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Abstract
Catalysis is a pillar of green chemistry. Though there are many efficient catalysts reported, industrial engineers are now faced 
with the challenge of designing environmentally benign catalysts, which have a high reaction rate, can be recovered efficiently, 
and are biodegradable and cost-effective. Here we review food additives as catalysts in organic syntheses. Natural food 
additives offer a fruitful approach in implementing green chemistry, resulting in comparable reaction yields to conventional 
catalysts. We present the advantages of organic reactions performed using these green and efficient catalysts. In addition, 
reactions’ yields are compared to various synthetic methods. Finally, we discuss the turn-over number, turn-over frequency 
and reaction mechanisms of selected organic reactions mediated by these catalysts.
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H  Hydrogen
H2O  Water
HOAc  Acetic acid
Me  Methyl
MeO  Methoxy
CN  Cyano
NO2  Nitro
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H+  Hydrogen ion
Ar  Aromatic
Ph  Phenyl
OH  Hydroxy
N  Nitrogen
Br  Bromine
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F  Fluoro
NH3  Ammonia

List of symbols
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Introduction

The chemical industry has utilized a majority of metals 
within the periodic table for chemical processes, such as 
in the manufacturing of chemicals, advanced materials, 
health care products, fuels and so on. As a society, we 
currently rely heavily on the use of metals and the inten-
sive mining of these elements could cause environment 
burden, especially for end-of-life consumer products and 
industrial processes (Hunt et al. 2015). Inevitably, metals 
are being depleted, which will create a resource deficit in 
the future. Considering the environmental, societal and 
economic effects of intense metal mining on our earth, 
we need a dramatic change in our chemical processing 
methods to ensure a more sustainable chemical processes.

Due to the increasing environmental consciousness 
and more stringent regulations faced by the chemical and 
pharmaceutical industries, innovation of environmentally 
benign chemical processes has emerged as an important 
and demanding field in the modern era of organic syn-
thesis research (Centi and Perathoner 2003; Lavilla et al. 
2014). As such, increasing efforts have been devoted in the 
development of green synthetic endeavours that encom-
pass the use of environmentally friendly reagents, solvents, 
and catalysts in performing organic processes. In recent 
years, chemists are faced with the challenge of developing 
environmentally benign catalysts, whose uses are in favor 
to maintain a sustainable environment. In fact, designing 
and developing sustainable catalysts are part of the fun-
damental aspect of green chemistry, resulting in cleaner, 
cheaper, and less energy used (Hutchings 2007; Khoda-
bakhshi and Baghernejad 2013; Yu et al. 2020). Hence, 
cleaner and safer organic processes that emphasize the use 
of environmentally acceptable catalytic systems, that offer 
environmental and economic advantages over conventional 
organic processes are needed by the academia and indus-
trial communities (Chen et al. 2020; Díaz-Sánchez et al. 
2019; Kumar et al. 2019; Nongrum et al. 2019; Onuegbu 
et al. 2011; Paprocki et al. 2019; Peixoto et al. 2020).

Food additives are chemical substances that are used 
to enhance the quality and safety of food. The use of food 
additives such as alginic acid (Dekamin et al. 2014), boric 
acid (Rezayati et al. 2014), tartaric acid (Gratzer et al. 
2013), citric acid (Reddy et al. 2018), pectin (Pazhavelik-
kakath Purushothaman et al. 2018), oxalic acid (Dabiri 
et al. 2007) and saccharin (Banerjee et al. 2019) in achiev-
ing green organic reactions has gained much attention in 
recent years among researchers. These food additives rep-
resent a unique class of catalysts which are green, natural 
origin, low-cost, commercially available, biodegradable 
and at the same time have a large application in organic 
reactions. Though there have been many efficient catalysts 

being reported, industrial engineers are still faced with the 
challenge of designing environmentally benign catalysts, 
which possess a higher reaction rate, efficient recovery 
of catalysts from the medium, biodegradable, and cost-
effectiveness of the catalysts used. Hence, the use of envi-
ronmentally benign and cost-effective catalysts is highly 
desirable. Herein, the literature of using food additives 
as unconventional green catalysts in organic synthesis 
was surveyed using multiple search terms and keywords 
to identify the relevant catalysts and their advantages in 
comparison with classical catalysts, in the development of 
green and eco-efficient chemical processes, are reviewed 
here.

Alginic acid

Alginic acid which is also known as an algin or alginate is 
an ionic polysaccharide that is commonly extracted from the 
cell walls of brown algae (Kariduraganavar et al. 2014). It 
can create a vicious gum when dissolves in water due to its 
capability of absorbing water easily till 200–300 times of 
its own weight and also soluble in water-miscible solvents 
such as ketones and alcohols. Besides, alginic acid has a 
very high demand in the food industry as it is commonly 
used as a thickener, emulsifiers, and also stabilizers (Kari-
duraganavar et al. 2014; Titlyanov et al. 2017). Dekamin 
et al. (2014) reported a highly efficient Hantzsch reaction 
using alginic acid (a) as a green bio-polymeric catalyst in 
1,4-dihydropyridines 4 syntheses (Scheme 1). 1,4-dihydro-
pyridines widely occur in nature, and drug molecules play an 
essential role in bioactivities and pharmaceutical activities 
(Wu et al. 2021). This environmentally friendly protocol pro-
vided the targeted compounds in high to excellent reaction 
yields (68–98%) via a Knoevenagel intermediate followed 
by Michael addition reaction. Overall, this reaction provides 
a mild and metal-free alternative to previous methods, as no 
solvents and metal-catalysts were used as well as a faster 
reaction rate was reported.

