nanocarrier sys-
tem for advanced drug delivery such as anticancer drugs,
peptides, proteins, deoxyribonucleic acid, and other genetic
material. They facilitate improved drug-loading capacity,
inclusion complex ability, increased aqueous solubility,
targeted drug delivery, and significant cytotoxicity against
different cancer cell lines. Cyclodextrin-containing nano-
particles have shown their potential to improve the load-
ing capacity of liposomes, solid lipid nanoparticles, and
nanostructured lipid carriers. The chemical modification of
cyclodextrin polymers is a unique strategy to explore their
potential pharmaceutical applications. Some cyclodextrin-
containing nanoparticles, such as CRLX101, a tumor-tar-
geted nanopharmaceuticals, and CALAA-0O1 for siRNA
delivery, are among the most promising nanotherapeutics
in clinical phase II trials for cancer diseases (Weiss et al.
2011; Zuckerman et al. 2014). Apart from these promising
research findings, safety, efficacy, pharmacokinetic evalua-
tion for cyclodextrin-based nanoparticles in the body, and
mechanism of elimination of nanoparticles need to be fur-
ther investigated.
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