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Abstract

Climate change and energy demand are calling for more sustainable fuels such as biomethane produced by anaerobic diges-
tion of organic waste. Biochar addition to waste is presumed to enhance the efficiency of methane production, yet individual
reports disclose contradictory results. Therefore, we performed a meta-analysis of 27 selected publications containing 156
paired measurements of control and biochar-amended treatments to assess the impact of biochar on the methanogenic perfor-
mance. Results show that biochar promotes biomethane production substantially with a high Hedge’s d value of 5.7 +1.04,
yet sporadic publications report a methane decline. Methanogenic performance is statistically controlled by feedstock type,
pyrolysis temperature and biochar concentration, but not controlled by pH, size, surface area and methanogen species.
These findings should help to tune the parameters of anaerobic digestion with biochar to optimize biomethane productions.
Moreover, our results cast some doubt on the efficiency of adding biochar to soil to sequester carbon in soils because biochar
promotes methane generation and, in turn, emissions of methane, a greenhouse gas, to the atmosphere.

Keywords Anaerobic digestion - Biochar - Methane - Meta-analysis - Wastewater treatment

Introduction

Global warming and the rising energy demand are calling for
more circular processes where waste is recycled into materi-
als and energy. Biomethane is a carbon—neutral, sustainable
fuel produced by anaerobic fermentation of organic matter
in natural and anthropic environments, yet the efficiency of
actual processes is limited (Chen et al. 2018; Gao et al. 2020;
Garcia-Mancha et al. 2017). Strategies have been recently
developed to improve anaerobic fermentation by microbial
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Fig. 1 Transformation of
organic waste by anaerobic
fermentation is promoted by
biochar addition

Op

Biomethane

(Lorenz and Lal 2014; Fagbohungbe et al. 2017; Mase-
binu et al. 2019; Qiu et al. 2019; Yang et al. 2020). Biochar
properties and molecular composition vary widely with the
nature of the feedstock and pyrolysis conditions (Keiluweit
et al. 2010; Gao et al. 2020). Several biochar properties have
been proposed to favor biomethane production, e.g., micro-
bial immobilization, pH buffering, and controlling metal
ion availability and enzymatic processes (Yuan et al. 2018;
Xiao et al. 2019b; Gao et al. 2020; Huang et al. 2020b; He
et al. 2020). Overall, mechanisms fostering methanation by
biochar are better understood but individual studies report
sometimes contradictory results, e.g., rising or declining
biomethane production (Cheng et al. 2018; Luo et al. 2015;
Shen et al. 2016). Therefore, we report here a meta-analysis
to clarify the impact of biochar properties on methanogen-
esis during anaerobic digestion of environmental waste.

Experimental
Biochar data

We found 105 publications in the Web of Science and
Bing search engine for documents on biochar application
to methane production during anaerobic digestion (AD) for
treating environmental waste and pollution, excluding soil-
related research, from January 1 2010 to June 15 2020, using
the keywords “biochar” AND “methane” OR “CH,.” We
extracted the following variables: feedstock, pyrolysis tem-
perature, pH, size, surface area, conductivity, methanogen
species and methanogenic performance. Variable means,
standard deviations and sample replicate number were
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extracted from publication tables and text. When data were
only reported in image format in graphs, data points were
extracted using Plot Digitizer 2.6.8 and Web Plot Digitizer.
When relevant data were not present in publications, cor-
responding authors were contacted to get the data. We first
considered the highest rate of methane production, but, if not
available, we used the highest yield of methane. When accu-
rate maximum rate of methane production or yield could not
be obtained due to too much fluctuation of methane concen-
trations, publications were excluded from this study.

From this initial pool, we selected only documents report-
ing three or more replicates for each run, and we found 19
publications containing 105 data pairs of treatment data
versus control data (Table S1). Control is defined as runs
without biochar. We used the Hedges method, rather than
the response ratio, because the Hedges method is adapted
to data samples of relatively small size (Jeffery et al. 2016;
Larry and Ingram 1985). Therefore, a minimum of two rep-
licates is meeting the analysis standard. Consequently, data
on biomethane production were collected from 27 articles
containing 156 paired measurements of control and biochar-
amended treatments for disposal of environmental waste and
pollution.