On top of that, the same authors also developed a syn-
thesis protocol of polyhydroquinolines 9 via the Hantzsch 
reaction, which was mediated by alginic acid (Dekamin et al. 
2018). The synthesis of polyhydroquinolines commenced 
with a four-component condensation of ethyl acetoacetate 
5, aldehyde 6, ammonium acetate 7, and cyclic diones 8, 
catalyzed by alginic acid (a) under mild reaction conditions 
as shown in Scheme 2. The synthesis provided the targeted 
compounds in high to excellent yields (75–97%) through 
a Knoevenagel intermediate followed by Michael addition. 
The increase in the rate of reactions in polyhydroquinolines’ 
syntheses was attributed to the charged-dipole interaction 
of alginic acid with reactants’ intermediates. This has led 
to a high turnover number (9.5) and turnover frequency 
(22.8  h−1) compared to previous studies. The result indicated 
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that alginic acid catalyst might meet the goal of green chem-
istry, which provides a more environmentally friendly and 
biodegradable method for organic catalysis (Hajizadeh and 
Maleki 2018; Maleki 2014, 2016, 2018 Maleki et al. 2016).

On the other hand, alginic acid (a) was also employed 
as a green catalyst in a study demonstrated by Maleki et al. 
(2019b), who reported the efficient and green synthesis 
of 2-amino-3-cyano-4H-pyran derivatives 13 as shown in 
Scheme 3, in which aldehydes 11, 5,5-dimethyl-1,3-cy-
clohexanedione 10, and malononitrile 12 were reacted in 
one-pot reaction in the presence of alginic acid nanocom-
posite (a). It was reported that the current synthesis has led 
to higher reaction yields (83–95%). Previously, the identical 
reaction suffered from long reaction times, difficult workup, 
and mediocre yields. Ironically, this protocol offers a mild 

reaction condition, green and cost-effective nano-catalyst, 
shorter reaction time, easy workup with a simple procedure, 
and the catalyst was recoverable after five consecutive runs. 
In addition, the author also reported that the efficiency of the 
alginic acid nanocomposite, outperformed the single cata-
lysts (alginic acid and zinc ferrite), though both can cata-
lyzed the reaction individually. The higher catalytic effect of 
alginic acid nanocomposite compared to individual catalyst 
was due to the synergy effect demonstrated by the nanocom-
posite employed in the protocol.

The same approach was employed by Srivastava et al. 
(2015) using alginic acid (a) as a green catalyst in cata-
lysing reaction between indoles 15 and isoquinoline-1,3,4-
triones 14 to form the hydroxyindolyl derivatives 17 as 
depicted in Scheme 4. Satisfactory reaction yields were 

Scheme 1  Plausible mechanism of 1,4-dihydropyridines synthesis. Notes: Me (methyl), HOAc (acetic acid),  H2O (water),  NH2 (nitrogen source)
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recorded (57–82%) when the reactions were performed 
at 65  °C. In the past, the synthesis of hydroxyindolyl 
derivatives 17 employed metal-salt catalysts, harmful and 

non-bio-degradable reagents. These methods are unfavorable 
due to the use of non-bio-degradable catalysts that can cause 
harm to the environment.

Scheme 2  Alginic acid-mediated polyhydroquinolines syntheses via multi-component Hantzsch reaction. Notes:  NH4OAc (ammonium acetate), 
 NH3 (ammonia), HOAc (acetic acid),  H2O (water)

Scheme 3  Synthesis of derivatives of 2-amino-3-cyano-4H-pyran. Reaction condition: dimedone (1.0 mmol), aldehyde (1.0 mmol), malononi-
trile (1.0 mmol), and catalyst (alginic acid nanocomposite, 5 mg) in ethanol (2 mL) at room temperature
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Boric acid

Boric acid (Fig. 1) is a food preservative employed in pre-
serving the shelf life of meat products (Arslan et al. 2008). 
It is also used in starch gelatinization purposes and flavour 
enhancement (Yiu et al. 2008). Recently, boric acid is highly 
sought after in organic synthesis due to the eco-friendly, 
stability, excellent solubility in water, and inexpensive nature 
of this chemical substance. Gogoi et al. (2014) described a 
good example of boric acid (b) catalyzed ipso-hydroxyla-
tion process that employed hydrogen peroxide as an oxidant 
(Scheme 5), with turnover number (8.8) and turnover fre-
quency (15.1  h−1) reported for the optimized reaction con-
dition. In this work, aryl boronic acids were all converted 
into the desired product 19 (80–95% yield) via oxidation 
reaction. The use of a greener approach such as the one 
described here is desired as it is metal-free, base-free, and 
the reaction can be carried out under room temperature con-
ditions to prepare the corresponding phenols.

Scheme 4  Alginic acid-mediated isoquinoline-1,3,4-trione syntheses in water via Friedel–Crafts reaction of indoles. Notes:  H2O (water)

Fig. 1  Boric acid appears in white crystalline solid at room tempera-
ture

Scheme 5  The Synthesis of 
phenol. Reaction condition: aryl 
boronic acid (0.5 mmol), boric 
acid (0.1 mmol), hydrogen per-
oxide (2 mL) in ethanol (2 mL) 
at room temperature
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Apart from that, Nath and Chaudhuri (2008) have inves-
tigated a bromination protocol using boric acid as a green 
catalyst. The reaction was carried out involving potassium 
bromide as the bromide source and hydrogen peroxide as an 
oxidizing agent in the presence of boric acid (b) and etha-
nol as solvent (Scheme 6). This site-selective bromination 
of organic substrates has led to the high yields of desired 
products 21 and 23. Based on the previous protocols for 
bromination of aryl compounds, most of these methods are 
unsustainable such as the use of corrosive and toxic reagents, 
which at times result in a large amount of waste produc-
tion, leading to a 50% reduction of the atom efficiency (Vyas 
et al. 2003). However, the present work offers attractive 
advantages, such as cost-effective, eco-friendly, non-toxic, 
recyclable, safe to handle methods, and the reaction can be 
carried out effectively under mild conditions.

