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Abstract

Industrialization and human activities have led to pollution of ecosystems by metals and dyes, calling for advanced remedia-
tion methods. For instance, removal of water pollutants has been recently done using low-cost adsorbents. Here we review
adsorbents based on cellulose, zeolites, biochar and nanomaterials. Hybridized nanosorbents show adsorption capacities up
to five times higher than single materials, due to the combination of functions such as carboxyl, amino, thiol, hydroxyl, vinyl,
metals and phenolics. Integrating metals having high magnetization and superparamagnetic properties improves reusability
up to 10 cycles with minimal loss of pollutant removal efficiency.
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Abbreviations Introduction
BET Brunauer-Emmett—Teller
CTAB Cetyl trimethyl ammonium bromide There is interest in the creation of novel magnetic particles
EDS Energy dispersive spectroscopy and their substantial use in the treatment of wastewater efflu-
FESEM Field emission scanning electron microscope ents. The synthesis and the application of these magnetic
FTIR Fourier transform infrared spectroscopy particles are considered to be fast, relatively cost comparable
HRTEM High-resolution transmission electron and eco-friendlier in the discharge of toxic contaminants
microscope when compared to the other conventional technologies. The
NMR Nuclear magnetic resonance conventional treatment methodology includes both physi-
SEM Scanning electron microscope cal and chemical approaches that remove the expensive and
TEM Transmission electron microscope toxic contaminants causing the major risk to the environ-
TGA Thermogravimetric analysis ment (Xue et al. 2017). Although these traditional methods
XPS X-ray photoelectron spectroscopy like filtration, flocculation, coagulation, and mechanical
XRD X-ray Diffraction separation are used, the increase in the level of the contami-

nants provokes a need for some advanced technologies with
improved efficiency (Crini and Lichtfouse 2019). The major
lead in the usage of these magnetic particles is due to their
unique superparamagnetic feature, enhanced adsorption
capacities and specifically high surface area to the volume
ratio (Soares et al. 2020). Based on the crystalline structure,
D< Balaji Dhandapani numerous metallic particles are synthesized such as silver
balajid@ssn.edu.in; dbalajii @yahoo.com nanoparticles, gold nanoparticles (Perera et al. 2020), zinc
oxide nanoparticles, copper oxide nanoparticles and ferrite
nanoparticles (Vishnu et al. 2020). These nanoparticles with
. the size of 1-100 nm could be formulated by both top-down
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criteria, and they are highly evaluated on the processing of
material, ease of manufacturing, end product usage and their
risk assessment (Cai 2020). Table 1 illustrates the synthesis
of nanoparticles with advantages and disadvantages. The
small size and high surface area of these particles entrap pol-
lutants with a high efficient capacity when they are contacted
with the contaminated water (Prakash Sharma et al. 2018).

The numerous contaminants in the contaminated sites are
listed as hazardous metallic contaminants, and organic pol-
lutants such as pharma products, pesticides, and dyes. These
pollutants remain in the aquatic system and deteriorate the
health of both aquatic organisms and the social human com-
munities of the ecosystem (Abdelbasir and Shalan 2019).
Agriculture practice is also studied as one of the prominent
causes in the release of contaminants to the ecosystem in
the form of utilizing toxic pesticides and fertilizers for the
enhanced productivity of crops (Makvandi et al. 2020). The
numerous activities such as aquaculture using toxic patho-
gens, silviculture, hazardous chemical substances and vari-
ous heavy metals could contaminate the quality of ground-
water on the consecutive accumulation of toxic contaminants
in the environment (Ahmad et al. 2020).

Water treatment is considered as the most necessary tech-
nology, as the cost of treatment strategy is the prominent
concern among the overall treatment technology. There are
different metallic contaminants such as Pb, Ni, Cu, Co, Cd,
Cr, Hg and Zn released into the ecosystem as the industrial
pollutants from electroplating, leather tanneries and mineral
processing areas (Malik et al. 2019). Chemical wastes are
figured as a major threat and cause deleterious effects on the
aquatic environment. The treatment process and recovery
of water from them are challenging outcome and complex
processes. Dyes are figured as one of the main chemical
wastes, and their primary usage is from the textile industries.

They are also widely used in the other industries of wool,
leather, paper and silk. The complex aromatic structure in
dye molecules is the main problem of degradation (Kasiri
and Safapour 2014). Since they possess stable and thermal
resistance against degradation, they prevail in water for a
long duration and cause much severe threat to the aquatic
environment (Chowdhary et al. 2018).

Adsorption is predominantly considered among the other
treatment methodologies such as ion exchange, reverse
osmosis, phytoextraction, electrodialysis, etc. Adsorption
could reduce the operational cost and high energy consump-
tion on its application in large scale. The widely used adsor-
bents from several fruits and agricultural waste of low cost
are the added advantage of this process (Vicente-Martinez
et al. 2020).

The two types of sorption strategies are physisorption and
chemical adsorption. Physisorption occurs through forces
between the hydrogen bond of the particles, Vander Waal’s
forces, etc. Chemisorption occurs when the pollutants are
attracted to the adsorbent through a chemical bond (Crini
and Lichtfouse 2019). Magnetic particles integrated with
the numerous enzymes and metallic sites are used to pro-
duce numerous bio-valuable end-products. Because of their
vital and unique characteristic features, these particles are
preferred as the adsorbing materials in the discharge of met-
als and toxic dye contaminants (Vishnu et al. 2019, 2017).

Exhaustive analysis in the present studies reveals that the
specific entities integrated upon the surface of the sorbent
predominantly enhance the metallic binding and in degrad-
ing the complex aromatic groups. The hybridized metallic
magnetic particles integrated with the natural adsorbents
acts as the promising alternative sorbents in the removal
of both metal and dye molecules. Hereby, the present study
justifies the current exploration over the numerous magnetic

Table 1 Various approaches of nanoparticle synthesis with merits and demerits

Top-down approach
Mechanical milling
Chemical etching
Thermal ablation
Sputtering
Explosion processes

Bottom-up approach

Vapour deposition

Laser pyrolysis

Spray pyrolysis

Sol-gel process

Aerosol process

Spinning

Atomic/molecular condensation

Chemical vapour deposition

Molecular beam epitaxy

Physical vapour deposition

Synthesis of nanoparticles using
Bioreduction—

Precipitation

Microbial sources (Bacteria, fungi and
yeast)

Plant materials (Leaves, stems, seeds,
flowers)

DNA, cell lines, membranes

Advantages of top-down and bottom-
up approach

Bio reductions

Low energy consumptions and low
cost

Eco-friendlier method that eliminates
the discharge of noxious secondary
products to the ecosystem

The polyphenolic constituents act as
reducing and capping agents

High temperature and pressure are not
necessary

Nanoparticle synthesis

Disadvantages—Top-down and bottom-
up approach

Expensive

Release of toxic by-products

High temperature and pressure condi-
tions
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sorbents coated with specific substances to enhance the sur-
face area that has been induced with numerous functional
entities to enhance the remediation process.