Biochar variables were grouped to facilitate cross-com-
parisons, e.g., the nature of biochar feedstock was grouped in
‘wood and sawdust,” ‘herbaceous and lignocellulosic waste,’
‘manure,” and ‘sludges’ (Table S1). Similarly, pyrolysis tem-
peratures were grouped in "below 500 °C,” 500-700 °C,
and ’above 700 °C. ‘Conductivities were grouped in ‘below
450 pS/cm’ and ‘above 450 pS/cm.’” Biochar pH was
grouped into ’acidic below 7, *weakly alkaline from 7 to 9,
and "alkaline above 9.” Sizes were grouped in ‘below 1 mm’
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and ‘above 1 mm.” Brunauer, Emmett and Teller (BET) sur-
face areas were grouped in *below 100 m? g=!* and ‘above
100 m? g~!.’ Biochar concentrations were grouped in "below
10 g dm™, ’equal to 10 g dm™ and ‘above 10 g dm~>.’
Two types of methanogenic archaea were distinguished: ace-
toclastic methanogens and hydrogenotrophic methanogens.

Meta-analysis

We used the standardized mean difference metric Hedge’s d
in Eq. 1, which induces less biases that the Hedge’s g factor
in Eq. 2 (Larry and Ingram 1985):

(o3
d= (1 4(n_2)_1>g (1)
X, -X,
8= "5 @)
< - (n1 - 1)s% + (n2 - l)sé 3)
P (n1—1)+(n2—1)

where n denotes the total sample size, and X; and x, depict
the means of experimental and control treatments. Experi-
mental data refer to the treatment with biochar, whereas con-
trol data refer to the treatment without biochar. A categorical
random effect model was applied to d, with means weighted
by the inverse of the variance. Here, S, is the pooled stand-
ard deviation in Eq. 3, where n; and n, are the number of
repetitions in the control and experimental groups, and s;
and s, depict the standard deviations of control and experi-
mental groups.

Contrary to the response ratio commonly used in ecologi-
cal research, the standardized mean effect sizes are probabil-
istic (Hedges et al. 1999; Larry and Ingram 1985). That is,
the mean effect sizes describe the probability that a sample
would fall between the experimental mean and the control
mean, assuming a normal distribution (Hedges et al. 1999).
Consequently, confidence intervals of 95% were generated
based on a normal distribution. When the 95% confidence
interval of the parameter does not overlap with Hedge’s d of
0, this implies that the variable promotes biomethane pro-
duction, which suggests the promotion of anaerobic diges-
tion of environmental waste. When the 95% confidence
interval of a biochar parameter does not overlap with that of
another variable, there is a statistically significant difference.

By convention, for variables that do not overlap with
the Hedge’s g of 0, a d value higher than 0.8 indicates a
large effect, d of 0.2-0.8 shows a moderate effect, and d of
0.0-0.2 displays a small effect (Hedges et al. 1999; Jeffery
et al. 2016). A key point is that, using the Hedge’s d metric,

an effect size of a variable analysis does not equate to an
effect size of others in independent analyses presented in this
study. As a consequence, only categories within individual
analyses, e.g., feedstocks, as differentiated by the horizontal
dotted bars, can be compared. The effect sizes do not mean
that the extent of the actual biomethane production increase
or decrease. Small effect sizes may indicate significant value
in biomethane production in absolute terms. For instance, in
small effect sizes, the actual biomethane parameter may be
several times larger than that of the large effect sizes.

Results and discussion
Overall effect of biochar addition

We assessed the global effect of biochar addition on anaero-
bic methanogenesis by calculating the grand mean of the
Hedge’s d for 156 published data pairs of treatment versus
control without biochar (Fig. 2). Results show a d value of
5.70+ 1.04, which evidences a large effect size and implies
that the presence of biochar statistically induces an increase
in biomethane in most investigations. Yet sporadic studies
have also shown the inhibitory effect of biochar or no effect
(Cheng et al. 2018; Shen et al. 2016). This discrepancy is
probably due to the high heterogeneous nature of biochar
(Diao et al. 2020; Gao and Goldfarb 2019), suggesting that
biomethane production may be enhanced by specific biochar
properties, as discussed below.

