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Abstract
The development of effective drug delivery systems is very challenging due to poor solubility, low membrane permeabil-
ity, instability, and short biological half-life of active substances. Conventional drug delivery systems lack the features of 
extended drug release and targeted drug delivery. These issues can be solved by cyclodextrins and derivatives. Benefits 
include higher bioavailability, targeted drug delivery, non-toxicity, inclusion complex ability, and higher aqueous solubility. 
Cyclodextrin-conjugated nanoparticles combine the advantages of cyclodextrins and nanoparticles: enhanced water solubility 
and drug loading, targeted drug delivery with minimum toxicity to normal cells, greater surface area, improved drug loading 
and higher stability than other nanocarriers such as microparticles and liposomes. Here, I review cyclodextrin-containing 
nanoparticles and their applications in advanced drug delivery such as anticancer drugs, gene delivery, protein, and peptide 
drug delivery. Furthermore, this review also describes cyclodextrins applications using polymeric, gold, silver, magnetic, and 
lipid-based nanoparticles. Additionally, I present potential pharmaceutical applications of amphiphilic cyclodextrin-based 
nanoparticles in anticancer, antimicrobial, gene delivery, and miscellaneous administration routes of cyclodextrin-based 
nanoparticles such as nasal and transdermal.

Keywords Cyclodextrin · Nanoparticles · Gene delivery · Drug delivery · Protein · Peptides

Abbreviations
MCF-7  Michigan cancer foundation-7
MDR1  Multidrug resistance protein 1
mRNA  Messenger ribonucleic acid
siRNA  Small interfering ribonucleic acid

Introduction

Cyclodextrins are cyclic oligomers obtained from starch by 
enzymatic degradation and were discovered in 1891 by the 
French pharmacist Villiers (Crini et al. 2021). Cyclodex-
trins have remarkable capability to establish supramolecular 
host–guest interactions because of their toroidal shape and 
non-polar inside (Morin-Crini et al. 2021; Petitjean et al. 
2021). Cyclodextrin molecules contribute distinguished 
advantages due to their novel architectural features to form 
inclusion complexes with several kinds of molecules like 

ions, protein, and oligonucleotides (Lysik and Wu-Pong 
2003). Inclusion complexes are formed when the “guest” 
molecule, usually a drug, is partially or fully included inside 
the “host’s cavity” (Szente and Szejtli 1999). Owing to the 
hydrophobic cavity, cyclodextrins as ghosts offer the guest 
a suitable environment for interaction (Fig. 1). The outer 
hydrophilic surface of cyclodextrins is compatible with 
water, which allows hydrogen bonding cohesive interactions 
(Challa et al. 2005). Cyclodextrin-conjugated nanoparticles 
offer numerous advantages such as enhanced drug solubil-
ity, improved encapsulation efficiency, and drug loading and 
serve as drug carriers to a specific target site such as cancer 
cells with minimum toxicity to normal cells, greater surface 
area over microparticles, and higher stability over liposomes.

This review discusses cyclodextrin-based nanoparticles to 
explain their versatility and high potential for advanced drug 
delivery, protein and peptide delivery, and gene delivery. It 
also highlights the role of cyclodextrins in specific types of 
nanoparticles such as gold, silver, and magnetic, polymeric, 
and lipid-based nanoparticles. Additionally, pharmaceutical 
applications of amphiphilic cyclodextrin nanoparticles and 
miscellaneous administration routes of cyclodextrin-based 
nanoparticles are also discussed. This article is an abridged 
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version of the chapter published by Pandey (2020) in the 
series Environmental Chemistry for a Sustainable World.

Cyclodextrin nanoparticles as drug delivery 
system

The cyclodextrins have the exceptional ability to trap a 
guest molecule inside of their hydrophobic cavity and have 
been significantly exploited by pharmaceutical research-
ers to enhance the bioavailability, aqueous solubility, and 
stability of several therapeutic agents (Arora et al. 2019). 
Cyclodextrin-based nanoparticles can improve bioavailabil-
ity, modify drug metabolism, reduce toxicity, and increase 
the biological half-life of drugs after systemic administra-
tion (Bilensoy 2011; Crini et al. 2018). Cyclodextrins act as 
true carriers by dissolving and delivering hydrophobic drug 
molecules through the aqueous exterior of lipophilic biologi-
cal membrane barriers, e.g., mucosa. In general, only dis-
solved drug molecules can partition into the barrier and then 
penetrate through the mucosa. In addition, cyclodextrins 
are known to self-assemble to form nanosized aggregates 
in aqueous solutions and thus have the potential of being 
developed into novel drug delivery systems (Messner et al. 
2010). This characteristic is promising for a broad range 
of nanotechnology domains such as drug delivery, cancer 
therapy, gene delivery, and biosensing. Cyclodextrin-based 
nanoparticles facilitate a novel drug delivery system with the 
advantages of both components: The cyclodextrin molecules 
offer enhanced water solubility and drug loading, while the 
nanoparticles afford targeted drug delivery.