Sources of pollutants

Dyes are the organic pollutants released from numerous
industries, get mixed with the natural resources and could
cause various deleterious effects on the organisms in the
aquatic environment. Appropriately, ten thousand numerous
dyes were released by the industries and around 0.7 million
tonnes were produced in global markets. Based on the vari-
ous sources, dyes are formulated under natural and synthetic
dyes. Natural dyes are obtained from some plant sources,
whereas the synthetic dyes are derived from organic and
inorganic constituents. Based on the charges, dyes are cat-
egorized into anionic, cationic and non-ionic dyes (Ngulube
et al. 2017).

Acidic dyes include acid yellow, acid violet 90, acid blue
193 that are used in the fabrication of microfiber nylon.
Basic dyes include Basic green 4 that is used in the Acrilan
products. Direct dyes include Direct yellow 12 and Direct
yellow 27 that are used in the synthesis of cotton stuff (Nid-
heesh et al. 2018). Dispersed and the reactive dyes include
pyrazole disperse dyes, Levafix red, blue and yellow CA
that are mainly used to fabricate wool, nylon and cotton
fabrics (Xiao et al. 2019b). Researchers have studied and
categorized dyes as acidic, reactive, basic, vat, direct and
azo dyes. The below schematic representation (Fig. 1) gives
the detail about the various classification of dyes and the
adsorbents used in the discharge of dye contaminants (Azari

et al. 2020). Figure 2 describes the adverse effects of toxic
metal and dye molecules.

Industrialization and urbanization result in the sequential
accumulation of metal contaminants such as Cu, Ni, As, Pb,
Zn, Fe and Cd in the water reservoirs. These heavy metals
show their toxic behaviour beyond certain permissible limits
when consumed by the other organisms and human beings
present in the environment (Xin et al. 2012). Table 2 rep-
resents the permissible limit of each metal and their toxic
effects on continuous intake.

Treatment strategies used in the discharge
of dyes and metal pollutants

Physical, chemical and biological treatment methodologies
are adopted in the assessment of noxious dyes and metallic
pollutant discharge. The physio-chemical method includes
coagulation, flocculation, ozonation and the biological treat-
ment is mainly necessary for the removal of noxious metallic
contaminants, nitrogen, phosphorous and organic constitu-
ents. Figure 3 explains the various physical, chemical and
biological treatment processes. The disadvantages of these
process are listed as the excessive formation of sludge, con-
sumption of huge space, the complex non-bio-degradable
nature of the dyes, the long time needed for the treatment
process. This leads to the treatment of industrial effluents to
be categorized under three systematic processes of primary,
secondary and tertiary treatments (Ghosh et al. 2016).

The primary treatment process involves the screen-
ing of the effluents with sedimentation and flocculation to
remove the unwanted suspended particles. Primary treat-
ment reduces the vital parameters of suspended particles,
biological oxygen demand, chemical oxygen demand,

Categorization of dyes

Optimum pH for maximum adsorption rate

(Based on the study from researchers)

r T T § v T T T 1
pH<4.5 pH>7 pH4.33 pH4.02 pH 3.45 pH5.15 pH 4.62
v v v v V y )
Acidic Basic Reactive Disperse Direct Vat Azo

Lignin based ) Polyvinyl alcohol based
adsorbents - composites - anionic
and cationic dyes

Azo Dyes

Photocatalytic and
hybrid metal
nanoparticles -
reactive dyes

Adsorbents of
different types

Carbon Nanotubes and
graphene oxides - Basic>
Acidic>Reactive>Azo>
Direct>Disperse>Vat

Polyamine- disperse dyes of
Class A at low sublimation and
Class D at high sublimation
temperatures

Fig. 1 Dye categorization and their effect on different pH and adsorbent types
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Fig.2 Accumulation of heavy metals and dyes in the aquatic system and adverse effect of the floral ecological communities in the ecosystem

Table 2 Heavy metals with permissible limits and deleterious effects

Heavy metal Permissible limits Deleterious effects References
(mg/L)
Arsenic 0.05 Several types of cancer and problems in the circulatory system Bashir et al. (2019)
Cadmium 0.005 Kidney associated health issues Bashir et al. (2019)
Chromium 0.1 Dermatitis associated health issues Paul (2017)
Copper 1.3 Kidney and liver-related associated with gastrointestinal health effects Paul (2017)
Lead 0.05 Physically associated with mental stress that enhances the kidney-related Bashir et al. (2019)
effects with the outcome of high blood pressure
Mercury 0.002 Affects the kidney Paul (2017)
Selenium 0.05 Causes hair loss and blood circulated issues Malik et al. (2019)
Zinc 0.15 Skin irritation Bashir et al. (2019)

bacteria and other organic matters. Figure 4 represents the
reduction of the above parameters after the primary treat-
ment strategy. The demerits of the primary treatment strat-
egy are the sludge disposal after the treatment process (R
Ananthashankar 2013).

The secondary treatment process is sequestrated in the
presence of various microbial sources subjected to aerobic
or anaerobic conditions. In this method, BOD is reduced
with the enhanced removal efficiency of 99% with 15-25%
phosphorous removal. Sludge generation is controlled by
the anaerobic treatment, and the disadvantage of this system
is the contamination of microbial sources and the need for
the laborious space to set up the equipment (Abd El-Rahim
et al. 2017).

The tertiary treatment process includes ion exchange,
reverse osmosis and the electrodialysis techniques (Ghasem-
ipanah 2013). The membrane separation technique separates
the contaminants from the water. The greatest disadvantage

@ Springer

of this method was membrane fouling (Marcucci et al.
2002). Among several techniques, adsorption is considered
as the prominent cost-effective treatment strategy used to
reduce both organic and inorganic contaminants.

Classification of various adsorbents

Adsorbents, based on the surface structural characteris-
tics and chemical nature, are broadly classified as natural
and synthetic adsorbents. Natural adsorbent materials like
sawdust and wood derivatives are chemically modified by
acids and alkali, have been used to discharge the metallic
and organic pollutants. Synthetic adsorbents such as pol-
ymeric resins and aluminosilicates, adsorbents prepared
from the agricultural residues and the microbial sources of
bacteria and fungi are incorporated into chitosan materials
and act as the sorbents to remove the organic and inorganic
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Fig. 3 Physical, chemical and biological treatment methods used in the removal of dyes and metallic contaminants

Fig.4 Percentage reduction of
various pollutants after primary
treatment technology

contaminants from the ecological communities (Pavithra
et al. 2019). Figure 5 illustrates the classification of various
adsorbent materials.