Effect of biochar feedstock

We calculated d values of feedstock including sludges,
manure, herbaceous and lignocellulosic waste, and wood
and sawdust (Fig. 2). All feedstock types show high d val-
ues from 4.71 +1.72 to 7.99 + 1.51, implying that biochar
addition improves biomethane generation whatever the type
of feedstock. Furthermore, there is no statistical difference
within feedstock types, sludges displaying the highest d
of 7.99. Manure, plant waste and woody materials appear
equally competitive with Hedge’s d values around 5.0. High
d values for sludges are supported by the fact that sludge bio-
char provides more nutrients for fermentative bacteria and
methanogens (Wang et al. 2020). Moreover, biochar from
sludge has also induced better pollutant removal and heavy
metal adsorption (Diao et al. 2020; Regkouzas and Diama-
dopoulos 2019; Singh et al. 2020), which may be explained
by a more favorable living environment for microorganisms.
Overall, the slight advantage of sludge biochar in terms of
methanogenesis is likely due to its ability to adsorb and store
nutrients for activating methanogens. We conclude that bio-
char improves methanogenesis for all biochar feedstocks, but
there is no statistical advantage of the feedstock type.
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Effect of pyrolysis temperature

We calculated d values of biochar produced by pyrolysis
below 500 °C, of 6.72 + 1.86, between 500 and 700 °C, of
6.40+1.11, and above 700 °C, of 0.840 +1.50 (Fig. 2).
Results imply that biochar favors biomethane generation
below 700 °C. There is no significant difference between 500
and 700 °C-produced biochar and biochar produced below
500 °C. On the other hand, pyrolysis above 700 °C induces
a drastic decline of biomethane promotion. These findings
may be explained by changes of the biochar molecular
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structure with temperature (Hao et al. 2018). Indeed, Keilu-
weit et al. (2010) observed a gradual change in the molecular
structure of plant biomass-derived biochar with temperature.

High-temperature biochar is characterized by fewer labile
compounds at the surface of biochar particles, and there-
fore less microbial substrates for fermentative bacteria and
methanogenic archaea (Bruun et al. 2011). This explanation
is strengthened by the declining CH, and N,O emissions
from soils amended with high-temperature biochar, which
are thus better suited for mitigation of greenhouse gas emis-
sions (Cayuela et al. 2015). This scenario is also supported
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by the biochar release of less degradable organic compounds
when the pyrolysis temperature increases (Ji et al. 2020).
By contrast, slow pyrolysis at low temperature yields more
biochar with diverse chemical groups (Chen et al. 2019; Sohi
et al. 2010), which are likely to promote methane produc-
tion in anaerobic digesters, or methane emissions from soils
(Jeffery et al. 2016). Overall, our findings show that biochar
produced below 700 °C improves methanogenesis. Pyrolysis
at lower temperature is also saving energy.

Effect of biochar conductivity

Biochars having low conductivity, below 450 pS/cm, show a
much higher d value, of 7.58 + 1.79, than high-conductivity
biochar, displaying a d value of 2.06 +1.29 (Fig. 2). Low
conductivity biochar is therefore statistically more effective
at accelerating biomethane production. This finding is unex-
pected because recent research suggests that biochar acts as
an electron shuttle, which should favor microbial activity
(Viggi et al. 2017; Xiao et al. 2019b; Yuan et al. 2018).
Nonetheless, a recent report explains that electrical conduc-
tivity of biochar is controlling only the rate of anaerobic
degradation, not the yield of biogas (Rasapoor et al. 2020).
Moreover, conductivity does not appear as a relevant factor
for choosing which biochar should be used for degrading
environmental waste (Lu et al. 2020a), and some studies
suggest that attributing rising biomethane production to high
material conductivity requires caution (Martins et al. 2018;
Van Steendam et al. 2019; Wang et al. 2021). Overall, our
findings show that low conductivity biochar favors metha-
nogenesis, yet underlying mechanisms are unclear.

Effect of biochar pH

Figure 2 displays the effect of biochar of different pH on
biomethane production. Results show that varying the bio-
char pH induces no statistical difference in biomethane
production, despite the fact that pH is known to modify
fermentation rates (Begum et al. 2018; Feng et al. 2020;
Mao et al. 2017). Yet, most investigations included in this
meta-analysis did not report the pH of the system before
and after biochar application, though pH is expected to vary
widely because some biochar contains oxygen-containing
organic anions and carbonates that increase alkalinity (Fidel
et al. 2017; Yuan et al. 2011; Meng et al. 2020). Overall,
varying the pH of biochar does not statistically improve
methanogenesis.

