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Abstract
Antimicrobial resistance is a global threat that kills at least 75,000 people every year worldwide and causes extended hospital 
stays. In  the coming 10 years, antimicrobial resistance is projected to have huge health and economic burden on countries, 
and the scarcity of available antibiotics further worsens the situation. Antimicrobial resistance results mainly from indis-
criminate antibiotic usage in humans, animals and agriculture, and from the rapid emergence and dissemination of resistant 
pathogens. This issue is challenging for antibiotic stewardship, strict regulations on antibiotics usage, large-scale surveillance 
and responsible public behavior. This demands international cooperation and integrated efforts under the ‘one-health’ strategy. 
Here, we review antimicrobial resistance and the one-health strategy. We discuss the historical issue of using antibiotics. We 
highlight the effectiveness of hygiene in livestock rearing, careful antibiotic usage and large-scale surveillance of animals, 
humans and environment domains. We present strategies for mitigation of antimicrobial resistance, exemplified by the suc-
cessful ban of triclosan which induced a significant decline of resistant pathogens. We emphasize the benefits of the global 
antibiotic resistance partnership and of the one-health participation of stakeholders from public, healthcare professionals 
and government to mitigate antimicrobial resistance.
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Abbreviations
qnr  Quinolone resistance gene
bla  Beta-lactamase gene
mec  Methicillin resistance gene
sul  Dihydropteroate synthase gene for sul-

fonamide resistance
UN-FAO  United Nations Food and Agricultural 

Organization

GARP  Global Antibiotic Resistance Partnership
INSAR-India  Indian Network for Surveillance of Anti-

microbial Resistance-India
NARMS-USA  National Antimicrobial Resistance Moni-

toring System-USA
ESAC-EU  European Surveillance of Antimicrobial 

Consumption-EU
SASCM-SA  South African Society for Clinical 

Microbiology-South Africa
PAHO  Pan American Health Organization
EARS  Net European Resistance Surveillance 

Network
GLASS-WHO  Global Antimicrobial Resistance Surveil-

lance System-WHO

Introduction

There have been many stages of discovery and development 
in the knowledge and status of antibiotics usage and men-
ace of antimicrobial resistance. After the initial discovery of 
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Penicillin in 1928, many new antibiotics were found through 
intense industrial research during 1950–1970. However, 
regulatory constraints, long development phase, accruing 
financial inputs dampened the pharmaceutical interest into 
new antibiotics and fewer antibiotics were developed after 
the mid-1980s (Spellberg and Gilbert 2014).

On the other hand, indiscriminate antibiotics usage led 
to pollution by antibiotics and/or their residues across all 
niches such as food, soil, aquatic water bodies and sewage 
(Shi et al. 2020). These antibiotics originate from hot spots 
such as hospitals, pharmaceutical units, agricultural setups 
and livestock farms. High antibiotic concentration is linked 
to antimicrobial resistance often through horizontal gene 
transfer of antibiotic resistance determinants such as genes, 
transposons, integrons in deadly pathogens such as Acine-
tobacter baumannii (Gillings 2013), (Rodgers et al. 2019). 
Many such microbes pass through overlapping ecological 
niches between humans, animals and environment, thereby 
gaining resistance at even faster rate. Rapid emergence of 
resistant clinical pathogens is an imminent threat to public 
health, and 2.4 million people are predicted to die due to 
antimicrobial resistance in Europe, North America and Aus-
tralia over next 30 years (Bianco et al. 2020).

Improved international mobility, immigration and eco-
nomic exchange further lead to intercontinental distribution 
of resistant microbial phenotypes (Church 2004). Since 
1950, many studies have reported increasing incidences 
of antimicrobial resistance (Davies and Davies 2010) and 
WHO has advocated research and antibiotics usage as per 
guidelines (WHO 2016). Subsequent research and attention 

to pharmaceutical neglect toward new antibiotics has been 
recognized, and efforts are directed toward aiding new 
antibiotic development and understanding the antimicro-
bial resistance landscape between animals, humans and the 
environment.