The adsorbent was categorized as conventional and non-
conventional adsorbents. Activated carbon is prominently
used as efficient adsorbents in many industries. It enhances
the adsorption rate with the adsorption capacity of the over-
all phenomena. The demerits are expensive, non-selective
phenomena, and it cannot be reused and regenerated. It
requires a huge consumption of energy (Crini et al. 2019a).
Table 3 gives a detailed description of the conventional and
non-conventional adsorbents that are formulated to discharge

the numerous organic and inorganic pollutants from the
waste effluents (Crini et al. 2019a).

Adsorption mechanism

The mechanism of solute that gets adsorbed into the adsor-
bent surface constitutes a pioneering role in the removal rate
of contaminants. The adsorption capacity mostly differs on
the selectivity of the material as an adsorbent, laborious cost,
various operational parametric constituents of pH, contact
time, temperature, the concentration of the adsorbent and the
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Classification of adsorbents
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- Metal hydroxides
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Fig.5 Classification of adsorbents and the various industrial low-cost adsorbents used in the removal of dyes and metal pollutants

Table 3 Classification of conventional and non-conventional adsorbents

Conventional Commercial Inorganic materials Ton-exchange resins
Activated carbon
Wood Activated alumina Polymeric organic resins
Peat Silica gel Non-porous resins
Coconut shells Zeolites Porous resins crosslinked with each
Coals Molecular sieves other
Anthracite
Bituminous
lignite
Non-Conventional Natural Agricultural Industrial products Activated carbon ~ Biosorbents Miscellaneous
adsorbent residues from solid resi- adsorbents
dues
Clays, Bark, Fly ash, Agricultural solid  Biomass from Cotton waste
Siliceous materi- Sawdust, Sludge, waste, microbial products,
als, Solid waste Metal hydroxide Industrial by- sources, Calixarenes,
Inorganic materials sludge, products Peat, Hydrogels
Red mud Chitosan,
polysaccharides

metal contaminants. Adsorption phenomena are explained
in the overall three steps (Sherlala et al. 2018; Das 2010).

¢ Film diffusion—Mass transfer of solute particles that gets
the film to the exterior surface of the adsorbing material.

e Solid surface diffusion—Adsorbate gets diffused inside
the pores of the adsorbent.

e Adsorbate gets interacted with the adsorbent through
physical forces or chemical binding between them.

Based on the interaction type, adsorption is majorly
categorized as physisorption and chemisorption. Phy-
sisorption occurs through electrostatic surface interac-
tions, hydrogen bonds and van der Waals force attraction

@ Springer

between the adsorbing material and adsorbate molecules.
Chemisorption is based on hydrophobic, covalent and
complex interactions between the adsorbing material and
solute molecules (Fig. 6) (Wan Ngah et al. 2011).

The kinetics and the isotherm models help to explore
the rate-determining mechanism of the adsorption process.
Pseudo-first-order determines the homogeneous adsorp-
tion and pseudo-second-order kinetics model describes
the heterogeneous adsorption system (Largitte and Pas-
quier 2016). Elovich evaluates the complex system of
the adsorption process and intraparticle diffusion system
determines the diffusion process of adsorbate in the adsor-
bent (Wang and Guo 2020).
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Adsorption isotherm models are examined to evalu-
ate the interactive mechanism between the adsorbate and
adsorbent molecules. Based on the equilibrium data and
adsorbent characteristics, several isotherm models are pre-
dicted and categorized under one parameter isotherm mod-
els (Henry), two-parameter isotherm models, three-param-
eter isotherm models, four-parameter isotherm models and
five-parameter isotherm model (Ayawei et al. 2017). The
two-parameter models are listed as Langmuir, Freundlich,
Dubinin—Radushkevich, Temkin, Flory—Huggins, Hills,
Halsey and Jovanovich (Al-Ghouti and Razavi 2020). The
three-parameter isotherm models are Langmuir—Freundlich,
Redlich-Peterson, Sips, Khan and Toth isotherm model (Foo
and Hameed 2010). The four-parameter isotherm models
are Fritz-Schlunder, Baudu, Weber-Van Vliet and Marcze-
wski—Jaroniee and the Fritz Schlunder describes the five-
parameter isotherm model(Al-Ghouti and Da’ana 2020).
Error analysis is required to evaluate the best-fitted isotherm
model with the experimental fit (Table 4) and some of the
methods are listed in Table 4 (Simsek and Beker 2014).

Table 4 Numerous error analysis methods and their description

Adsorbent

Optimal pH
Chemisorption

Temperature

+ . | Time 1] a1
. + o

Concentration Treated Water

Surface Complex Interaction

Treated Water

Cellulose as an adsorbing material in the discharge
of pollutants:

Cellulose is preferred as the potent adsorbing material in the
discharge of dyes and heavy metals since it has the unique
characteristics of renewable, biodegradable, less toxic and
highly available nature (Badruddoza et al. 2011). The sur-
face of the cellulose is modified with oxidation, halogena-
tion, sulfonation, esterification and etherification to enhance
the adsorption capacity of these dye contaminants. The acid
hydrolysed cellulose obtained from oil palm acts as a potent
adsorbing material in the discharge of methylene blue dye
from the aqueous solution. The crystal and porous nature
of cellulose molecules with an enhanced surface area of
5.64 m?g~! and unmodified physiological feature upon acid
hydrolysis provoke to be a potent adsorbent in the discharge
of methylene blue effluent of about 51.81 mg g~!' (Hussin
et al. 2016).

The surface modification of cellulose enhances the
adsorption capacity of 12.85 mg g~! due to the change in the

Methods Equation

Description

HYBRID—The hybrid fractional error function i [(chp Oca)? ]
[0 .
i=1 exp i

1 2
)

MPSD -Marquardt’s percent standard deviation [
100

EABS—The sum of the absolute errors i
Zl(Qexp - Qcal)i

ARE—The average relative error

ﬁ‘,[@"" m.>]
S 0w

100

P
ERRSQ—The sum of the squares of the errors 2 2
Z (Qexp - Qcal)i

[ (Qexp=Qcal)?
n=p = Qexp

Determined at low concentrations. n determines the data points
and p represents the isotherm parameter. Q,,, and Q. are the
experimental and the calculated values, respectively (Porter
et al. 1999)

To evaluate the degrees of freedom in the process (Simsek and
Beker 2014)

To determine the best fit with an increase in the magnitude
errors(Allen et al. 2004)

It diminishes the fractional error distribution for the wide con-
centration range(Demirbas et al. 2008)

The error gets increased with enhanced concentration (Allen
et al. 2004)
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morphological features of pore size (enhanced from 2.04 to
9.47 m?g™") after modification and charge of the compounds
covered on the exterior surface. Another study reveals that
the successful impregnation of cellulose from oil palm in
the glass plate shows the enhanced removal efficiency of
methylene blue dyes. The surface area after adsorption of
dye depletes to 8.32 m’g~! that proves the successful incor-
poration of dyes with cellulose compounds (Tan et al. 2018).