Furthermore, an efficient and regioselective ring-open-
ing of epoxide reaction was also observed using boric acid 
as a catalyst (Halimehjani et al. 2012). Under this reac-
tion, the 2,3-epoxypropyl ether 24 and aniline 25 were 
selected as model substrates and reacted in the presence 
of boric acid (b) (Scheme 7). In most cases, a satisfac-
tory yield (93–100%) of derivatives 26 was obtained and 
various aromatic amines were tolerated under this pro-
tocol. Numerous efficient catalysts have been reported 
for a similar reaction. Yet, some drawbacks have been 
identified from those procedures such as the use of costly 

catalysts, hazardous organic solvents, moisture-sensitive 
reactions, and so on. Alternatively, boric acid could act 
as a substitute due to its desirable characteristics such as 
inexpensive, water-soluble, easy to handle, commercially 
available, and environmentally friendly.

Another example was demonstrated by Hosseinzadeh 
et al. (2019), whom prepared the 2-amino-4,6-diarylnico-
tinonitriles 32 via a multicomponent reaction using boric 
acid (b) as a catalyst (Scheme 8). This environmentally 
benign protocol provided the targeted compounds in high 
yields (86–96%) via Knoevenagel condensation followed 
by air oxidation cyclization. Although various works of 
literature have been made on the synthetic protocol for 
2-amino-4,6-diarylnicotinonitriles, these approaches suf-
fered from the use of harsh reaction conditions, toxic sol-
vents, with low reaction yields recorded. Consequently, 
the use of boric acid as a catalyst in the afore-mentioned 
reaction is superior to other protocols due to its excel-
lent solubility in water, inexpensive catalyst, chemically 
stable and nontoxic nature, recyclable, and easy to han-
dle. Besides, the current procedure takes place under a 
solvent-free condition which helps in pollution reduction, 
prevention of solvent waste, energy efficient, enhances the 
products yield and high atom economy. This is of scientific 
importance as no waste reactants were generated at the end 
of chemical processes (Maleki 2012, 2013; Maleki and 
Aghaei 2017; Maleki et al. 2018, 2019a).

Scheme  6  Production of bromoorganic compounds. Reaction condition: substrate (1.0  mmol), boric acid (0.05  mmol), hydrogen peroxide 
(3.0 mmol), potassium bromide (1.2 mmol) in water (2.5 mL) or ethanol (2.5 mL). Notes:  H+ (hydrogen ion), OMe (methoxy)

Scheme 7  Reaction of ring-opening of epoxides. Reaction condition: ring-opening of epoxides (2.5 mmol), aromatic amines (3.0 mmol), boric 
acid (0.3 mmol), glycerol (1–2 drops) in water (5 mL) within 10-18 h at 35 °C. Notes: h (hours), °C (degree Celsius)
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Tartaric acid

Tartaric acid (Fig. 2) is one of the food additives that is 
added to enhance taste, acidity regulator, and also pro-
vide antioxidant properties in foods (Marchitan et  al. 
2010). Over the years, chemists have developed an eco-
friendly method of organic reactions using tartaric acid 

as a catalyst. According to the literature, tartaric acid was 
found to be an efficient catalyst in mediating the synthesis 
of piperidines 36 via a multi-component reaction (Aboona-
jmi et al. 2015). This reaction catalyzed by tartaric acid (c) 
involved aromatic aldehydes 33, β-ketoesters 35, and ani-
lines 34 was carried out at room temperature (Scheme 9). 
Anilines as electron-donating groups reacted effectively 
with aldehydes to afford the piperidines in satisfactory 
yields (39–91%) via a domino process. Prior to that, the 
identical organic process suffered from low yields, the 
uses of toxic and expensive catalysts, and complicated 
workup procedures. Alternatively, this method offers more 

Scheme  8  Tentative mechanism for the production of 2-amino-
4,6-diarylnicotinonitrile. Reaction condition: aromatic aldehyde 
(1.0  mmol), malononitrile (1.5  mol), acetophenone (1.0  mmol), 

ammonium acetate  (NH4OAc, 1.0  mmol), boric acid (1.0  mmol). 
Notes: Ar (Aromatic), H (hydrogen)

Fig. 2  Chemical structure of 
tartaric acid that is naturally 
found in grapes HO

OH

OH

OHO

O

Scheme  9  Synthesis of functionalized piperidines. Reaction condition: aromatic amine (2.0  mmol), aromatic aldehyde (2.0  mmol), and 
β-ketoester (1.0 mmol) with the presence of tartaric acid (0.075 g) in methanol (5 mL) at room temperature
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advantages which are simplicity in the workup procedure, 
cheap and the use of a biodegradable catalyst.

Likewise, a green synthesis using tartaric acid for the 
formation of poly-substituted quinolines 39 was reported 
lately (Mohamadpour et al. 2018). The reaction comprised 
of ketone 38 (1.0 mmol) and 2-aminobenzophenone 37 
(1.0 mmol) in the presence of tartaric acid (c) as shown in 
Scheme 10 under neat condition. This one-pot four-compo-
nent reaction gives excellent isolated yields (91–94%) via 
Friedländer condensation. Moreover, it has overcome some 
of the limitations encountered in previous protocols such as 
the uses of expensive and toxic catalysts, tedious workup 
procedure, the use of highly acidic conditions, prolonged 
reaction time, and low yields of isolated products. The cur-
rent innovative method is scientifically significant, as it 
employed a non-toxic catalyst and column-free procedure. 
Furthermore, the poly-substituted quinoline synthesis medi-
ated by tartaric acid was found to be in excellent reaction 
yield, which indicated that the current catalyst can act as a 
green alternative to other catalysts for the identical organic 

reaction (Ahmad Ruslan et al. 2020). Previous methods in 
the synthesis of poly-substituted quinoline and their yields 
are summarized in Table 1.