The interconnections and microbial exchange between 
ecological niches involving humans, animals and poultry, 
agriculture, environment and wastewater (sewage) cannot 
be neglected. This is frequently underscored by recognition 
of animal carriers and zoonotic sources during disease out-
breaks (He et al. 2021). This scenario calls for adoption of a 
powerful emerging concept called ‘one health.’ It refers to a 
collaborative, inter-disciplinary and multi-domain approach 
of actions applied at local, national and inter-national scale. 
This collaborative approach needs to be implemented for 
antimicrobial resistance to tackle the omnipresence of drug-
resistant microbes (Fisman and Laupland 2010). The under-
lying principles of ‘one health’ help to achieve long-term 
sustainability by strengthening human-animal bonds, provid-
ing safe food and water, sustainable agricultural practices, 
surveillance of disease, antimicrobial resistance and envi-
ronment, alignment of government policies and regulations 
for efficient communication and global outreach. Direct out-
comes of this ‘one-health’ approach would be interdiscipli-
nary solutions emanating from strategic education, training, 
prevention, diagnosis and novel therapies against antimicro-
bial resistance (Fig. 1). The issue of antimicrobial resistance 
can only be dealt through knowledge and multi-thronged 
mitigation approaches, and thus, we discuss the overlapping 
landscape of antimicrobial resistance and stakeholders in 

Fig. 1  One-health paradigm 
and stakeholders. ‘One-health’ 
refers to integrative strategies 
in design and implementation 
of legislation, policies and 
research, which facilitates com-
munication between multiple 
sectors to achieve better solu-
tions for public health. This 
holistic approach can aid in 
integration of information from 
different stakeholders such as 
regulatory agencies, econo-
mists, consumers and other con-
tributors to provide sustainable 
solutions against antimicrobial 
resistance
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this review. This article is an abridged version of the book 
chapter on antimicrobial resistance and One-health by Singh 
et al. (2020).

Antibiotics and antimicrobial resistance

Antibiotics in humans, veterinary and agriculture

Various antibiotics are used for the treatment of infections 
in humans and animals. Some of these antibiotics could be 
used in both animals and humans, whereas due to toxicity 
and/or different incidences of infection in humans, some of 
them are restricted only for use in animals (Church 2004), 
(Davies and Davies 2010), (Van Boeckel et al. 2015). Non-
therapeutic usage of antibiotics has been found dispropor-
tionately more in animals, especially farm animals, as com-
pared to humans because the antibiotics are added in their 
water and/or feed to prevent them from various infections 
(Cully 2014), (Van Boeckel et al. 2015). In farm animals, 
antibiotics are also used at sub-therapeutic levels as a growth 
enhancer (Landers et al. 2012), (Chattopadhyay 2014), a 
procedure called ‘metaphylaxis’ (Butaye et al. 2003). The 
period of metaphylaxis may range from 2 weeks to through-
out the life of animals and increases their growth rate by up 
to 10% (WHO 2003). All such activities lead to the direct or 
indirect leakage of antibiotics in the environment and pos-
sess extreme threats to the human population.

What makes it more adverse is that certain antibiotics 
used on farm animals are reserved for human usage to treat 
terminal infection or infections caused by multi-drug-resist-
ant pathogens (MDR) (WHO 2016). MDR pathogens have 
intrinsic resistance against many antibiotics, and they exten-
sive usage of antibiotics increases their number in the farm 
waste, thereby creating more number of microbes showing 
resistance against more than one antibiotic (Tacconelli et al. 
2018). According to a report published in the USA, it has 
been estimated that a large group of people may get affected 
by fluoroquinolone-resistant Campylobacter infections 
via chicken (Food and Drug Administration 2000). It has 
been reported from Canada and Europe, that poor hygiene 
and sanitation conditions lead to excessive use of antibiot-
ics (Health Canada 2014; European Union 2015). Without 
compromising on economic front, antibiotic usage can be 
reduced largely by ensuring hygiene and routine vaccination 
(World Health Organization 2003; Tang et al. 2019). Under 
the guidelines of WHO, many countries have started good 
practices in their farm animals and have prohibited the use of 
certain antibiotics in their countries (Food and Drug Admin-
istration 2013; Health Canada 2014; European Union, 2015).

The risks associated with metaphylaxis of common 
classes of antibiotics used between humans and animals 
is clearly evident for third-generation antibiotics such as 