Modified cellulose obtained from the groundnut shell acts
as an effective adsorbing material of crystal violet dye with
the adsorbent capacity of 79 mgg™" due to their increased
surface area upon chemical modification (Zango and Shehu
Imam 2018). Chemically modified cellulose adsorbent was
intended more on the discharge of methylene blue dyes with
the surface area of 12.55 m’g~!, 30 m%¢g™!, 36.92 m’g~! and
the adsorbent capacity of 80.1 mgg™!, 101.01 mgg~! and
142.86 mgg'l. (Wei et al. 2017, 2018; Sun et al. 2016).
Cellulose was altered with the ionic liquid (4-methylimida-
zole) to the microsphere network structure using the sol—gel
strategy that used to remove the noxious acid orange 7 dye
molecules with the adsorption capacity of 279.45 mgg™".

The electrostatic interaction with the hydrogen bonding
and pi—pi interaction provokes the adsorption of methyl
orange dye molecules by the altered microporous cellulose
engineered acetate entity embedded on polyurethane sheets
amphoteric molecules in them (Ighrammullah et al. 2020).
However, more studies have to be done on the removal of
anionic, cationic and other azo dye compounds. Congo red
dyes are removed with the maximum adsorption capacity of
304 mgg~! (Hu et al. 2014).

Cellulose upon surface modified with the polyamide
molecules has shown the enhanced adsorption capacity of
the orange II dyes, with the increase in the abundant active
sites. The propagated three-dimensional structure provokes
the strong electrostatic and hydrogen bonding between the
surface layered amino terminated polyamide groups and the
sulphide group of the complex dye molecules and enhances
the adsorption capacity from 13.5 mgg~' to 1157.9 mgg™!
(Huang et al. 2020). Table 5 describes the characteristics
and mechanism of the reaction system of methylene blue
and other azo dye compounds, whereas more studies have
to be done on the removal of anionic, cationic and other azo
dye compounds.

The properties of functional entities, structure, enhanced
mechanical, thermal, structural and chemical stability, con-
tact area and adsorbent selectivity could decide the removal
efficiency of the heavy metals by any adsorbents (Cao et al.
2019). Though cellulose molecule possesses high mechani-
cal strength and chemical structure for being as a potent
adsorbent, the insufficient binding sites lead to the surface
modification of cellulose molecules with the specific func-
tional entities. The combination of amino terminated poly-
amide groups and the hydroxyl entity present in the surface
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of three-dimensional structure provokes the strong electro-
static and hydrogen bonding with the copper metal ions with
the maximum adsorption capacity of 137.48 mgg™! com-
pared with the normal cellulose molecule (47.02 mgg™")
(Kong et al. 2020).

The different functional entities of hydroxyl (—OH),
thiol (-SH), carboxyl (-COOH), carboxamide (—-CONH),
amino group (—-NH,) differ in the mechanistic removal of
pollutants. The binding between the functional group of
graphene with amino, hydroxyl and carboxyl group results
in a stronger interaction with lead than copper, whereas the
cellulose moiety with carboxamide produces a similar trend
in the adsorption of both copper and lead (Kong et al. 2020).

Hydrogels act as the potent adsorbing material in the dis-
charge of copper ion from the aqueous solution. When cellu-
lose material was grafted with styrene molecule, it enhances
the adsorption of hexavalent chromium ions from the aque-
ous solution (Hao et al. 2018). The halogenated cellulose
adsorbent with the pyridone diacid removes cobalt and lead
ions with the adsorption capacity of 122.7 mgg™" and 177.75
mgg~! (Sun et al. 2017). The studies reveal that the chemi-
cally modified cellulose molecule acts as the efficient adsor-
bent in the discharge of metal ions owing to their enhanced
surface area and pore volume ratio (El-Naggar et al. 2018;
Cao et al. 2017; Tang et al. 2013; Vijayalakshmi et al. 2017).
Table 6 represents the modified cellulose acts as the adsorb-
ing material in the discharge of various metal ions.

Zeolites as the adsorbing material in the discharge
of pollutants

Natural zeolites could act as the potent cost-effective adsorb-
ing material in discharging the cationic dye pollutants from
the contaminated sites. Ammonium is the most prevailing
contaminant that causes a severe threat to the aquatic organ-
isms present in the environment. (Ivankovi¢ and Hrenovié
2010; Ivankovi¢ and Hrenovi¢ 2010). The removal efficiency
correlates with the concentration of the surfactant present in
the exterior surface of the zeolite. Many types of research
have studied with zeolite as the potent adsorbent and it pos-
sesses 68 different structural characteristics (Goyal et al.
2016). Natural zeolites when treated or modified into the
low-cost adsorbents proved to be an efficient adsorbent in
discharging the toxic dye pollutants owing to their exchange
molecules at the extensive surface of the material. Adsorbent
gets attached to the exterior surface of the sorbent via phys-
ical attraction such as polar nature, hydrogen interaction,
dipole attractive forces, Vander Waal’s interaction (Kausar
et al. 2018).

Adsorption mainly depends on numerous unified feature of
size, structural feature, molecular mass and concentration of
the solution. Sepiolite, a clay sample acts as the potent adsor-
bent material in the removal of reactive azo dye molecules.
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The fabricated zeolites showed potent improvement owing to
their silica-alumina content of the particle which provides the
enhanced surface area of 190.2 ng_l, that increases over-
all sorption phenomena (Arefi Pour et al. 2016). Though the
hydrophilic entities on the zeolite surface retard the adsorption
of non-ionic groups, surface modified treatment via acids and
alkali enhances the adsorption through crosslinking and ion
exchange mechanism (Zhou et al. 2019).

The mechanism behind the dye removal with the hydroxyl
groups layered upon the zeolite surface has been depicted in
the below-given Eq. (1). The surface area enhances the specific
induction of entities upon acid and alkali treatment, promi-
nently enhances the overall adsorption phenomena appropri-
ately (Hernandez-Montoya et al. 2013).

Zeo — OH + Dye*™ — Zeo — O — Dye + H* 6))

Table 7 represents the zeolite as the adsorbing material in
the discharge of numerous toxic dye contaminants. Heavy
metal removal with the zeolites depends on the type of metal
ion and their binding affinity with the zeolites. A Bulgarian
natural zeolite when chemically modified with the acid and
alkali molecules such as HCI, NaCl, NaOH and CH;COONa,
they act as the enhanced adsorbent in the removal of numer-
ous metal ions like copper (6.3 mgg™!), cadmium (5.8 mgg™?),
nickel (3.2 mgg™!) and zinc (4.0 mgg™") (Wang and Peng
2010). The mechanism behind the adsorption of metals with
Zeolites has been observed in the two different equations. The
possible interaction between the metal contaminants with the
hydroxyl group contaminants was ascribed in Eq. (2) and the
ion exchange phenomena with the negative charges balancing
within the structural feature of the zeolites have been described
in the Eq. (3) (Hernandez-Montoya et al. 2013).