In another work, tartaric acid was employed to synthe-
size the poly-substituted dihydropyrrol-2-ones (Mohamad-
pour et al. 2016). Under the optimized reaction condition, 
formaldehyde 43, dialkyl acetylenedicarboxylate 41, and 
amines (aliphatic 40 or aromatic 42) were reacted in the 
presence of tartaric acid (c) to afford the desired products 44 
(Scheme 11) in excellent yields (74–93%), with 15 mol% of 
catalyst loading under ambient temperature. It is noteworthy 
that the previous methods involved the use of expensive and 
toxic catalysts, tedious work-up, prolonged reaction times, 
but resulted in low yields of products. In contrast, the current 
developed method is known to be environmentally benign, 
cost-effective, highly efficient, shorter reaction times, and 
led to high yields of products.

Tartaric acid (c) was also being employed as a catalyst 
in the green synthesis of 2,3-dihydroquinazolin-4(1H)-
ones 47, which involved 2-aminobenzamide 46 and 

Scheme  10  Proposed mechanism in the formation of poly-substi-
tuted quinolines via Friedländer condensation. Reaction condition: 
ketone (1.0  mmol), 2-aminobenzophenones (1.0  mmol), tartaric 

acid (0.15 mmol) at 70 °C under solvent-free condition. Notes:  H2O 
(water), Ph (phenyl), mol% (mole percent), °C (degree Celsius), cat- 
(cation)

Table 1  Comparison of previous methods and their reactions’ yields in the synthesis of poly-substituted quinolines

min (minute), °C (degree Celsius), % (percent)

Catalysts Conditions Time (min) Yield (%) References

Sulfonate ionic liquid Solvent-free, 70 °C 25 89 Shirini et al. (2014)
Zeolite-supported transition metal catalyst Ultrasound Irradiation 7 92 Safa et al. (2016)
Lanthanum(III) chloride/chloroacetic acid Solvent-free, 70 °C 10 96 Pouramiri et al. (2017)
Zwitterionic-type ionic liquid Solvent-free, 100 °C 17 94 Rafiee and Shahebrahimi (2019)
Polyvinylpolypyrrolidoniume triflate Toluene, 110 °C 300 85 Khaksar et al. (2014)
Potassium fluoride/clinoptilolite nanoparticles Solvent-free, 80 °C 60 92 Balou et al. (2019)
Tartaric acid Solvent-free, 70 °C 10 89 Mohamadpour et al. (2018)
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various aromatic aldehydes 45 (Scheme 12) (Singh et al. 
2018). In the proposed mechanism, tartaric acid aided 
in activating the carbonyl group of the aldehydes, which 
further enhances the electrophilic character of aldehyde 
followed by cyclization, and the desired products were 
recorded in high to excellent yields (85–95%). The use of 

costly catalysts, prolong reaction times, and harsh reac-
tion conditions are among the disadvantages associated 
with the previous protocols. This approach is more supe-
rior to the former protocols as the catalyst used is far 
safer, efficient, and eco-friendly compared to the previous 
protocols.

Scheme  11  Synthesis of poly-substituted dihydropyrrol-2-ones. Reaction condition: amine (1.0  mmol), dialkyl acetylenedicarboxylate 
(1.0 mmol), formaldehyde (1.5 mmol), tartaric acid (0.15 mmol). Notes: Ar (Aromatic), OH (hydroxy), mol% (mole percent)

Scheme 12  Synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Reaction condition: aromatic aldehyde (1.0 mmol), 2-aminobenzamide (1.0 mmol), 
tartaric acid (0.2 mmol) in water (5 mL) at room temperature. Notes:  H+ (hydrogen ion)
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Citric acid

Citric acid is a natural preservative, anti-caking agent, 
acidity regulator and antioxidant agent in food process-
ing industry. In the food industry, citric acid is usually 
employed in the production of fruit juice, jelly, candies, 
marmalade, as well as aid in suppressing the browning pro-
cess in fruits (Navarro et al. 2013). According to a recent 
literature, many organic reactions have been achieved by 
using citric acid as a catalyst (Bafti and Khabazzadeh 
2014). This catalyst is found to be low-cost, stable, non-
volatile as well as eco-friendly additive compared to other 
catalysts in catalyzing identical organic reactions. One of 
the remarkable examples was reported in the synthesis of 
1,8-dioxo-octahydroxanthenes 50 (Navarro et al. 2013). 
The reaction takes place between aldehyde 49 and dime-
done 48 in the presence of citric acid (d). A plausible 
mechanism for the synthesis is presented in Scheme 13. 
At the end of the synthesis, high yields (73–85%) of the 
desired compounds were obtained via the intramolecular 
cyclization step. This protocol was found to be greener and 
efficient, as the conventional methods described in previ-
ous literatures suffer from several limitations including 
the need for catalyst preparation, use of expensive cata-
lysts and reagents, tedious reaction workup, harsh reaction 
condition, and prolonged reaction times. In the present 
method, citric acid was selected as a green catalyst as it is 
non-volatile, cost-effective, readily available, and reusable. 

Besides, this procedure offers a milder reaction condition 
and minimizing the production of wastes.