cephalosporins (WHO 2016). Upon widespread metaphy-
laxis of cephalosporins in animals, resistance across all 
cephalosporin antibiotics developed and spread to human 
pathogens. Now, it has been reported that the cephalosporin 
dosage had to be increased in humans as compared to ani-
mals (Food and Drug Administration 2012) and two genes, 
extended-spectrum beta-lactamases (ESBLs) and AmpC, 
which both confer resistance against these antibiotics, have 
been found on the bacterial plasmids in a highly mobile 
genomic region (European Medicines Agency 2009). ESBLs 
are a group of highly mobile antibiotic resistance genes pro-
viding resistance against beta-lactam group of antibiotics, 
and it poses major health risk to humans (Rawat and Nair 
2010). Resistance in one class of antibiotics can also result 
in emergence of resistance against other antibiotics due to 
co-transfer of resistance genes, owing to their proximity in 
the genome, through plasmids. One such example is the car-
bapenems, against which common human pathogens like 
E. coli, Salmonella spp. and K. pneumoniae have gained 
co-resistance after overuse of cephalosporins (Nordmann 
2014). Many studies have found similar ESBL-containing 
E. coli strains between animal, food and humans (Tadesse 
et al. 2017), (Odsbu et al. 2018), (Rizzo et al. 2019). The 
mode of dissemination of resistance genes between animals 
and humans has also been found to be through plasmids (de 
Been et al. 2014). Thus, excessive use of these antibiotics 
as metaphylaxis further aggravates the problem of resistant 
microbes in the environment (Canadian Integrated Program 
for Antimicrobial Resistance 2008) and urgently needs to be 
regulated. Many studies done in Japan, Denmark and Canada 
have shown the positive impact on the reduction of cepha-
losporin resistant microbes in food animals if it is not being 
used (Hiki et al. 2015), and a similar pattern was observed 
with the usage of fluoroquinolones in Australia (Nelson et al. 
2007), (Rusu et al. 2015).

With the emergence of many multi-drug-resistant patho-
gens, the effectiveness of many general use antibiotics has 
largely reduced. Thus, certain antibiotics with high side 
effects in humans, such as colistin, are now being approved 
as last resort antibiotics against resistant pathogens. Colistin 
was only limited for metaphylaxis in food animals, and thus, 
high levels were being used. Its overuse in food animals led 
to many colistin-resistant pathogens and reports of horizon-
tal transfer of colistin resistance gene (mcr-1) via plasmid 
(Liu et al. 2016) prompted the regulatory agencies of many 
countries to reduce colistin administration in food animals. 
Likewise, the extensive use of avoparcin, a glycopeptide 
antimicrobial, in food animals (Aarestrup et al. 1996) has 
created the problem for other candidates of the glycopep-
tide class of antibiotics. One such case is vancomycin (also 
a glycopeptide antibiotic), which is being used in case of 
multi-drug resistance and is now facing the problem of los-
ing its effectiveness on humans as well as animals (Tang 
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et al. 2014). Altogether, careful regulations need to be put 
in place for the use of veterinary antibiotics especially when 
they are highly potent and widespread surveillance of antibi-
otic seepage into the environment needs to be done.

Antimicrobial resistance, bacteriophages, animals 
and public health

The indiscriminate use of antibiotics has led to the increased 
prevalence of antibiotic resistance genes among pathogens 
(Fig. 2). In livestock, antibiotics are said to stimulate over-
all body development by improving digestion or prevent-
ing bacterial infections. This is postulated to be caused by 
suppression of unwanted intestinal bacteria which otherwise 
will cause infections leading to release of certain cytokines 
which reduces muscle mass (Liao and Nyachoti 2017), 
(Gonzalez Ronquillo and Angeles Hernandez 2017). In 
pork industry, China’s use of the antibiotics for growth is 
four times higher than the USA (Cully 2014). Since antibiot-
ics are often used for metaphylaxis in high levels, they are 
poorly absorbed in the animal body. Most of the antibiotics 
are excreted in feces which leads to emergence of resistant 
bacteria in the animal manure. In accordance, Denmark and 
the European Union have forbidden the use of 11 antibiot-
ics since 1995, causing a decrease of up to 50% in antibiotic 
resistance (Hollis and Ahmed 2013).

It has been observed that manure enhances antibiotic 
genes transfer to bacteria infecting human populations and 
even exposes soil to it, causing a build-up of antibiotic-
resistant genes in the environment (Zhu et al. 2013), (Pru-
den et al. 2012). These antibiotics along with metals used 

in livestock feed such as Cu, Zn, As, Cr, Cd, Pb and further 
generate a co-selection pressure on bacterial populations 
by hindering their growth and are positively correlated 
with antibiotic resistance genes (sulA and sulIII) (Baker-
Austin et al. 2006), (Zhang et al. 2012), (Seiler and Beren-
donk 2012). Even the unculturable portion of the microbi-
ome of niches potentially houses antibiotic-resistant genes 
(Enne et al. 2008), (Zhu et al. 2013) and is speculated to 
act as sink for them. Further, it has been noted that human 
waste processed in sewage treatment plants results in less 
frequent antimicrobial resistance than untreated animal 
waste (Di Cesare et al. 2016).