Anticancer drugs

Nanotechnology-based drug delivery system provides an 
exceptional platform for the delivery of anticancer agents 

to enhance their targeting ability and bioavailability. Oral 
administration of paclitaxel is still considered one of the 
most suitable and safe modes of delivery. Hamada et al. 
(2006) studied the aqueous solubility behavior of antican-
cer agent paclitaxel employing 11 kinds of cyclodextrins 
and the bioactivity of the paclitaxel–cyclodextrin inclu-
sion complex. They have reported that 2,6-dimethyl-β-
cyclodextrin was most effective, and paclitaxel showed 
significant solubility in 2,6-dimethyl-β-cyclodextrin aque-
ous solution. Moreover, this inclusion complex revealed a 
1.23-fold polymerization activity as paclitaxel in a tubu-
lin assay. One of the main advantages of loading antican-
cer drugs into nanoparticles is to enhance their cellular 
uptakes by bypassing the different multidrug-resistant 
mechanisms. For example, paclitaxel isolated from Taxus 
brevifolia is a potent anticancer agent approved for the 
treatment of a large number of solid tumors. But hydro-
phobic nature of paclitaxel results in low bioavailabil-
ity. Therefore, to overcome the issue of hydrophobicity, 
Bilensoy et al. (2008a, b) have developed amphiphilic 
cyclodextrin as a nanoparticulate carrier system for pacli-
taxel drug delivery. This yielded nanospheres via nano-
precipitation technique with good cytotoxicity against 
L929 cells, high encapsulation efficiency, prolonged drug 
release, and a threefold increase in the loading capacity 
of nanoparticles when formed directly from the inclu-
sion complex. In another approach, Agüeros et al. (2009) 
investigated the concept of utilizing cyclodextrin–polyan-
hydride nanoparticles for oral delivery of paclitaxel. The 
addition of cyclodextrin increases the solubility of pacli-
taxel by developing an inclusion complex, and the use of 
polyanhydride enhances intestinal permeability. In conclu-
sion, cyclodextrin-based nanoparticles improve solubility 
and increase the targeting ability and bioavailability of 
anticancer drugs.

Fig. 1  Inclusion complex of cyclodextrins. A complex is formed 
when the “guest” molecule, such as a drug, is partially or fully 
included inside the host’s cavity. Cyclodextrins have various practical 
applications in different fields such as pharmaceuticals, food, cosmet-

ics, hygiene and toiletries, agrochemistry, catalysis, chromatography, 
biotechnology, nanotechnology, medical imaging, textile industry, 
and soil and water treatment
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Proteins and peptides