The role of citric acid as a green catalyst was also inves-
tigated in the synthesis of 3-pyrrolin-2-ones 54 (Ahankar 
et al. 2016). These reactions involved aromatic aldehydes 
51, aniline 52, and diethyl acetylene-dicarboxylate 53 were 
carried out successfully under microwave irradiation, with 
citric acid (d) as catalyst. Scheme 14 shows the mechanism 
of formation for the 3-pyrroline-2-ones. The elimination of 
ethanol and citric acid molecules at the final stage of the 
reaction resulted in high yields (80–92%) of the targeted 
products. In many cases, the use of harsh reaction condi-
tions, non-eco-friendly catalysts, toxic solvents, and low 
yields of end-products were commonly encountered in the 
previous method for the identical organic reaction. With 
the aid of citric acid, this green catalyst helps to increase 
reactions yields within a short reaction time. Moreover, this 
green catalyst is inexpensive and eco-friendly, commercially 
available additives, and resulted in high purity of the tar-
geted products.

In addition, Shaikh et al. (2014) also demonstrated the 
preparation of amidoalkyl naphthols 58 using citric acid (d). 
Amidoalkyl naphthols have been attracting interest among 
researchers due to their useful pharmacological and biologi-
cal properties. Previously, the use of unsustainable methods 
have been employed in the amidoalkyl naphthols synthe-
ses, such as the use of molecular iodine (Das et al. 2007), 
ferric hydrogen sulfate (Shaterian et al. 2008), strontium 

Scheme 13  Formation of 1,8-dioxo-octahydroxanthenes Reaction condition: aldehyde (0.5 mmol) and dimedone (1.0 mmol) with the presence 
of citric acid (2 mL). Notes:  H2O (water)
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bis(trifluoromethanesulfonate) (Shaikh et al. 2014), disul-
fonamide catalyst (Ghorbani-Vaghei and Malaekehpour 
2010) and magnetic nanoparticle-supported sulfuric acid 
(Safari and Zarnegar 2013). However, some of these meth-
ods required prolonged reaction times, high catalyst loading, 
the use of expensive and corrosive reagents, and strongly 
acidic conditions. Due to these problems, citric acid has 
been attracting the attention of chemists as an alternative 
green catalyst. Under the improved protocol, citric acid (d) 
catalyzed the three-component reaction involving aromatic 
aldehyde 56, acetamide 57, and 2-naphthol 55 under the neat 
condition to synthesize the desired compound in high yields 
(87–94%) as shown in Scheme 15. Moreover, citric acid is 
more favourable than other catalysts, as it is a biodegradable, 
cheap, non-corrosive, and non-toxic. In this experiment, the 
calculated turnover number (8.7) and turnover frequency 
(34.8  h−1) demonstrated that the optimized reaction condi-
tion was achieved with the use of 10 mol% of citric acid as 
catalyst and heated under 120 °C.

Next, a citric acid-mediated synthesis of hexabenzyl 
hexaazaisowurtzitane 61 was developed (Shokrollahi et al. 
2016) via the condensation of benzylamine 59 with glyoxal 
60 (Scheme 16). The synthesis of hexabenzyl hexaazai-
sowurtzitane was reported to have the best results when 
only 5 mol% of citric acid (d) catalyst was used and with 
acetonitrile–water as the solvent. Besides, the reaction takes 
5 min with ultrasonic power of 150 W producing high yields 
(89%) of the desired hexabenzyl hexaazaisowurtzitane. Pre-
vious methodologies utilized formic acid as a catalyst for the 
synthesis of hexabenzyl hexaazaisowurtzitane. However, the 
formic acid has been proven to be corrosive to most alloys 
including stainless steel (Shokrollahi et al. 2016; Singh et al. 
2018). Therefore, citric acid is a more favourable catalyst as 
it is non-toxic and biodegradable, as well as well known to 
catalyze a variety of organic reactions. When coupled with 
ultrasound irradiation, the reaction was found to have good 
reaction yields and completed within a shorter reaction time 
as demonstrated in this work.

Scheme 14  Mechanism of formation of 3-pyrrolin-2-ones. Reaction condition: aromatic aldehyde (1.0 mmol), aniline (1.0 mmol), diethyl acety-
lene-dicarboxylate (1.0 mmol), citric acid (2.0 mmol) in ethanol (4 mL). Notes: Ph (phenyl),  H2O (water)

Scheme 15  Synthesis of amidoalkyl-2-naphthols. Reaction condition: 2-naphthol (1.0 mmol), aromatic aldehyde (1.0 mmol), amide (1.2 mmol), 
citric acid (10 mol%) at 120 °C under solvent-free conditions. Notes: °C (degree Celsius), mol% (mole percent)
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Pectin

Pectin is a naturally occurring polymer that has applications 
in the fields of medical, pharmaceutical, and biotechnology 
industries. In the food and beverage industry, pectin is used 
as thickening, bulking and colloidal stabilizer agent. The 
source of commercial pectin is from the citrus rind (Thakur 
et al. 1997; Sriamornsak 2007). Over the past years, the 
use of pectin in organic synthesis has received consider-
able attention among chemists due to its biodegradable and 
green nature as an organic catalyst. One of the examples 
was found on the synthesis of tetrahydrobenzo[b]pyran 65 
and 3,4-dihydropyrano[c]chromene 67 (Kangani et al. 2016) 
using this environmentally benign catalyst. A one-pot three-
component reaction of benzaldehyde 62 with malononitrile 
63, and dimedone 64 or 4-hydroxycoumarin 66 exclu-
sively lead to the targeted products, 65 and 67, respectively 
(Scheme 17). Scheme 18 shows the plausible mechanism for 
the production of 65. The great interest in this catalyst was 
due to the green and biodegradable property of pectin (e) 
as an organic catalyst. Furthermore, the tetrahydrobenzo[b]
pyran 65 and 3,4-dihydropyrano[c]chromene 67 syntheses 
mediated by pectin (e) were found to be in excellent reaction 
yields, which indicated that the current catalyst can act as 
green alternative to other catalysts for the identical organic 
reactions (Table 2).