Bacteriophages (bacteria-killing viruses) are an often 
ignored but important player in the antimicrobial resist-
ance landscape. They carry many antibiotic resistance 
genes, and they can mobilize these genes similar to plas-
mids and integrons through horizontal gene transfer (Brab-
ban et al. 2005). Phage-mediated transfer of resistance 
genes has been found responsible for conferring resist-
ance against ampicillin in Escherichia coli (Colomer-
Lluch et al. 2011), multiple drugs in Salmonella enterica 
(Schmieger and Schicklmaier 1999) and Pseudomonas 
aeruginosa (Blahová et al. 2000). Their attribute as vec-
tors for gene transfer has been reported from many niches 
including sewage, which also has high numbers of resist-
ant microbes and genes (qnrS, blaTEM, blaCTX-M, blaSHV, 
mecA, sul1) conferring multi-drug resistance (Colomer-
Lluch et al. 2011), (Marti et al. 2014), (Calero-Cáceres 
and Muniesa 2016). More research needs to be done on the 
extent of involvement of phages, but their omnipresence 
and high capacity for gene mobilization between microbes 

Fig. 2  Inter-connectedness 
and transferability between the 
different niches. Many routes of 
transmission exist for exchange 
of antimicrobial resistance 
determinants such as antibi-
otic resistance genes (ARGs) 
between animals, humans and 
the environment. Anthropogenic 
activities remain at the center 
of all major activities related to 
antimicrobial resistance
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make them important in animal, human and environmental 
niches.

Another interesting study argues that street food indi-
rectly exposes humans to antibiotics (Campos et al. 2015), 
owing to compromising practices in hygiene. This also 
relates to storage and purchase of raw materials from farms 
using cheaper farm practices, unregulated antibiotic use and 
diseased animals with high antibiotic levels (Pham Kim et al. 
2013). One striking example of feed is the use of poultry lit-
ter as protein supplement for farm animals in South Africa, 
which is often contaminated with residues of antibiotics to 
which the poultry was exposed (Soto 2013). Food from ani-
mal origin can carry major proportions of antibiotic-resistant 
bacteria with about 47% of resistant Salmonella being iso-
lated from meat and milk in Ethiopia (Ejo et al. 2016) and 
14% of resistant E. coli isolated from chicken, milk and eggs 
in India (Laxminarayan and Chaudhury 2016). Unregulated 
antibiotic use can cause emergence of resistant pathogens 
like Salmonella spp., Enterococcus spp., Yersinia entero-
colitica, Listeria monocytogenes, Staphylococcus spp. and 
many more (Phillips et al. 2004) which generally have higher 
recombination frequency and gene transfer ability, thus indi-
cating fecal, soil and water contamination. Also the lack 
of quick and effective antibiotic resistance detection tech-
niques, complex patterns of exchange of antibiotic resistance 
genes, unreliable prediction tools to understand the conse-
quences of human mortality and morbidity, and fluctuating 
costs of care are associated with infections induced by such 
pathogens (Wegener 2012).

Residues of antibiotics such as tetracycline and chloram-
phenicol (Cameroon, Iran, Egypt) above their maximum 
residue limit (European Union standards) have been detected 
in muscle, heart and kidney of farm chicken (Daghrir and 
Drogui 2013), (Tavakoli 2015), (Guetiya Wadoum et al. 
2016). Similarly, ciprofloxacin has been detected in eggs 
of terminally ill birds receiving antibiotic treatment (Billah 

et al. 2015), quinolones inside chicken and beef in Turkey 
(Er et al. 2013), amoxicillin in milk and eggs in Bangladesh 
(Chowdhury et al. 2015), sulfonamides and quinolones in 
milk in China, Malaysia and India (Cheong et al. 2010), 
(Zheng et al. 2013), (Kumari Anjana and Jayachandran 
2017). This exposure of antibiotics to humans can lead to 
neuropathological problems, drug hypersensitivity, aplastic 
anemia, mutagenesis, disturbance of normal gut flora and 
many more such complications (Lee et al. 2001), (Nisha 
2008), (Beyene 2015). European Union and other authori-
ties have recommended a maximum residue limit for anti-
biotics in animal-derived food, but it is quite difficult to 
ascertain their safe level, thus monitoring antibiotic use and 
their clearance period from animal becomes crucial (Codex 
Alimentarius 2012). Many such guidelines on the use of 
medically important antibiotics in food-producing animals 
have been recommended by WHO in 2016 (Table 1) (Aid-
ara-Kane et al. 2018). The historical linkage of antibiotic 
and antimicrobial resistance in the modern age could not 
be overstated, and direct effects of antibiotics and intercon-
nected microbial entities on human health must be consid-
ered when probing the emergence and spread of antimicro-
bial resistance.