Cyclodextrin complexation represents an effective strategy 
for improving protein therapy by stabilizing them against 
aggregation, thermal denaturation, and degradation. Proteins 
are mostly hydrophilic and too bulky to be wholly included 
in the cavity of cyclodextrins. Nevertheless, the hydrophobic 
side chains in the peptides may penetrate into the cavity of 
the oligosaccharide, leading to the formation of non-cova-
lent inclusion complexes, which improves the stability of 
proteins. Da Silveira et al. (1998) have prepared and evalu-
ated nanoparticulate systems of progesterone composed of 
poly(isobutyl cyanoacrylate) and cyclodextrins for enhanc-
ing the loading of the particles with substances. The authors 
have demonstrated that an increase in hydroxypropyl-β-
cyclodextrin concentration resulted in small nanoparticles 
of size less than 50 nm and a 50-fold increase in proges-
terone loading compared to nanoparticles prepared without 
cyclodextrins. Cyclodextrins are believed to enhance nasal 
absorption of peptides by opening tight junctions and/or 
solubilizing membrane components (Merkus et al. 1999). 
In light of these facts, Zhang et al. (2011) fabricated a novel 
nanoparticle system based on the coupling of cyclodextrin 
and hyperbranched polyglycerols to enhance the nasal trans-
port of insulin. The in vitro release study showed significant 
release rate of insulin under acidic conditions than physi-
ological conditions. In vitro cytotoxic evaluation against 
Caco-2 cells exhibited that hyperbranched polyglycerol-β-
cyclodextrin had significant biocompatibility. Moreover, 
the capacity of hyperbranched polyglycerol-β-cyclodextrin 
nanoparticles to penetrate the nasal mucosal epithelia was 
proved by confocal laser scanning microscopy. Glutathione 
is the main thiolated small peptide in mammalian cells used 
to treat drug poisoning and protection against cytotoxic 
chemotherapy and radiation trauma. However, glutathione 
inclusion and preservation into conventional pharmaceutical 
dosage forms are challenging tasks due to low and variable 
oral bioavailability, non-enzymatic pH-dependent oxida-
tion, chemical and enzymatic degradation of glutathione 
in the jejunum (Langie et al. 2007). Therefore, to resolve 
these issues, Trapani et al. (2010) have developed new nano-
particles containing chitosan or cyclodextrin and demon-
strated that chitosan nanoparticles containing the anionic 
cyclodextrin sulfobutylether 7 m-β-cyclodextrin seem to be 
significant potential oral glutathione carriers, as they com-
bine enhanced glutathione loading along with the ability to 
improve glutathione permeabilization through the intestine, 
as observed in a frog intestinal sac model. More recently, 
He et al. (2019) reported a novel oral protein delivery sys-
tem of ovalbumin with improved intestinal permeability and 
enhanced antigen stability. Results of the in vivo study of 
nanoparticles revealed that ovalbumin-loaded cyclodextrin/
chitosan nanoparticles possess the capacity to induce an 

intestinal mucosal immune response and could serve as a 
potential antigen-delivery system for oral vaccination. The 
above examples reveal that cyclodextrin-containing nano-
particles significantly increase drug-loading capacity and 
enhance stability and intestinal permeability of protein and 
peptide molecules.

Cyclodextrin nanoparticles as gene delivery 
systems

Gene therapy offers advantages over conventional protein 
therapy such as improved bioavailability and reduced sys-
temic toxicity. Therefore, to avoid the toxicity issue of viral 
vectors, researchers have developed cyclodextrin-based 
nanoparticles as non-viral vectors. Teijeiro-Osorio et al. 
(2009) first investigated a new generation of hybrid poly-
saccharide nanocarriers composed of chitosan and anionic 
cyclodextrins, to evaluate their ability to penetrate epithelial 
cells and improve gene expression in the Calu-3 cell culture 
model. Furthermore, hybrid chitosan and anionic cyclodex-
trins nanoparticles were developed and loaded with plas-
mid deoxyribonucleic model that encodes the expression 
of secreted alkaline phosphatase. Results of cellular uptake 
studies revealed that the nanoparticles were efficiently inter-
nalized by the cells and confirm their potential as gene vec-
tors. The application of small interfering ribonucleic acid 
(siRNAs) is a promising approach to restrict the mutation 
of protein. The major hindrance in siRNA-based strategies 
is the lack of efficient and non-toxic transportation vectors 
to ensure target delivery to the nervous system. This stimu-
lated Godinho et al. (2013) to develop modified amphiphi-
lic β-cyclodextrins as novel siRNA neuronal carriers. The 
results showed that the cyclodextrin formed nanosize par-
ticles significantly reduced the expression of the huntingtin 
gene in rat striatal cells and human Huntington’s disease 
primary fibroblasts. These findings firmly support the util-
ity of modified β-cyclodextrins as safe and effective siRNA 
delivery vectors. In another study to facilitate the delivery of 
siRNA, cationic cyclodextrin conjugated with polyethylene 
glycol chain to expedite the attachment of targeting group 
anisamide. Parenteral administration of anisamide-tagged 
PEGylated (polyethylene glycol chain conjugated) cyclo-
dextrin nanoparticles presented notable tumor inactivation 
with diminished toxicity when investigated preclinically in 
a rodent prostate tumor model, hence serving as an excellent 
drug delivery system of siRNA delivery for prostate cancer 
therapy (Guo et al. 2012). The siRNAs generally exhibit 
weak cell penetration with limited stability; the inclusion 
of cyclodextrins as a key excipient can aid in the delivery 
of oligonucleotides. Zokaei et al. (2019) recently developed 
chitosan β-cyclodextrin complexes as a tropical agent. These 
polymer cyclodextrin complexes loaded with the messenger 
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ribonucleic acid (mRNA) cleaving DNAzyme that targets 
the mRNA of the multidrug resistance protein 1 (MDR1) 
gene in the doxorubicin-resistant breast cancer cell line 
(MCF-7/DR). Results proved the downregulation of MDR1 
mRNAs in MCF-7/DR/DNZ by a real-time polymer chain 
reaction, compared to the MCF-7/DR as control. To sum 
up, results substantiate chitosan β-cyclodextrin complexes in 
association with chemotherapy drug for cancer therapy and 
notably valuable at the delivery of DNAzyme in reviving 
chemosensitivity. These findings reveal that cyclodextrin-
based nanoparticles are promising non-toxic transporta-
tion vectors that facilitate safe, effective, and targeted gene 
delivery.