The presence of food additives as catalysts in organic 
reactions also has the utility for organic reactions to be 
performed at room temperature. One such reaction was 
identified in the pectin (e) catalyzed oxopyroles and furan-
2(5H)-one’s syntheses (Kangani et al. 2018). The result of 
this finding showed that the reaction can be carried out suc-
cessfully at room temperature, which was desirable in mini-
mizing the economic and environmental impact. Scheme 19 
shows a proposed mechanism for the synthesis of dihydro-
2-oxopyroles 72.

Oxalic acid

Oxalic acid or commonly known as oxalate is a compound 
that occurred naturally in plants. Oxalic acid is usually found 
in vegetables such as spinach, carrots, rhubarb and bam-
boo shoots. Dabiri et al. (2007) prepared quinolines 75 via 
the Friedländer annulation in the presence of oxalic acid 
(f) as an organic catalyst. The reaction pathway involved 
2-aminobenzophenone 73 and ethyl acetoacetate 74 which 
leads to the formation of quinolines 75 under solvent-free 
condition as shown in Scheme 20. The result showed that 
the desired compounds can be efficiently furnished and 
obtained in excellent yields (88–95%) via condensation 
reaction followed by cyclodehydration steps. The unique-
ness of employing oxalic acid in mediating this reaction 
including eco-friendly nature, inexpensive and solvent-free 
condition, which makes this catalyst more superior than the 
use of toxic catalysts and solvents in the previous studies. 
Table 3 summarizes the previous methods and their yields 
in the synthesis of quinoline.

The use of oxalic acid for organic transformation is 
recommended by chemists as the reaction can be carried 
out in a solvent-free condition. One of these examples 
was demonstrated by Sarkate et al. (2013), which success-
fully employed oxalic acid (f) as a green catalyst for the 
synthesis of 1,5-benzodiazepines 78 under the solvent-free 
condition at 80 °C. The reaction commenced by reacting 
o-phenylenediamine 76 and α, β-unsaturated ketones 77 as 
presented in Scheme 21. Excellent yields (76–96%) of the 
desired product were achieved within a short reaction time. 
A plausible mechanism for the synthesis of 1,5-benzodiaz-
epines is illustrated in Scheme 22. In the reported literature, 
previous methods have suffered from several drawbacks and 
limitations in using costly and toxic catalysts or reagents, 
associated with tedious work-up and resulting in low prod-
uct yields. Alternatively, the present method developed by 

Scheme 16  Mechanism of for-
mation of hexabenzyl hexaazai-
sowurtzitane. Reaction condi-
tion: benzylamine (8.5 mmol), 
glyoxal (3.75 mmol), citric acid 
(0.05 mmol) in acetonitrile 
(7.75 mL) and water (0.775 mL) 
under conventional stirring and 
ultrasonic radiation condition. 
Notes:  H+ (hydrogen ion),  H2O 
(water), Ph (phenyl)
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Scheme  17  Synthesis of tetrahydrobenzo[b]pyran 65 and 
3,4-dihydropyrano[c]chromene 67. Reaction condition: aro-
matic aldehyde (1.0  mmol), malononitrile (1.0  mmol), dimedone 

(1.0  mmol) or 4-hydroxycoumarine (1.0  mmol), pectin (0.05  g) in 
water:ethanol or ethanol solvent system at room temperature

Scheme 18  Mechanism of formation for tetrahydrobenzo[b]pyran 65. Notes: the reaction were catalyzed by pectin in ethanol–water solvents 
system. Ar (Aromatic)
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the authors offers advantages which includes a more envi-
ronmentally friendly procedure, cost-effective catalysts, 
easy work-up, shorter reaction time, and reduction of waste 
production.

Another example of this approach was found in the prepa-
ration of 2-(substituted phenyl) phthalazin-1(2H)-ones 81 

using oxalic acid (Sangshetti et al. 2015). A model reac-
tion of substituted phenyl hydrazine 80 and phthalaldehydic 
acid 79 was established using water as a solvent in the pres-
ence of oxalic acid (f) (Scheme 23). This environmentally 
benign protocol afforded the targeted compound in excellent 
yields (95–98%) via dehydrative cyclization. The presence 

Table 2  Comparison of previous methods and their reaction yields in the syntheses of tetrahydrobenzo[b]pyran 65 and 3,4-dihydropyrano[c]
chromene 67 

min (minute), r.t (room temperature), % (percent)

Product Catalysts Conditions Time (min) Yield (%) References

65 Basic ionic liquid catalyst Water, 60 °C 15 95 Yang et al. (2015)
65 Triethylamine Ultrasound Irradiation 120 98 Auria-Luna et al. (2020)
65 γ-cyclodextrin/deep eutectic solvent Solvent-free, 60 °C 15 98 Xiong et al. (2019)
65 Trifluoroethanol Reflux 300 90 Khaksar et al. (2012)
67 Cobalt Orthophosphate Water/Ethanol, 80 °C 25 97 El Hallaoui et al. (2019)
67 1,4-diaza-bicyclo[2.2.2]octane-based 

bis-dicationic ionic salt
Water, 100 °C 20 95 Zabihzadeh et al. (2020)

67 Ammonium acetate Ionic liquid, 100 °C 50 94 Mhiri et al. (2020)
67 Piperazine Water, 90 °C 135 96 Yousefi et al. (2018)
65 Pectin Water/Ethanol, r.t 60 90 Kangani et al. (2016)
67 Pectin Water/Ethanol, r.t 10 90 Kangani et al. (2016)