Antimicrobial resistance in soil and water bodies

Soil is a complex ecological niche and acts as source and 
sink for physical exchange between the living and non-
living components of the earth. Naturally, it also serves as 
a reservoir for antibiotic resistance genes and determinants 
coming from various sources (Fig. 1, 2) (Monier et al. 
2011). Metagenomic studies of soil have shown that many 
antibiotic resistance genes exist which are yet to be fully 
characterized (Riesenfeld et al. 2004). Agriculture land 
may receive antibiotics washed off from other sources, 
but manure-supplemented soil especially with inputs from 

Table 1  WHO recommendations on the use of medically important antimicrobials in food-producing animals

* Specific considerations: when a veterinary professional judges that there is a high risk of spread of a particular infectious disease, use of antimi-
crobials for disease prevention is justified, if such a judgment is made on the basis of recent culture and sensitivity testing results
†To prevent harm to animal health and welfare, exceptions to recommendations 4a and 4b can be made when, in the judgment of veterinary pro-
fessionals, bacterial culture and sensitivity results demonstrate that the selected drug is the only treatment option

1 The Guideline Development Group (GDG) recommends an overall reduction in use of all classes of medically important antimicrobials in 
food-producing animals

2 The GDG recommends complete restriction of use of all classes of medically important antimicrobials in food-producing animals for growth 
promotion

3 *The GDG recommends complete restriction of use of all classes of medically important antimicrobials in food-producing animals for pre-
vention of infectious diseases that have not yet been clinically diagnosed

4a †The GDG suggests that antimicrobials classified as critically important for human medicine should not be used for control of the dissemi-
nation of a clinically diagnosed infectious disease identified within a group of food-producing animals

4b †The GDG suggests that antimicrobials classified as critically important for human medicine should not be used for treatment of food-pro-
ducing animals with a clinically diagnosed infectious disease
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animal farms often contains high concentration of antibiot-
ics (Marti et al. 2013), such as tetracycline residues and 
resistant microbes (Zhu et al. 2013). Antimicrobial resist-
ance in soil is further aggravated if improperly treated 
wastewater which is a nutrient-rich niche for microbes is 
used for irrigation (Chee-Sanford et al. 2009; Oluyege and 
C 2015). Many antibiotics and resistance genes such as the 
blaCTX-M gene (confers resistance against cefotaxime) have 
been reported from soil near pig farms and even rice fields 
(Xiao et al. 2016).

The waste generated from farms, manures, irrigation 
water, drug manufacturing plants, hospitals, humans and 
antibiotic-contaminated ground surfaces often ends up in 
agricultural land which increases the level of antibiotics 
(Rodgers et al. 2019). Depending upon class of antibiotics, 
they degrade at different rates and thereby aggravate resist-
ance against antibiotics (Du and Liu 2012) such as ampi-
cillin, tetracycline, sulfamethoxazole, nalidixic acid and 
chloramphenicol (Carballo et al. 2013). The vegetables and 
fruits from these farming lands often pick up the antibiotics 
and resistant microbes present in the soil and pose risk of 
transmission of antimicrobial resistance to humans during 
transport and storage (Beuchat 2002), (Kumar et al. 2005). 
Although data for direct use of antibiotics in agriculture is 
limited, inputs from aforementioned antimicrobial resistance 
sources are often ignored and there is hardly any surveil-
lance for resistance in agricultural land.

Water bodies such as freshwater lakes, rivers, artificial 
water systems and sea also act as dynamic reservoirs for 
antibiotic-resistant bacteria, antibiotic resistance genes and 
antibiotics owing to multiple edaphic and biotic factors 
(Ding and He 2010), (Cizmas et al. 2015) (Khan et al. 2019). 
Many resistance determinants such as ESBLs (blaCTX-M-15, 
bla CTX-M-15 blaOXA-58) were found from rivers and drinking 
water sources, which exposes a large population to resistant 
microbes (Cacace et al. 2019). This is particularly worsened 
if animal farms, pharmaceutical plants, manure storages, 
wastewater treatment plants are in close vicinity of these 
water bodies (Kümmerer 2009). Very diverse and high num-
bers of MDR strains have often been reported from ground 
water and rivers across the world (Mulamattathil et al. 2014; 
(Wahome 2013). Certain mass gathering events such as reli-
gious congregations, sports, water parks, beach sports near 
water bodies witness a huge influx of resistant microbes 
such as Enterobacter, Serratia, Klebsiella, Citrobacter and 
Pantoea and inter-mixing of large populations in such hot 
spots also facilitates the spread of antimicrobial resistance 
(Khan, Memish, et al. 2010; Jani et al. 2018). These reports 
indicate toward the enormous effects of the antimicrobial 
resistance in the soil and water bodies and the role of envi-
ronment as a source–sink pair for antimicrobial resistance. 
This demands for careful surveillance, strategic management 