27e0 — OH + Me*™ — (Zeo — O), Me + 2H" 2)

2Zeo — OK + Me** — (Zeo — 0),Me + 2K* 3)

Table 8 represents the zeolites as the adsorbing material in
the removal of various heavy metal contaminants. The reac-
tion mechanistic procedure pioneered to be ion exchangeable
reaction where surface entities of the zeolite molecules adsorb
cation/anions (Zhou et al. 2019). The selective and competi-
tive behaviour in multiparticle adsorption phenomena attracts
researchers to use as a potent adsorbent, despite limitations
(Zhou et al., 2019).

Biochar as the adsorbing material in the discharge
of pollutants.

Biochar made from various biomass composites of
crop waste constituents, food and agricultural waste

@ Springer

components, animal wastes and sludge composites acts
as the robust adsorbent in removing various pollutants.
Metals affiliated with specific entities such as hydroxyl,
carboxyl and alcoholic moieties that were extensively dis-
tributed in surface of biochar (Chao et al. 2018). The mor-
phological and physiological traits of the biochar are based
on the modified constituents of carbon and grey obtained
at various pyrolysis temperature and choice of the base
material used for the fabrication of biochar. The low-cost
effective biochar adsorbent has emerged researchers to use
it in the discharge of various toxic dye molecules (Dai
et al. 2019).

Three types of biochar derived from pine wood, pig
manure and cardboard have proved to be the robust adsor-
bent in the removal of methylene dye molecules due to
the presence of high ash content in the biochar molecule
(Lonappan et al. 2016). The biochar obtained from the tree
Gliricidia sepium produced at the three different pyroly-
sis temperature of 300 °C, 500 °C and 700 °C shows the
promising result in the removal of crystal violet dye with
an enhanced adsorption capacity of 125.5 mgg™'. The bio-
char prepared at various temperature shows the different
range of carbon, hydrogen and nitrogen content, where
the high surface area of 808 m?g~! and pore volume (0.89
cm’g~!) was obtained at a higher temperature.

The morphological traits of pore size, volume, exten-
sive surface moieties produce physical interaction of Van
der Waals forces, pi—pi electron interchanging mechanism
between the adsorbent and pollutants. Chemical interac-
tions between the negative moieties on the surface of the
pollutants and dye molecule. The enhanced performance
is attained via a combination of physicochemical inter-
action between the sorbent and dye (Wathukarage et al.
2019). The biochar obtained from pecan nutshell shows
excellent behaviour in the removal of Direct red 4BS with
the adsorption capacity of 59.77 mgg~! from the aqueous
solution.

Physical traits of an area, surface area (29.18 ng_l) and
pore volume (0.058) promote physical interaction between
the surface of biochar and pollutants through exterior pore
diffusion, whereas the extensive carbonyl, carboxylate
and hydroxyl moieties promote electrostatically and pi to
pi interaction between them. It was inferred from studies
that Direct red, methylene blue and rhodamine interact with
hydroxyl, whereas acetyl orange binds with the carboxyl
group of biochar molecule (Chen et al. 2019). The biochar
obtained from the Caulerpa scalpelliformis shows excel-
lent behaviour in the discharge of Remazol Brilliant blue
R (0.2279 mmolg_l), Remazol Brilliant orange 3R (0.2311
mmolg™!), violet SR (0.2171 mmolg™"), black B (0.1781
mmolg™!) (Gokulan et al. 2019) and basic yellow dye (27
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mgg~!) molecules through physiochemical interaction with
extensive surface moieties of biochar (Aravindhan et al.
2007). Table 9 illustrates the biochar used in the removal of
different dye molecules.

The physiological and morphological traits of the biochar
produced from animals and plant residues act as an effective
adsorbent in the removal of heavy metals from our environ-
ment (Hassan et al. 2020). Heavy metal pollutants are highly
toxic substances present in the wastewater. Biochar from the
peanut shell adsorbs lead ions rapidly in comparison with zinc
from the contaminants. Lead ion binds with oxygen moiety
present in hydroxyl, carboxyl and alcoholic entities present in
the surface of biochar. They tend in the formation of metal-
hydroxyl reaction as a result of cationic exchange and electron-
egative nature where lead with the adsorption capacity of 107
mgg~! adsorbs faster than zinc with the adsorption capacity
of 4.45 mgg™! (Cho et al. 2017). Biochar from peanut shells
via pyrolysis is utilized for the removal of arsenite As (IIT) and
arsenate As (V) with the adsorption capacity of 4.76 mgg™".
Oxygen and amino moieties enriched in biochar surface react
with those metals to form a metalloid interactive complex mol-
ecule that could be removed easily by these sorbents (Sattar
etal. 2019).

Biochar from rice husk, animal manure, sawdust and sug-
arcane straw synthesized via pyrolysis and the physiochemical
trend was altered by pyrolysis temperature and feedstock based
material. At the enhanced pyrolysis temperature range from
350 to 650 °C, biochar shows an enhanced adsorption capacity
in the removal of metals from wastewater (Wang et al. 2020).
Modified biochar from sawdust and bark was synthesized via
co-pyrolysis with urea and used as a sorbent to remove cad-
mium with an adsorption capacity of 4mgg™! from the waste-
water. The presence of aliphatic moieties such as carboxyl
entity, amide I characteristics due to carbonyl and amide II
feature due to carboxylate moieties tend to form chemical and
hydrogen interactions with cadmium metal ions. The syner-
getic effect leads to provide stability of the biochar which in
turn promotes enhanced removal of cadmium with an adsorp-
tion capacity of 128.7 mgg ™! respectively (Zhu et al. 2020).

The interaction between the biochar and the pollutant mol-
ecule was due to electrostatic interaction, hydrogen bonding
between the adsorbent and adsorbate, pi—pi interaction. The
surface entities of hydroxyl and amino have to be identified
as electron donor sites promote the electrostatic and hydro-
gen bonding between the molecules. Presence of carboxylic,
keto and nitro groups acts as the electron acceptor sites that
enhance pi—pi interaction between the molecules (Dai et al.
2019). Based on the type of biochar and induction of surface
entities, the reaction procedure varies and Table 10 illustrates
the different biochar adsorbent in the removal of heavy metal
contaminants.

@ Springer

Economic perspective of cellulose, zeolites
and biochar

The cost of adsorbents plays a prominent role in the practical
large scale applications. The cost of the natural zeolites was
estimated by the geological survey from the US to be around
US$40—US$900 per metric ton and synthetic zeolites to
be around US$100—US$2,000,000 per metric ton. The
annual production of cellulose was estimated to be around
7.5x 10" tons (Abdul Khalil et al. 2014) and the price of
the activated carbon to be around US$2.0—US$2.2 per kg.
Research exploration on the biochar based adsorbents was
concentrated more for their low budget aspects of the raw
material collection and design fabrication (Ng et al. 2017).
The feedstock obtained from corn stocks has been accounted
to be around $75 per tonne. The cost of numerous waste was
listed as wood waste $78, sewage waste $70 and green waste
$55 per tonne (Shackley et al. 2011).