Role of cyclodextrin in magnetic 
nanoparticles

The magnetic nanoparticles offer several advantages over 
other types of nanomaterials, such as narrow size distribu-
tion, high colloidal stability, low toxicity, and high spe-
cific surface area to render them suitable for biomedical 
applications (Ahmed et al. 2014). Additionally, magnetic 
nanoparticles displayed the phenomenon of superparamag-
netism: They are promptly magnetized under the influence 
of the external magnetic field and vice versa. This unique 
characteristic allows the nanoparticles to localize at the 
targeted site in vivo in response to the externally applied 
magnetic field. Silica is generally added to the surface of 
the nanoparticles to prevent their oxidation that leads to 
demagnetization, which subsequently maintains the sta-
bility of magnetic nanoparticles. Wang et al. (2003) first 
proved the role of cyclodextrin to enhance the stability of 
magnetic nanoparticles in an aqueous medium. They have 
modified the surface properties of these magnetic nanoparti-
cles through the formation of an inclusion complex between 
surface-bound surfactant molecules and α-cyclodextrin, 
thus improving oleic acid stabilized nanoparticles disper-
sion for a prolonged period in water. Banerjee and Chen 
(2007) have developed cyclodextrin-citrate-gum Arabic 
modified magnetic nanoparticles for hydrophobic drug 
delivery. The results showed that cyclodextrin-citrate-gum 
Arabic-modified magnetic nanoparticles exhibited a consid-
erable adsorption capability for ketoprofen as compared to 
gum Arabic-modified magnetic nanoparticles. Therefore, 
this system seems to be a very promising vehicle for the 
administration of hydrophobic drugs. A decade later, Chen 
et al. (2017) have amalgamated double-layer polymer-coated 
magnetic targeted nanoparticles (coated with β-cyclodextrin 
and polymer chitosan) to ensure stability and biocompat-
ibility of the nanoparticles and effective drug delivery of 
ibuprofen, a hydrophobic drug delivery. They noted that 
nanocarriers exhibited sufficient magnetic properties, high 

drug-loading capacity, and significant in vitro drug release. 
Recently, the same authors have developed β-cyclodextrin-
based magnetic nanocarriers via a molecular docking tech-
nique. Herein, the introduction of the molecular docking 
technique establishes a method to fast select an effective 
β-cyclodextrin-based surface coating for the development of 
high-performance magnetic nanoparticles (Chen et al. 2019). 
In another study, Ding et al. (2015) developed a novel hydro-
gel of poorly soluble drug 5-fluorouracil, based on chitosan 
crosslinked carboxymethyl-β-cyclodextrin polymer-modified 
 Fe3O4 magnetic nanoparticles. Experimental results showed 
that the nanocarriers displayed a high loading efficiency 
and pH-dependent swelling and diffusion-controlled drug 
release. This report tentatively proposed the mechanism of 
5-fluorouracil encapsulated into the magnetic chitosan nan-
oparticles. Camptothecin, a hydrophobic anticancer agent, 
acts by inhibiting the enzyme topoisomerase I. The primary 
mechanism of action of camptothecin involves cell death 
at the S-phase of the cell cycle (Behera and Padhi 2020). 
The bioactive lactone form of camptothecin rapidly hydro-
lyzes to the inactive carboxylate form under physiological 
conditions, thus limiting the delivery and therapeutic appli-
cation of camptothecin in cancer therapy (Pandey 2021). 
Therefore, to overcome these limitations, Enoch et al. (2018) 
synthesized β-cyclodextrin-based magnetic nanoparticles of 
camptothecin. The fabricated nanoparticles showed super-
paramagnetic behavior. Further research showed that coating 
the magnetic nanoparticles with the cyclodextrin–tethered 
polymer improves the drug-loading capacity, sustained 
drug release, and enhanced cytotoxicity. Wang et al. (2018) 
fabricated a magnetic and pH-sensitive composite nanopar-
ticulate system prepared by double emulsion technique and 
incorporating acetylated β-cyclodextrin as a key ingredient 
to recognize the pH response and  Fe3O4 as a component 
to realize magnetic response. Results showed irreversible 
pH response property and reversible magnetic responsive 
properties at different pH environments for the composite 
nanoparticle. Moreover, drug release behavior exhibited pH-
dependent property through preliminary in vitro evaluation. 
In conclusion, cyclodextrin-containing magnetic nanopar-
ticles significantly improve the solubility of hydrophobic 
drugs, increase stability, modify drug release, and enhance 
the cytotoxicity of anticancer drugs.