of public events for effective control over spread of antimi-
crobial resistance.

Antimicrobial resistance and humans

Antibiotic consumption varies across the world owing 
to differences in incidences of infectious diseases, living 
standards, community hygiene and often broad-spectrum 
antibiotics are unnecessarily prescribed. Although new 
treatments alternatives such as use of probiotics (Hatakka 
and Saxelin 2008), probiotics surface proteins such as 
mucus binding protein (Singh et al. 2018) (Singh et al., 
2017), fibronectin binding protein (Bisht et al. 2018) or 
oligosaccharides (Anand et al. 2018) have been proposed, 
they are still far from being commercial therapeutic suc-
cess. This leaves fewer options to treat MDR strains, and 
extensive antibiotic stewardship of health professionals is 
needed. Antibiotic stewardship approach can be further 
augmented by increasing awareness in the general public 
about responsible usage of antibiotics. Humans can poten-
tially act as most aggressive vectors for transmission of 
antimicrobial resistance, given their omnipresence, long 
distance travel, socializing and work. Human activities 
around antimicrobial resistance hot spots such as farms, 
drug manufacturers, hospitals, further load them with 
resistant microbes. Resistant pathogens can affect humans 
directly (Scallan et al. 2011), use them as transmission 
vectors (Spoor et al. 2013) and also utilize humans as 
niche for example ‘human gut’ for the exchange of anti-
biotic resistance genes among microbes (Willems et al. 
2011). It is correctly reasoned that antimicrobial resistance 
in humans is linked to high exposure of antibiotics either 
by drugs or contaminated food or water. The antibiotic 
prescription pattern, market dynamics and disease state 
of patients decide antimicrobial resistance in humans, 
which directly affects patient’s amicability for vital inva-
sive procedures in cancer and transplantation (Friedman 
et al. 2016).

Many nations have taken steps to curb indiscriminate 
antibiotic usage at both pre-prescription and post-prescrip-
tion levels, by strengthening public health and structured 
antibiotic stewardship (Garnacho-Montero et al. 2015) (Dyar 
et al. 2017). This has been further augmented by strict laws 
and regulations on the sale without prescription and over-
the-counter antibiotics in many countries including Thai-
land, Mexico and Brazil (Santa-Ana-Tellez et al. 2013), 
(Holloway et al. 2017). Similar strides have been initiated 
in India (Laxminarayan and Chaudhury 2016) and South 
Africa (Gelband and Laxminarayan 2015) for strengthening 
of antibiotic stewardship program, tight regulatory control 
over antibiotics usage and data register of antibiotics sale 
(Masterton 2011), (Valsamatzi-Panagiotou et al. 2021). The 
direct effects of anthropogenic activities and fast transfer of 
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antimicrobial resistance through food and drinking water to 
humans are easily perceptible. Apart from strategic antibi-
otic stewardship in hospitals, there is a need to adopt safe 
handling practices of antibiotic-polluted environmental sam-
ples originating from soil, water, etc.

Prevention and regulation of antimicrobial 
resistance

The issue of antimicrobial resistance needs to be tackled 
both at prevention and mitigation levels, which needs aware-
ness in general public, tight regulatory measures and respon-
sible antibiotics usage. Sensitization of the public toward 
antimicrobials could be done through radio, television and 
awareness campaigns by non-governmental organizations 
and can result in success stories such as of ‘triclosan.’ Ear-
lier, triclosan was a widely used antimicrobial in many coun-
tries, but it was banned for use when its role in antimicrobial 
resistance became public and public pressure mounted on 
the government (McGinley 2016). Healthcare systems could 
benefit from antibiotic stewardships, identification of critical 
control points and strict adherence to regulatory measures 
(Uchil et al. 2014). A major preventive measure to mitigate 
antimicrobial resistance is surveillance, further augmented 
by use of high-throughput technologies such as next-gen-
eration DNA sequencing and inclusive classification sys-
tems such as Rescon (resistance readiness condition), which 
links severity and spread potential of antimicrobial resist-
ance (Martínez et al. 2015). This applies directly to resist-
ance determinants and mobilizing elements like plasmids, 
transposons and integrons and also to other environmental 
stress factors like heavy metals, temperature (Vorholt 2012). 
Other omics technologies further resolve information about 
antibiotics levels, mobile genetic elements, resistance genes 
and their expression patterns coupled with actual antibiotic 
residues present in the niche (Spicknall et al. 2013).