The annual production of biochar from wheat straw bio-
mass was accounted to be around 4, 75, 000 tonne. Also, the
production of biochar from wood residues was accounted
for as US$50-682.54 (Galinato et al. 2011). This is prone to
be six times cheaper than the commercial activated carbon
that costs around US$1500 per tonne (Huang et al. 2019).
Natural zeolites potentially acts as vital sorbents for the cost
0.08 US$/Kg, Bentonite for US$/kg 0.05-0.2, Clintoptilo-
lite for US$/kg 0.14- 0.29, chitosan molecule for US$/kg
16.5-10) (Kausar et al. 2018). The treatment cost of the
above adsorbents could be reduced substantially if the spent
low-cost adsorbents could be employed and reused for the
further treatment of heavy metal and toxic dye contaminants.
Researchers explored the numerous studies on integrating
the above adsorbents with the various nanoparticles and
observed the enhanced morphological and physiological
traits in the removal of those contaminants.

Merging of nanotechnology with low-cost
adsorbing materials

Classification of nano-adsorbents

Nanoparticles are synthesized through different constitu-
ents such as various polysaccharides, protein molecules
and polymers that increase the removal of contaminants in
comparison with the other adsorbents. The various charac-
teristic factors of the particle size, soluble nature, charge,
biodegradable nature, degree of toxicity and biocompatibil-
ity play a vital role in discharging both organic and inor-
ganic pollutants (Yi et al. 2019). Nanoadsorbents are mainly
categorized under carbonaceous nanomaterial, silica-based
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materials, metal or mixed metallic particles, polymer-based
composites, inorganic nano-adsorbents and magnetic adsor-
bents (Bagheri et al. 2020). Figure 7 illustrates the schematic
representation of the classification of nano-adsorbents.

Metallic nanoparticle includes metal oxide and mixed
metal particles. Their main advantageous features are easy
recovery, regenerating capacity, high thermal stability and
the enhanced surface area owing to their porous nature
(Mulenos et al. 2020). The reaction mechanistic pathway
in the formation of magnetite particles is ascribed as below
(Laurent et al. 2008),

Fe’* + 2Fe** + 80OH™ — Fe;0, + 4H,0 4)

The unstable resultant magnetite obtained from the
above reaction undergoes oxidation phenomena for the
conversion of stable maghemite particles (Laurent et al.
2008). The reaction was ascribed as,

Fe,0, + 2H' — yFe,0; + Fe’* + H,0 6)

The demerits in the formation are an agglomeration of
particle upon Vander Waals and other interactions which
tends the researchers to develop a support molecule made
of carbonaceous or silica or graphene materials (Xiao
et al. 2019a). The carbonaceous material includes acti-
vated carbon; carbon nanotubes enhance the adsorption by
formulating pi-pi interactions. Graphene molecules based
on their non-covalent interactions prevent agglomeration
of the nanoparticles that enhance the adsorption capacity
(Guo et al. 2014).

Graphene oxide promotes electrostatic and ion-
exchange interactions with pollutants owing to their
numerous oxygen-rich functional moieties. Due to the

inadequate adsorption sites, reduced graphene oxide
nanocomposites are preferred for their excellent electron
transport viabilities. Also, the magnetic graphene com-
posites provide adequate numerous binding areas with the
strong reusable facility. To enhance the colloidal nature
and stability, magnetic graphene composited with func-
tional organic entities is substituted by researchers (Lim
et al. 2018). The incorporation of metal nanoparticle with
graphene molecule enhances the removal of organic pol-
lutants and the mechanistic reaction in the formation of
magnetic graphene oxide was illustrated as (Bagherzadeh
et al. 2015),

3Fe’* + GrO(80H™) — Fe;0, + 4H,0 + 1GrO (6)

Chitosan molecule for their unique characteristics feature
of compatible and biodegradable nature upon the combina-
tion with the plant extracts acts as the prominent biosorbent
and has shown the excellent removal of noxious dyes. The
removal efficiency increased due to the electrostatic interac-
tion and hydrogen bonding between the three-dimensional
network channel of the adsorbent and the complex dye
molecules (Noreen et al. 2020). Mesoporous silica parti-
cles and aerogels are categorized under silica nanoparticles.
The unique functional group silanol and surface property
of silica particles enhance the adsorption process upon sur-
face complexation process (Jawed et al. 2020). The polymer-
based composites enhance the adsorption process on form-
ing the electrostatic interactions, surface complexation and
ion exchange mechanisms. The adsorption purely depends
on the choice of material and other physiochemical attributes
of thermal stability, pH and temperature (Ge et al. 2012).

Classification of nano-adsorbents

v v v v v v
Metallic Carbonaceous Silica Nanofibers and Polymer
nanoparticles nanomaterials nanomaterials nanoclays composites
L icles | | riats | | ais | | I+H i J[Qe”ge'sJ

Metallic oxide, mixed Carbon nanoparticles, Silicon nanoparticles,
silicon nanotubes
and nanosheets

carbon nanotubes
and nanosheets

oxide and Magnetic
nanoparticles

Surface engineered with numerous

Carbon nanofibers,
dendrimer nanofibers
fluorescent bionanofibers

Silica aerogel,
carbon aerogel

functional entities like amine, thiol, amide J

Advantages

- Enhanced adsorption capacity
- Reusability and easy recovery

Fig.7 Classification of nano-adsorbents surface engineered with different functional entities and their advantages
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Nanoparticles as an adsorbing material
in the discharge of pollutants

The facile advantageous feature of the nanoparticles is listed
as low cost, homogenous size and shape, devoid of aggre-
gating nature with enhanced stability, the enhanced surface
to volume ratio and purity (Jadoun et al. 2020). These uni-
fied characteristic features urge the researchers to use them
in a wide range of numerous applications of drug delivery
systems, wastewater treatment, bio-instrumental application
and also in the biosensor fabrications (Gopinath et al. 2020).
Recently, metallic nanoparticles synthesized from iron, tita-
nium, gold, copper, cobalt, lead and zinc oxide nanoparticles
are the considerable adsorbing materials fabricated to dis-
charge the noxious dyes from the industrial effluents.

Zero-valent iron nanoadsorbent processed with the chem-
ical (borohydride) reduction methods is widely used to treat
azo dyes released from industrial waste streams. Perhaps
the magnetic nanocellulose possesses numerous hydroxyl
entities and negative moieties such as carboxyl and sulphate
unit promote electrostatic binding between the cationic dye
pollutants and adsorbent. Anionic dye molecules could be
removed upon inducing positive amine group on the surface
of the nanocellulose where it provokes the strong interaction
between the amino and dye molecules (Varghese et al. 2019;
Yu et al. 2020). The zero-valent iron adsorbents are also
prominently used in them or in discharging the pernicious
vat green dye from the toxic water contaminated medium.