Role of cyclodextrin in polymeric 
nanoparticles

The inclusion property of cyclodextrin renders polymeric 
nanoparticles to conveniently deliver hydrophobic mol-
ecules to the targeted site by encapsulating the drugs in the 
hydrophobic cyclodextrin cavity. The polymeric nanoparti-
cles have cyclodextrin casting outer shells, while the core 
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of the polymeric nanoparticles is composed of natural or 
synthetic polymer. Thus, the drugs can be loaded in the core 
of the polymeric nanoparticles, or they can be conjugated 
with the cyclodextrin in the outer shell. Nanoparticulate 
systems can be prepared either by dispersion of preformed 
polymers or polymerization. Among the polymers used in 
nanoparticle preparation are poly(cyanoacrylates) which 
are particularly interesting because of their biodegrada-
bility and very simple polymerization process. One of the 
major drawbacks of this type of nanoparticle is related to the 
difficulty of entrapping in hydrophobic drugs. Da Silveira 
et al. (1998) first proposed cyclodextrin to overcome this 
problem. The authors proposed the possibility of preparing 
nanoparticles of poly-(isobutyl cyanoacrylate) in the pres-
ence of hydroxypropyl-β-cyclodextrin by anionic polym-
erization of isobutyl cyanoacrylate. Later, Ren et al. (2009) 
dissolved adamantane-end-capped poly(ε-caprolactone) and 
poly(vinylpyrrolidone)-cyclodextrin in N-methyl-2-pyrro-
lidone, a common solvent for both polymers. Further addi-
tion of this mixed polymer solution in solvent results in 
self-assembled polymeric nanoparticles. The summary of 
various major cyclodextrin-based polymeric nanoparticles 
loaded with pharmaceuticals including natural compounds 
and techniques of drug inclusion is illustrated in Table 1.

Cyclodextrin‑based lipid nanoparticles

Lipids generally obtained from the natural origin are non-
toxic, biodegradable, and biocompatible. These properties 
make lipids superior to polymers. Hence, the lipid-based 
nanoparticulate system provides a better platform for safe 
and effective drug delivery (Chaudhari et al. 2020). The 
association of cyclodextrin into lipid nanoparticle formula-
tions not only promotes the hydrophobic drug loading within 
the aqueous components of the lipid cyclodextrin nanopar-
ticles but also maintains the targetability of nanoparticles. 
To ensure stable encapsulation, McCormack and Gregori-
adis (1994) suggested an approach wherein cyclodextrin/
drug inclusion complexes are embedded into liposomes. 
This strategy is designated as drug-in-cyclodextrin-in-lipo-
some. Arima et al. (2006) developed PEGylated (polyeth-
ylene glycol chain conjugated) liposomes entrapping the 
doxorubicin complex with γ-cyclodextrin and evaluated the 
antitumor effect of doxorubicin in rodents bearing colon-
26 tumor cells. The findings of the study displayed retar-
dation in tumor growth and an increase in drug retention. 
Curcumin, a well-known bioactive compound, possesses 
antibacterial, anti-inflammatory, antioxidant, and antitumor 
activity. But, curcumin exhibits instability and poor solubil-
ity. Therefore, to resolve these issues, Dhule et al. (2012) 
fabricated curcumin-loaded cyclodextrin-based liposomal 
nanoparticles and studied them to treat osteosarcoma. The 