These approaches are important to identify patterns and 
overlapping ecological factors involved in emergence and 
spread of antimicrobial resistance including those due to 
biofilms, phyllosphere and water bodies (Calero-Cáceres 
et al. 2014). Overall, this helps in precise statistical pre-
diction of abundance and mobilization of resistant genes 
and accessory genetic elements, spread between humans, 
animals and environment and predictive model to aid in 
the design of mitigation strategies and critical regulatory 
policies against antimicrobial resistance. These surveil-
lance measures are not effective in standalone countries, 
and thus, inter-continental partnerships between regulatory 
agencies of different countries are being strengthened (Rog-
ers Van Katwyk et al. 2020). Some examples are GARP 
(Global Antibiotic Resistance Partnership)—(Ganguly et al. 
2011), (Leung et al. 2011), INSAR-India, NARMS-USA, 

ESAC-EU, SASCM-South Africa, PAHO (Pan American 
Health Organization) and EARS-Net (European Resist-
ance Surveillance Network), GLASS – WHO. All of these 
networks focus on information exchange and partnership 
in research and action for efficient tackling of antimicro-
bial resistance (Berendonk et al. 2015). These preventive 
measures need a boost from another front, which is the 
development of novel and potent antibiotics augmented 
with improved drug delivery strategies to bypass biofilms 
(Singh et al. 2021). Reducing the mass usage of antibiotics 
by imposing extra charges on non-human antibiotic usage 
and strict regulations to encourage raising animals in clean, 
hygienic conditions would also help the overall effort (Hollis 
and Ahmed 2013). However, all such efforts need to be inte-
grated under ‘One-Health’ approach across the world with 
further consideration of other ecological factors and niche 
diversity to customize the prevention and mitigation plan 
against antimicrobial resistance. The effectiveness of high-
throughput surveillance and public awareness is paramount, 
and we need to consider the interplay of ecological factors in 
the antimicrobial resistance landscape. The discernible need 
for worldwide networks to fight against antimicrobial resist-
ance is also a pertinent concern, and recent efforts by many 
countries need to be continued and strengthened.

Antimicrobial resistance and the one‑health 
approach

The ‘one-health’ concept offers multiple benefits in system-
atic dealing with the menace of antimicrobial resistance. A 
big concern in the antimicrobial resistance issue is the acqui-
sition of resistance by human pathogens from their non-path-
ogenic relatives in the environment (Forsberg et al. 2012). 
There are many direct evidences for human–animal–environ-
ment interrelatedness, and inclusive strategies such as ‘One 
health’ have to be adopted for effective control and mitiga-
tion of antimicrobial resistance. The ‘one-health’ approach is 
directly beneficial for humans when applied to surveillance 
network and public awareness programs where it facilitates 
precise understanding of the pattern and active dynamics 
of antimicrobial resistance. For example, documentation of 
resistant microbes from human origin in an area provides 
ideas about endemic patterns of such resistant microbes 
(Critchley and Karlowsky 2004). This information could be 
utilized for prioritizing antibiotic susceptibility screens for 
infection in incoming patients and would promote evidence-
based antibiotic prescription by physicians. Furthermore, the 
sensitized physicians themselves can encourage patients to 
adopt good hygiene practices, safe disposal of animal waste 
and general behavior during zoonotic disease outbreaks, 
thereby leading to low infections and robust addressal of 
public health issues.
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Although not considered as measure of antimicrobial 
resistance, the antibiotics and their degraded products 
largely drive resistance in all niches (Subbiah et al. 2016) 
and are sometimes responsible for activating biofilm for-
mation, motility and stress response in microbes (Romero 
et al. 2011). There are myriad types of applicable regula-
tions and stakeholders in areas related to human, animals 
and environmental health, which handle the issue of antimi-
crobial resistance with different levels of seriousness. The 
regulation on use of last resort antibiotics (for humans) such 
as carbapenems and colistin in agriculture settings is very 
relaxed and allows mass level usage (Pereko et al. 2016). 
Less regulatory oversight into agricultural systems and their 
neglect toward recognizing it as reservoir of antimicrobial 
resistance further worsens the situation. The risks estimated 
due to pathogens arising from these domains directly affect 
humans involved in handling agriculture products during 
production, transport and even the disposal of agricultural 
wastes. Careless antibiotic prescription to animals without 
giving any consideration for resistance against carbapen-
ems and colistin in case of veterinary pathogens still ends 
up being part of the animal–human–environment interplay 
and aggravates the development of resistance. The antibiotic 
administration pattern at individual animal and herd levels 
also differs, and integrated approaches to understand long-
term effects in the context of antimicrobial resistance must 
be considered.