Scheme 19  Tentative mechanism of dihydro-2-oxopyroles syntheses. Reaction condition: mixture of amine (1.0 mmol), dialkyl acetylene-dicar-
boxylate (1.0 mmol), aldehyde (1.5 mmol), pectin (0.05 g) in water:ethanol (1:3) at room temperature. Notes: Ar (Aromatic)

Scheme  20  Synthesis of quinolines. Reaction condition: 2-aminobenzophenone (1.0  mmol), ethyl acetoacetate (1.1  mmol), oxalic acid 
(0.1 mmol), heated at 80 °C under solvent-free conditions for 2 h. Notes: h (hours), °C (degree Celsius), Ph (phenyl), mol% (mole percent)
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of oxalic acid in the synthetic route helps in the protonation 
at the carbonyl carbon of phthalaldehydic acid (stage I). Sev-
eral synthetic methods for the synthesis of phthalazinones 
have been identified in the literatures. However, these syn-
thetic methods involve harsh reaction conditions, prolonged 
reaction times, and required strong acids and bases. The use 
of oxalic acid in organic reactions is economical, mild, and 
easy to handle. In addition, the advantage of this catalyst is 

also associated with a marked decrease in reaction time and 
only requires water as the sole solvent.

Saccharin

Over the past, saccharin plays a role as an artificial sweetener 
to enhance the sweet taste of the food (Tripathi et al. 2006). 
Besides, it is also generally used as a calorie-free additive 

Table 3  Comparison of previous methods and their reaction yields in the syntheses of quinoline 75 

min (minute), °C (degree Celsius), % (percent)

Catalysts Conditions Time (min) Yield (%) References

L-proline/1,3-dimethylimidazolium methyl sulfate ionic liquid 90 °C 30 98 Tasqeeruddin and Asiri (2020)
4-Toluenesulfonic acid Water/Ethanol, 80 °C 720 99 Zhou et al. (2018)
Calcium trifluoromethanesulfonate/ Tetrabutylammonium 

hexafluorophosphate
Solvent-free, 120 °C 300 98 Singh and Yaragorla (2017)

Functionalized imidazolium salt Solvent-free, 100 °C 960 96 Gisbert et al. (2019)
4-Imidazol-1-yl-butane-1-sulfonic acid Toluene, 50 °C 30 94 Khaligh et al. (2018)
Nafion NR50 Microwave/Ethanol 60 92 Chan et al. (2020)
Oxalic acid Solvent-free, 80 °C 120 90 Dabiri et al. (2007)

Scheme 21  Synthesis of 
1,5-benzodiazepines. Reaction 
condition: o-phenyldiamine 
(10.0 mmol), α, β-unsaturated 
ketones (10.0 mmol), oxalic 
acid (0.1 mmol), heated at 
80 °C under solvent-free 
conditions. Notes: °C (degree 
Celsius)

Scheme 22  Mechanism of for-
mation for 1,5-benzodiazepines 
catalyzed by oxalic acid
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in beverages and food products (Larsen 2012). Recently, 
saccharin has gained attention among researchers as it has 
high catalytic applicability in organic transformations as it 
is easily available, requires very mild reaction condition, 
and efficiently water-soluble. Bhandari and Gaonkar (2015) 
was the first to report on the synthesis of pyrroles derivatives 
achieved using saccharin as a green catalyst. The synthesis 
of N-substituted 2,5-dimethylpyrroles 84 involved the reac-
tion of various hydrazides 83 and hexane-2,5-dione 82 in 
the presence of saccharin (g) (Scheme 24). This synthetic 
protocol leads to good reaction yields (80–92%) of the tar-
geted products via Paal-Knorr condensation, with turnover 
number (3.4) and turnover frequency (6.9  h−1) reported for 
the optimized reaction condition. A close inspection of pre-
vious methods for the Paal-Knorr condensation, they often 
involved the use of strong acids, expensive and toxic rea-
gents. The present work offers more advantages compared to 
the previous methods where the use of saccharin displayed 
a cost-effective, non-toxic, and easy to handle method. 

Moreover, it is recyclable for another two runs without sig-
nificant loss in its activity.

Another saccharin-mediated approach was identified in 
the work of Mohamadpour et al. (2016). An efficient sol-
vent-free 3,4-dihydropyrimidine-2-(1H)-ones 88 method 
was developed, when urea/thiourea 86, aromatic aldehydes 
85, and alkyl acetoacetate 87 were reacted in one-pot in 
the presence of saccharin (g) as catalyst. Under this pro-
tocol, the turnover number (4.6) and turnover frequency 
(18.2  h−1) were reported for the optimized reaction condi-
tion. In addition, various types of benzaldehydes were tol-
erable and reacted following the Biginelli manner, which 
afforded the targeted compounds in high yields (80–93%). 
The solvent-free and the use of the inexpensive catalyst of 
this protocol provides attractive advantages compared to 
previous protocols. The mechanism for the formation of 
88 catalyzed by saccharin is illustrated in Scheme 25. A 
multicomponent reaction involving phthalamide 89, alde-
hydes 91, hydrazine hydrate 90, and malononitrile 92 under 

Scheme 23  Mechanism of 2-(substituted phenyl) phthalazin-1(2H)-one’s syntheses. Reaction condition: phthalaldehydic acid (10.0 mmol), sub-
stituted phenyl hydrazine (10.0 mmol), oxalic acid (0.1 mmol) in water (15 mL) as solvent. Notes:  H2O (water)

Scheme 24  Synthesis of 
N-substituted 2,5-dimethyl-
pyrroles. Reaction condition: 
hexane-2,5-dione (6.0 mmol), 
hydrazide (4.0 mmol), saccharin 
(1.0 mmol) in methanol (6 mL) 
while stirred for 30 min at room 
temperature via Paal-Knorr 
condensation reaction, Notes: 
Me (methyl), min (minute)



3375Environmental Chemistry Letters (2021) 19:3359–3380 

1 3

solvent-free conditions were reported by the same author 
to afford pyrazolo[1,2-b]-phthalazine-5,10-dione 93 in the 
presence of saccharin (Scheme 26). Surprisingly, this green 
approach afforded an excellent yield (82–93%) of the desired 
products within a shorter reaction time. Generally, the use 
of saccharin is much safer than previous protocols for the 
identical organic reaction.