Effect of surface area and biochar size
Values of d for biochar with BET surface area above

100 mz/g, of 5.06 +1.83, are not statistically different
from those of biochar with surface area below 100 mz/g,

of 4.45+1.06 (Fig. 2). Similarly, the size to biochar parti-
cles does not appear to modify biomethane generation, yet
a trend for higher d value is observed for particle size below
1 mm. This implies that smaller particles of biochar may be
beneficial to the degradation of environmental waste. For
instance, the addition of powdered biochar to a pig manure/
wheat straw aerobic compost increased biomethane emis-
sions by 57%, whereas granular biochar decreased biom-
ethane emissions by 22% (He et al. 2018). On the contrary,
other investigations have shown that large biochar particles
promote methanogenesis (Cheng et al. 2018; Viggi et al.
2017). Overall, there is no clear global effect of surface area
and size on anaerobic degradation of waste and pollutant and
on biomethane production.

Effect of biochar concentration

Biochar concentration caused a strong and statistically sig-
nificant difference in the strength of biomethane produc-
tion, with a maximal impact for concentrations exceeding
10 g/L and a d value of 7.87 +0.35 (Fig. 2). Increasing bio-
char concentration is therefore an efficient means to improve
methanogenesis, which may further result in a promotion
of waste degradation. This finding is supported by biochar
properties that are likely to stabilize anaerobic digestion and
rise biomethane yield (Gao et al. 2020; Lim et al. 2020; Ma
et al. 2021). For instance, providing immobilization sites for
microorganisms could explain the higher anaerobic degra-
dation and methanogenic performance (Zhang et al. 2018).

Moreover, even though biochar itself is not a substantial
source of labile carbon, biochar is a sponge-like material
able to adsorb and store organo-mineral nutrients for fur-
ther microbial feeding (Cross and Sohi 2011; Demisie et al.
2014). In this line, elevated biochar concentrations have
been shown to increase the availability of organic carbon for
fermentation bacteria and methanogenic archaea (Lu et al.
2020b; Jiang et al. 2020; Zhang et al. 2020). Based on this,
environmental waste and pollution can be degraded more
easily, which in turn is more conducive to biological activi-
ties (Xiao et al. 2021a; b). Overall, high biochar concen-
trations foster methanogenesis, yet underlying mechanisms
remain undeciphered.

Methanogenic species

Values of d for acetoclastic methanogens, of 5.19 +2.06,
and hydrogenotrophic methanogens, of 3.08 + 1.4, are not
statistically different, implying a similar contribution of
these species to biomethane production (Fig. 3). These high
d values also reveal that both acetoclastic and hydrogeno-
trophic methanogens produce more biomethane following
biochar addition. This finding is strengthened by an inves-
tigation revealing that Methanosarcina, Methanosaeta and
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Fig.3 Forest plot of Hedge’s
d calculated from published
data grouped by "Methanogens
with the highest abundance’
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Methanobacterium methanogens predominate in paddy soil-
amended biochar during the anaerobic decomposition of rice
straw (Huang et al. 2020a). Trophic methanogens, hydrog-
enotrophic and acetoclastic methanogens may actively par-
ticipate in the methane production process. Indeed, reports
have shown that methanogens that use acetate and hydrogen
as substrates coexist in the anaerobic fermentation system
(Madigou et al. 2019; Zhang et al. 2019). Compared to
hydrogenotrophic methanogens, acetoclastic methanogens
should contribute more to methane production with suffi-
cient organic substrates (Garcia-Mancha et al. 2017; Lim
et al 2020; Xiao et al. 2019a). Overall, biochar addition
improves biomethane production by methanogens, yet ace-
toclastic and hydrogenotrophic methanogens display similar
performances.

Conclusion

Our findings show that, on the average, biochar addition is
favoring biomethane generation, whereas this was not clear
in previous individual reports. Our identification of biochar
properties that favor or do not favor methanogenesis will
be helpful for basic research to decipher underlying mecha-
nisms, and for applied research to improve biomethane pro-
duction as a sustainable fuel and benefit perfection of envi-
ronmental waste and pollution control measures. Last, the
fact that biochar globally promotes biomethane generation in
anaerobic media is casting some doubt on the use of biochar
to sequester carbon in soils. Indeed, our findings suggest that
soils amended with biochar may accelerate methane emis-
sions in the atmosphere, notably in anaerobic soils where
fermentation of organic matter and pollution takes place,
thus counteracting the sequestrating effect of biochar.
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