Across many developing nations, hunting of wild animals 
for food also referred as ‘bush meat’ has been linked with 
infections including, e.g., Ebola virus (Peterson 2003). Low 
vaccination, frequent mixing of animal–human habitats and 
poor hygiene in such countries further drive infections and 
concomitantly complicate the issue of antimicrobial resist-
ance. Such situations have prompted many agencies such as 
WHO and UN-FAO (United Nations Food and Agricultural 
Organization) to join hands and design strategies using the 
‘one-health’ approach to deal with endemic diseases such 
as echinococcosis, bovine tuberculosis, rabies and brucel-
losis in Africa while considering animal interactions (Aid-
ara-Kane et al. 2018). Similar strides have been initiated 
by UN-FAO and WHO to tackle the risk of avian influenza 
(influenza virus A) in humans by collaborative efforts of 
veterinarians and physicians (OFFLU-OIE/FAO 2019).

Given the multidimensional issue of antimicrobial 
resistance and overlapping spheres of its sources, treat-
ment regimen and control of regulations demand inclusive 
mitigation under the ‘one-health’ framework. This frame-
work collates information from all stakeholders and fills 
knowledge gaps (Fisman and Laupland 2010) to compare 
regulatory standards for resistant strains isolated from 
human, animal and environmental sources. This facili-
tates clarity in mitigation strategy and design of logic-
based risk mitigation policies for precise administrative 

and structural support in dealing with antimicrobial resist-
ance (McLain et  al. 2016). The one-health model can 
effectively mitigate the issue of antimicrobial resistance 
and is equally applicable to developed, developing and 
under-developed countries (Gebreyes et al. 2014) which is 
necessary for a sustainable control of mankind over anti-
microbial resistance. The overreaching arc of ‘one health’ 
to provide effective control over the confounding factors of 
antimicrobial resistance is widely recognized. It is prudent 
to work within the integrated framework of ‘one health’ 
and mitigate antimicrobial resistance in a sustainable and 
long-term fashion.

Conclusion

Numerous studies have established overlapping interac-
tions between humans, animals and the environment, espe-
cially in the context of emergence and spread of antimi-
crobial resistance. Frequent outbreaks of zoonotic diseases 
and their clear association with both environmental and 
human domains underscore their interwoven relationship. 
Clinicians, veterinarians and regulatory agencies have 
achieved wonderful milestones in infectious diseases, but 
quantifiable and integrated measures against antimicro-
bial resistance between human, animals and environment 
are largely missing. Due to this, even though the link 
between these ecological domains is obvious, only few 
predictive models exist which could inform about their 
source–sink–reservoir relationships during most disease 
outbreaks. A big reason for this knowledge gap is due to 
focus on human research and complete ignorance of other 
stakeholders spanning the animal, plant and environmental 
niches. This ignorance has been rampant at almost all lev-
els including relaxed regulations, indiscriminate antibiotic 
usage, surveillance, control and research.

Recent studies on the rapid rate of exchange of antimi-
crobial resistance determinants between these spheres of 
life further underscore futility of all domain-limited efforts 
and demands inter-sectoral focus for tackling antimicrobial 
resistance. Recent research has shown that strict regulatory 
control, antibiotic stewardship, novel antibiotic develop-
ment and widespread surveillance have to be adopted. The 
multi-domain nature of the issue of antimicrobial resistance 
demands its handling through an inclusive approach called 
‘one health,’ which provides integrated solutions with multi-
sectoral representation at the level of surveillance, detec-
tion and targeted mitigation. This deals comprehensively 
with the biotic and abiotic confounding factors involved in 
antimicrobial resistance and provides sustainable solutions. 
One-health approaches are useful for all countries at differ-
ent economic levels and are particularly suitable for effective 
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implementation in low- and middle-income countries that 
often tend to have high disease burden and worse situations 
of antimicrobial resistance.
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