Inspired by the previous study, the same authors (Moham-
adpour et al. 2016) have synthesized a series of dihydro-
2-oxypyrrole 98 via a one-pot four-component reaction, 
involving aromatic 94, aliphatic amines 96, formaldehyde 
97, and dialkyl acetylenecarboxylate 95 in the presence of 

saccharin (g) as organic catalyst (Scheme 27). Excellent 
reaction yields (85–94%) were recorded using saccharin as 
a green catalyst. A close inspection on the previous meth-
ods revealed that the majority of the literatures reported 
on the use of unsustainable methods, such as the use of 
tetrachlorobis(tetrahydrofuran)zirconium (Sajadikhah et al. 
2016), silica gel-supported tungstic acid (Reddy et al. 2014), 
Brønsted acidic ionic liquid (Zhang et al. 2015), sulfonic 
acid functionalized nanoporous silica (Ziarani et al. 2014), 
and molecular iodine (Ziarani et al. 2014) as catalysts. This 
has prompted the current investigation towards an environ-
mentally friendly method, which uses saccharin as a green 

Scheme  25  Mechanism of formation for the synthesis of 3,4-dihy-
dropyrimidine-2-(1H)-ones. Reaction condition: aromatic aldehyde 
(1.0  mmol), urea/thiourea (1.5  mmol), ethyl/methyl acetoacetate 

(1.0  mmol), saccharin (0.15  mmol) under solvent-free conditions. 
Notes:  H2O (water),  H+ (hydrogen ion), Ar (Aromatic)

Scheme 26  Mechanism of formation for the pyrazolo[1,2-b]-phthala-
zine-5,10-diones. Reaction condition: phthalimide (1.0 mmol), hydra-
zine monohydrate (1.0 mmol), aromatic aldehyde (1.0 mmol), malo-

nonitrile (1.0 mmol), in the presence of saccharin (0.2 mmol). Notes: 
Ar (Aromatic),  NH3 (ammonia)
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catalyst because it is a cost-effective and non-toxic catalyst 
but without compromising on catalytic activity.

Last but not least, the use of saccharin was also dem-
onstrated by Moradi and Aghamohammad Sadegh (2017) 
whereby the synthesis of dihydropyrano[2,3-g]chromenes 
102 was carried out by using sodium saccharin. The one-
pot five-component reaction between aryl aldehyde 100, 
2,5-dihydroxy-1,4- benzoquinone 101, and malononitrile 99 
in the presence of sodium saccharin (g) under microwave 
irradiation was developed to obtain 102 (Scheme 28). This 
efficient and eco-friendly approach enables the synthesis of 
102 in excellent yields (78–90%). The benefits of the current 
method include simplicity in reaction workup, cost-effective 
catalysts, and producing high reactions yields within short 
reaction times. Table 4 summarizes the different methods 
and their yields performed by the author in the synthesis of 
dihydropyrano[2,3-g]chromenes 102 (Moradi and Aghamo-
hammad Sadegh 2017).

Conclusion

At industry level, the growing demand for the finite ele-
mental resources such as metals for industrial processes 
has led to concerns over the sustainability of the supply 
of these elements. Furthermore, intensive mining of these 
elements has increased the burden on the environment 
and at times lead to the issue of environmental pollution. 
Therefore, there are calls to search for greener alterna-
tives to reduce the use of elemental resources for chemical 

processes in the industries. Food additives, on the other 
hand, have been gaining interest not only in the food indus-
try but also in the chemical industry as elemental substi-
tutes contributing to sustainable organic reactions. The 
involvement of food additives as green catalysts for pre-
parative organic reactions has raised the interest of today’s 
scientists for the development of environmentally benign 
methodologies. Generally, food additives are regarded as 
“green catalyst” in organic syntheses and we believed that 
the next decade will mark a major development of using a 
green and sustainable method in promoting organic trans-
formations, for both academia and industries alike. Thus, 
the use of food additives can act as the alternative catalysts 
in achieving the goals of green and sustainable chemistry, 
as many benefits and green features described previously 
by scientists in this field. This review article specifically 
addresses the use of non-metals, biodegradable and green 
catalysts, namely the natural food additives that is signifi-
cant to address the issue of sustainable chemical processes 
at industrial and academia levels. In recent years, with 
more researchers increasingly investigating the chemical 
properties of food additives, their future applications have 
been evident and prominent in organic catalysis and green 
nanoparticle synthesis preparation. The current finding of 
this review identify one of the future challenges in the 
use of food additives as green catalyst is the stability and 
miscibility of the food additives, especially in large-scale 
operation, with deemed to be researched and reported in 
the future.

Scheme  27  Mechanism of formation for the synthesis of dihydro-
2-oxypyrrole. Reaction condition: amine (1.0  mmol), dialkyl acety-
lenedicarboxylate (1.0 mmol), aromatic amine (1.0 mmol), formalde-

hyde (1.5 mmol), in the presence of saccharin (0.15 mmol). Notes: Ar 
(Aromatic), OH (hydroxy)
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