resulting 2-hydroxypropyl-γ-cyclodextrin/curcumin–lipo-
some complex exhibits promising cytotoxic potential. Ji 
et al. (2016) practiced the use of cyclodextrin to enhance 
the tumor-targeting ability of the lipid nanoparticles on 
the outside of the liposomal wall. The surface of the lipo-
some consisted of pirfenidone-loaded β-cyclodextrin linked 
with a cleavable peptide, along with arginyl–glycyl–aspar-
tic acid peptide to target pancreatic tumor cells, while the 
interior of the liposome carried the chemotherapeutic agent 
gemcitabine. Results showed this integrated nanomedicine 
effectively targets and kills pancreatic tumor cells, moreo-
ver, facilitating a promising strategy for the improvement of 
pancreatic cancer therapy. Solid lipid nanoparticles represent 
an alternative carrier system to conventional colloidal car-
riers due to their specific features such as the use of natural 
fabrication components, size and related narrow distribu-
tion, enhanced stability, and increased permeation through 
biological barriers. Skiba et al. (1993) first described the 
development and application of a novel cyclodextrin-based 
dispersible colloidal system in the form of spherical par-
ticles of matrix type with size ranging from 90 to 900 nm 
(nanospheres), which might contain an active pharmaceuti-
cal ingredient. This nanoparticulate system was used as a 
carrier for numerous pharmaceuticals and cosmetic agents. 
Nanostructured lipid carriers represent an upgraded genera-
tion of lipid nanoparticles, which overcome the major draw-
back of solid lipid nanoparticles, particularly the tendency 
of discharge of the drug during storage as an outcome of 
their highly ordered crystalline composition. A summary of 
recently developed cyclodextrin-based solid lipid nanopar-
ticles, lipid nanoparticles, and their therapeutic applications 
is illustrated in Table 2.

Role of cyclodextrins in gold and silver 
nanoparticles

In recent years, gold and silver nanoparticles have been widely 
investigated for nanomedicine due to their superior optical, 
chemical, and biological properties. Gold and silver cyclo-
dextrin nanoparticles are commonly produced by connecting 
cyclodextrin to the metallic core using a linker, such as ada-
mantane, which forms a strong stable complex with the cyclo-
dextrins. Liu et al. (1998) first developed a novel technique for 
the surface derivatization of gold colloidal particles to prepare 
gold colloidal particles of diameter higher than 10 nm. They 
demonstrated aqueous solubilization of aliphatic thiols by 
α-cyclodextrin, which effectively binds to the aliphatic chains 
and carries the hydrophobic thiol molecules to the surface of 
the gold particles. Wang et al. (2016a, b) described an easy 
method to produce the host–guest assembly of gold nanopar-
ticles induced by intracellular glutathione. Results showed 
that the synthesized aggregates retained for a long time in 
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cancer cells and provoke apoptosis of cells when exposed to 
near-infrared irradiation. β-cyclodextrin-functionalized gold 
nanoparticles are more efficient in anticancer therapy when 
incorporated with anticancer agents. For example, Bakar et al. 
(2015) reported decreased breast cancer cell (MCF-7) prolif-
eration by complexing various ligands (pinoresinol, laricires-
inol, and secoisolariciresinol), with thiolated-β-cyclodextrin 
and decorating them on the exterior of gold nanoparticles. 
Conventional anticancer molecules such as doxorubicin, pacli-
taxel, and docetaxel were incorporated into the β-cyclodextrin-
functionalized gold nanoparticles and targeted to cancer cells. 
The findings of cell line studies showed that the doxorubicin-
loaded β-cyclodextrin gold nanoparticles enhanced the cellular 
uptake and exerted a significant antiproliferative effect. Simi-
larly, Wang et al. (2016a, b) constructed a twofold nanoparticu-
late delivery system based on host–guest nanoplatforms loaded 
with anticancer agent docetaxel and genetic material siRNA 
using gold nanorods coated with polyethylenimine-grafted 
β-cyclodextrin. The developed gold nanoparticles upon expo-
sure to near-infrared laser irradiation generate a significant 
hyperthermia effect to trigger siRNA and docetaxel release 
from the cyclodextrin and remarkably inhibit lung metastasis 
of 4T1 breast tumors. In another study, Gannimani et al. (2016) 
coupled the antibacterial properties of silver nanoparticles and 
hydrophobic drug carrier characteristic of cyclodextrin to fab-
ricate supramolecules to provide cutting-edge for antibacterial 
efficacy of chloramphenicol. Likewise, Gaurav et al. (2015) 
utilized β-cyclodextrin to solubilize clotrimazole, an antifungal 
agent, and then attach to albumin-stabilized silver nanoparti-
cles. These hybrid nanoparticles exerted a synergistic effect 
when evaluated for antifungal activity against candida yeast 
cells. Zhai et al. (2017) investigated the uptake of biocompat-
ible nanoparticles into viable cells in a microfluidic chip by 
utilizing surface-enhanced Raman spectroscopy, which modi-
fied the surface of β-cyclodextrin-capped silver nanoparticles 
using para-amino thiophenol and folic acid. The para-amino 
thiophenol molecules serve as the Raman reporter, while the 
folic acid fragments have a high proclivity for folate receptors 
that are over-expressed on the surface cancerous cells so that 
the nanoparticles can penetrate the cells and be observed by 
the Raman reporter. The above findings delineate that surface 
functionalization of gold and silver nanoparticles by cyclodex-
trins improves solubility, enhances permeability, and modifies 
drug release with retaining safety and efficacy.