The graphene oxide nanocomposites and the hydroxyl
entity present on their surface provoke the chemical inter-
action between the complex dye molecules (Methylene blue)
that results in the enhanced adsorption capacity of 751.88
mgg~! (Zaman et al. 2020). The hematite iron derivatives
(aFe,05) with the magnetite iron derivatives (Fe;0,), aka-
ganeite (B-Fe,05) and maghemite (y-Fe,0;) iron derivatives
possess excellent superparamagnetic behaviour with high
catalytic activity and these properties are studied by many
researchers (Shanehsaz et al. 2015). So they are prominently
considerable to be the powerful nano-adsorbents that could
remove many hazardous dye molecules (methylene blue with
an adsorption capacity of 959.5 mgg~' and methyl orange
with an adsorption capacity of 849.3 mgg™") in the aquatic
system Yavari et al. 2016; Homaeigohar 2020). Table 11
represents the various nanoparticles used in discharging the
hazardous dye molecules.

@ Springer

The external surface of the magnetic nanoparticles is modi-
fied by numerous components, such as microorganisms, poly-
mers and plant extracts that could be preferred as the potent
adsorbents in the removal of toxic heavy metals from the
industrial effluents. Table 10 gives information about heavy
metal removal by magnetic nanoparticles. The nanoparticles
impregnated with the various plant constitutional extracts
were considered as an emerging approach in the adsorbent
fabrication, and it was advantageous by reducing the emission
of other secondary toxicants to the ecosystem (Vishnu and
Dhandapani 2020; Vishnu et al. 2019). The superparamagnetic
characteristic feature with the highly stable nature, made many
researchers focus on the reinforcement of iron oxide nanopar-
ticles (Xiao et al. 2019a; Bouhrara et al. 2011).

In numerous metal removal studies, magnetic nanoparticle
was coated with silica molecule on their surface that mainly
enhances the stable nature of the particle (Deng et al. 2005).
Graphene molecule acts as the prominent support molecule
and upon covalent and surface interactions with the magnetic
particles proves to be the potent adsorbent in the removal of
metal contaminants (Guo et al. 2014). Chitosan as the poly-
mer-based support molecule acts as the robust adsorbent on
fascinating the surface complex interactions with the solute
molecules that solely enhance the adsorption capacity (Xiao
et al. 2019a). Overall, the magnetic biochar fabricated in the
magnetic medium through pyrolysis or chemical precipitation
(Huang et al. 2019) shows the promising adsorbing features
of both heavy metals and the dye molecules (Li et al. 2020b).

Various hybrid nanomaterial as an adsorbing
material in discharging the heavy metals and dyes

The prominent advantage of nano-adsorbents is preferred
for their extensive surface area and intraparticle diffusion of
adsorbate inside the pores of the adsorbing materials. The
nanosize of the adsorbent fascinates the numerous active
sites that enhance the adsorptive capacity of metal and dyes
(Mashkoor et al. 2020). The versatile nature of surface modi-
fication of the different nanomaterials with the various func-
tional entities has gained more visibility among the researchers
because of their enhanced performance in terms of adsorption
capacity, stability, modified porous nature and increased sur-
face area to volume ratio (Brido et al. 2020).

The cointegration of cobalt and ferrite nanoparticles
upsurges the magnetic saturation feature which enhances the
superparamagnetic behaviour of a material. The mechanism
was ascribed as (Hosni et al. 2017)

8FeCl, + 14NH,OH — 7Fe(OH), + 14NH,CI + Fe** + 2C1
3)
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-, 1

7Fe(OH), + Fe** 4+ 2CI™ + 502 +(2n+ HH,0 —» 2[3Fe(OH)2 - Fe(OH),CI - nHZO] )

Co(OH), - 2FeOOH — CoFe,0, + 2H,0 (10) proven to be the potent sorbent in the removal of lead ions

Cobalt ferrite nanocrystals annealed from hydroxide com-
plex of cobalt hydroxide and iron oxyhydroxide compound.
The refined advanced feature comparable to iron particles is
due to the existence of primitive reactive phase of CoFe,0,
and subsidiary products of f-Fe,O5 and CoO, respectively
(Hosni et al. 2017). Graphene nanomaterials due to their
honeycomb network feature are readily categorized as the
oxidative and reduced graphene oxide. The vital functional
entities of carbonyl and epoxy groups constitute a prominent
role in the removal of dyes and various heavy metals (Ahla-
wat et al. 2020; Noormohamadi et al. 2018).

Multiwalled carbon nanocomposites promote pi—pi
interaction between the double bond carbon atoms in the
complex dye molecule. Hydrogen interaction was because
of entities such as amide, hydroxyl and carboxyl entities
and electrostatic binding occurred with a negative group of
nanocomposites and methylene blue dyes with an adsorp-
tion capacity of 232.5 mgg~! and hydronium entities attract
anionic methylene orange dyes with an adsorption capacity
of 106.3 mgg™! (Ahlawat et al. 2020).

Silica nanoparticles are studied by the researchers in
recent years owing to their unique hydroxyl groups at their
exterior surface (Li et al. 2020a; Jawed et al. 2020). The
mesoporous silica particles are prone to remove a certain
group of metals and dyes from the contaminated wastewater.
However, due to their low colloidal property, the aggrega-
tion of particle depletes the total surface area, resulted in the
reduced adsorption capacity of some metals and dyes. So the
particles are incorporated with iron and other substances to
increase the porosity and surface area from 638.13 m*g™!
to 1021.15 m?g~!, pore volume from 5.98 cm’g~! to 6.58
cm’g~! that enhances the adsorption efficiency (Shao et al.
2020; Jadhav et al. 2019).

Hydrogels act as the carrier molecules and are used in the
tissue engineering and drug delivery systems. Researchers
have evaluated the hybridization of carboxymethyl cellulose
nanocrystals with the redox hydrogel in discharging the haz-
ardous dye molecules. Cysteine supplies amino entity when
used as an extensive crosslinking agent in the hydrogel, pro-
motes reaction with the carboxyl groups and upon reacting
with the sulphide groups it forms a strong disulphide bond
with hydrogels (Crini et al. 2019b). This redox interactive
hydrogels act as the robust adsorbent in removing strong
organic dyes from the ecosystem (Li et al. 2020c). Cellulose
nanomaterial modified with the polymerization of N-iso-
propyl acrylamide molecule cross-reacted with the phytic
acid synthesized at the optimum pH and temperature has

@ Springer

with an adsorption capacity of 323.5 mgg~! in both the batch
and continuous system. The carboxyl groups present on the
surface of the sorbent relatively show enhanced interaction
with the lead ion.