Pharmaceutical applications of amphiphilic 
cyclodextrin nanoparticles

The potential use of cyclodextrin in a biological sys-
tem needs amphiphilic properties because natural cyclo-
dextrin has relatively low solubility both in water and in 
organic solvents, thus limiting their uses in pharmaceutical Ta
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formulations. Amphiphilic or ionizable cyclodextrins can 
modify the rate or time of drug release and bind to the sur-
face membrane of cells that may be used for the enhance-
ment of drug absorption across biological barriers (Bilensoy 
and Hincal 2009). According to the chemical structure of the 
amphiphilic cyclodextrin, different carrier systems could be 
obtained such as solid lipid nanoparticles, bilayer vesicles, 
liposomes, and nanoparticles (Donohue et al. 2002). Their 
unique properties can improve the drug-loading capacity, 
cellular interaction and tumoral penetration, drug release 
profiles, and cytotoxicity of drug delivery systems. Table 3 
summarizes the various potential pharmaceutical applica-
tions of amphiphilic cyclodextrin-based nanoparticles such 
as anticancer, cholesterol-targeted, folate-targeted, and 
amphiphilic cyclodextrin nanoparticles for gene delivery.

Miscellaneous

As per the biopharmaceutical classification system of drugs, 
poor drug solubility or poor mucosa permeability attributes 
of drugs limit their pharmaceutical applications. These 
cyclodextrin-based polymeric nanoparticles represent a 
more reliable drug delivery system when compared with 
control nanoparticles; they displayed homogeneous bio-
adhesive interactions with the gastrointestinal mucosa due 

to the presence of several hydroxyl groups in cyclodextrin 
nanoparticles, which would promote hydrogen bonding with 
the gut, subsequently enhancing the bioadhesive potential 
(Agüeros et al. 2011). Furthermore, Luppi et al. (2011) 
examined the potential of different cyclodextrins in nasal 
drug delivery using albumin nanoparticles for the treatment 
of the most common neurodegenerative disorder Alzhei-
mer’s disease to validate their effect on the drug release, 
mucoadhesiveness of nanoparticles, and permeability of 
model drug tacrine. Maestrelli et al. (2006) synthesized 
chitosan nanoparticles in the presence of cyclodextrin as 
a nanocarrier system for transdermal drug delivery of the 
triclosan (an antifungal agent) and furosemide (a diuretic). 
This nanocarrier system exhibited fast release followed by 
a delayed release of drug. It confirms the inclusion of the 
drug inside the cyclodextrin cavity and later encapsulation 
inside the chitosan polymer. Similarly, Khalil et al. (2012) 
formulated nanoparticles of warfarin, an anticoagulant 
drug, by loading it in chitosan–cyclodextrin-complexed 
nanoparticle systems for transdermal drug delivery. The 
results of in vitro release studies and ex vivo permeation 
studies of nanoparticles paved the new way for the delivery 
of hydrophobic drugs. Datz et al. (2018) have synthesized 
a new β-cyclodextrin-based biocompatible and multifunc-
tional substance that cross-linked with rigid organic linker 
molecules to yield thermostable, readily water-dispersible 

Table 2  Formulations of cyclodextrin-based solid lipid nanoparticles and lipid nanoparticles loaded with various drugs, utilizing the advantages 
of both cyclodextrin and nanolipid carriers by incorporating the drug–cyclodextrin inclusion complex into the lipid nanoparticles

Type of lipid nanoparticle Cyclodextrin Active ingredients Therapeutic use Reference

Solid lipid nanoparticles 2-Hydroxypropyl-β-
cyclodextrin

Diclofenac sodium Colon-specific drug delivery Spada et al. (2012)

Solid lipid nanoparticles 2-Hydroxypropyl-β-
cyclodextrin

Paclitaxel Anticancer agent Baek et al. (2015)

Solid lipid nanoparticles Hydroxypropyl-beta-cyclo-
dextrin and sulfobutyl-
ether-beta-cyclodextrin

Hydrochlorothiazide Antihypertensive and diuretic Cirri et al. (2017)

Solid lipid nanoparticles Carboxymethyl-β-
cyclodextrin

Famotidine H2 receptor (antagonistic 
effects on gastric secretion)

Mady et al. (2010)

Solid lipid nanoparticles β-Cyclodextrin Simvastatin Antihyperlipidemic Vakhariya et al. (2017)
Solid lipid nanoparticles Tetradecyl-γ-cyclodextrin Resveratrol Antioxidant activity Carlotti et al. (2012)
Solid lipid nanoparticles Hydroxypropyl-β-

cyclodextrin
Indomethacin Nonsteroidal anti-inflamma-

tory drug
Hippalgaonkar et al. (2013)

Nanostructured lipid carriers Methylated-β-cyclodextrin Oxaprozin Nonsteroidal anti-inflamma-
tory drug

Mennini et al. (2016)

Nanostructured lipid carriers Hydroxypropyl-β-
cyclodextrin and sulfobutyl-
ether-β-cyclodextrin

Hydrochlorothiazide Antihypertensive and diuretic Cirri et al. (2018)

Nanostructured lipid carriers Hydroxypropyl-β-
cyclodextrin

Lippia origanoides 
(essential oil)

Follicular accumulation and 
controlled delivery

Pires et al. (2019)

Nanostructured lipid carriers β-Cyclodextrin-
epichlorohydrin polymer

Ketoprofen Nonsteroidal anti-inflamma-
tory drug

Cirri et al. (2012)

Nanostructured lipid carriers Cyclodextrin and derivatives Vinpocetine Protective and anti-aging 
agent

Lin et al. (2014)
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particles having a nanosize range approximately 150 nm. 
In the next step, these nanoparticles covalently linked with 
dye molecules to enable effective tracking of them during 
in vitro cell experiments. Results showed the successful 
nuclei staining with Hoechst 33,342 dye, including effec-
tive cell killing with the doxorubicin cargo molecules and , 
therefore, representing a promising approach for the devel-
opment of novel theranostic systems. The above examples 
confirm that cyclodextrin-based nanoparticles significantly 
enhance the bioadhesive potential and permeability of drug 
molecules and, thus, act as a promising carrier for nasal and 
transdermal drug delivery.

Conclusion

There is a significant discussion about the potential advan-
tages, characteristics, and therapeutic applications of cyclo-
dextrin-based nanoparticles reported in previous years. 
Cyclodextrin-based polymeric nanoparticles, including new 
generation nanoparticles such as magnetic, gold, and silver 
nanoparticles, have emerged as an effective nanocarrier sys-
tem for advanced drug delivery such as anticancer drugs, 
peptides, proteins, deoxyribonucleic acid, and other genetic 
material. They facilitate improved drug-loading capacity, 
inclusion complex ability, increased aqueous solubility, 
targeted drug delivery, and significant cytotoxicity against 
different cancer cell lines. Cyclodextrin-containing nano-
particles have shown their potential to improve the load-
ing capacity of liposomes, solid lipid nanoparticles, and 
nanostructured lipid carriers. The chemical modification of 
cyclodextrin polymers is a unique strategy to explore their 
potential pharmaceutical applications. Some cyclodextrin-
containing nanoparticles, such as CRLX101, a tumor-tar-
geted nanopharmaceuticals, and CALAA-01 for siRNA 
delivery, are among the most promising nanotherapeutics 
in clinical phase II trials for cancer diseases (Weiss et al. 
2011; Zuckerman et al. 2014). Apart from these promising 
research findings, safety, efficacy, pharmacokinetic evalua-
tion for cyclodextrin-based nanoparticles in the body, and 
mechanism of elimination of nanoparticles need to be fur-
ther investigated.
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