Graphene molecule upon oxidation produces extensive
functional entities such as carboxyl, amino and hydroxyl
groups. Though the chemical feature of sporopollenin, a
macro compound was still profounded by researchers, it
was proven to be an adsorbent in the removal of metallic
contaminants. Wide extensive research was done on com-
bining the magnetic modified sporopollenin with graphene
oxide entities and was supplied with the amino group to treat
metal pollutants. The additional entity of -NH, promotes
adsorption of lead whereas, magnetic sporopollenin prevents
oxidation of iron particles and retains their magnetic nature
under acidic nature (Marcelo et al. 2020).

The magnetic biochar when impregnated with zinc sul-
phide nanocrystals it shows the excellent adsorption capac-
ity of lead (367.65 mgg™") with the prominent regenerating
capability due to the presence of superparamagnetic fea-
tures. The zinc nanocomposites promote surface interaction
with the extensive porous surface area and form complexes
with metal ions (Yan et al. 2015). The magnetic biochar
nanocomposites generated from the sewage sludge and wood
chips were fabricated through co-precipitation technique at
two distinct temperature acts as the potent adsorbent in the
removal of both hexavalent chromium ions with an adsorp-
tion capacity of 80.96 mgg~! and acid orange 7 dye mol-
ecules with an adsorption capacity of 110.27 mgg~'. The
electrostatic interactive occurs between chromate molecule
with a hydroxyl group and surface interaction promotes the
binding of complex dyes with magnetic biochar (Santhosh
et al. 2020). Table 12 evaluates the role of functionalized
nanomaterials with the different nanomaterials in discharg-
ing the hazardous metals and dye molecules.

It could be inferred that the nanoparticle when inte-
grated with the other molecules shows the altered mor-
phological traits. The prominent observations are done
through the numerous characterization techniques alike
Fourier transforms infrared spectroscopy (FTIR), scan-
ning electron microscope (SEM), transmission electron
microscope (TEM), energy dispersive spectroscopy (EDX),
Brunauer—Emmett—Teller (BET), X-Ray Diffraction (XRD)
and X-ray photoelectron spectroscopy (XPS). The particular
functional moieties of the hydroxyl group, carboxyl group,
thiol group, amino group which enhances the electrostatic/
ionic/covalent/ interactions combined with the hydrogen
bonding interactions upon the aromatic dye components and
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metal ion complexes. The bimetallic nano-adsorbents with
the altered functional entities promote the enhanced adsorp-
tion capacity with the advantageous feature of recovery and
reusability (Vishnu et al. 2020).

Perspective

Hybridized nano-adsorbents act as the robust and promi-
nent adsorbent in the removal of dual inorganic and organic
contaminants from the aquatic systems. Though numerous
treatment technologies of physical, chemical and physio-
chemical methods cleanse the organic and inorganic pollut-
ants, adsorption is primitively preferred by major research-
ers owing to their production cost and design simplicity.
The huge quantity of adsorbing materials is generated and
utilized in discharging both the organic and inorganic pol-
lutants using adsorption technique. Nanomaterials are exten-
sively considered in the numerous applications owing to
their advantageous feature of size and considerable surface
area with volume ratio. Magnetic materials, reduced to the
nanosize, are generated as an adsorbent to fill the gap of
reusing adsorbent for numerous cycles (Table 13).

The integrated approach of sustainable magnetic nano-
particles with the surface engineered entities plays a pivotal
role in the environmental remediation aspects. They act as
the great support and carrier molecules on the removal of
both organic and inorganic contaminants. Many researchers
are still exploiting on developing the specific adsorbent used
for the discharge of multiple organic and inorganic pollut-
ants. The consequence of the usage of modifiers that alters
the surface functional traits should be explored more by the
researchers. The numerous adsorption mechanism of the
nano-adsorbents in the removal of various organic and inor-
ganic contaminants should be explored in detail. The cata-
lytic degradation ability of the magnetic nano-adsorbents
in the removal of organic dye molecules has to be focused
more by the researchers. The usage of the spent adsorbents
after adsorption phenomena is the greatest disadvantage and
the researchers need to focus more on them. Since water is a
vital resource for all the floral organisms in our ecosystem,
developing a safe and advantageous cost-effective treatment
technique is necessary to protect our environment.

Conclusion

The toxic heavy metal and complex dye removal from the
wastewater effluents are embarked as the most vital treat-
ment in environmental protection. The improved urbaniza-
tion and the desire of mankind to move towards moderni-
zation result in the accumulation of various organic and
inorganic pollutants in the environment. The prolonged

accumulated pollutants impact all the organisms in our
ecological community. The current comprehensive review
had listed the distinct conventional and non-conventional
treatment technologies on the eradication of these organic
and inorganic pollutants. These technologies ignite the tar-
get of remodelling the water quality that helps to attain a
cleaner environment. Many countries around the world are
still incompetent to adopt the apt treatment strategy due to
the lack of appropriate equipment design, high production,
manufacturing and operational cost. On enabling the appro-
priate modern and viable treatment strategy in the large-
scale implementation, the pros and cons of the application
challenges should be strongly considered and analysed to
proceed further. Adsorption is still considered as the essen-
tial strategy in the purification of aquatic systems that are
greatly polluted with the numerous heavy metals and hazard-
ous dye contaminants.

The consecutive accumulation of the various pollutants
tends the researchers to develop the various adsorbents of
low cost from the different waste residues. In this review,
we had briefly explained about the low-cost adsorbents and
nano-adsorbents used in the removal of metal and dye con-
taminants. These vital adsorbents promote the enhanced
removal of both the inorganic heavy metal as well as the
organic dyes from the contaminated wastewater. The disad-
vantage of the low-cost adsorbent tends the researchers to
develop the various nano-adsorbents from distinct materials
that fill the gap of recovery and reusability. We have exten-
sively compared and listed the advantages of using nano-
adsorbents from low-cost adsorbents in the environmental
remediation aspect of metal and complex dye removal. The
boom of nano-adsorbents develops numerous advantages for
large-scale industries.

Advancement on the integrated nanoparticle towards
green approach prominently reduces the emission of second-
ary toxicants to the ecosystem. Researchers have intended
in the synthesis of hybridized nanomaterials and integrating
it with the various functional entities on their surface mol-
ecules. The enhanced efficacy upon their surface modifica-
tion with the change in the morphological traits had also
been illustrated. The classification of nano-adsorbents and
their influence on inducing them with the various functional
entities are also discussed. The future research has the scope
to develop the distinct nano-adsorbents in the low cost and to
use it in the industrial applications with improved efficiency.
To attain the aquatic system to be freed from such hazardous
metal and dye pollutants, researchers should tend to pro-
vide a promising solution with the extended technologies by
addressing the current pertaining challenges.
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