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Abstract

Global food demand and security are attracting stakeholders’ attention to food quality and safety. In particular, there is an
urgent need for efficient techniques to preserve food for a long time. This can be done by encapsulation in nanocarriers
such as nanoemulsions, nanoliposomes and nanolipid carriers. These nanocarriers protect functional ingredients such as
polyphenols, vitamins, minerals, flavors and antimicrobial agents. Nanocarriers improve stability, functionality, entrapment
efficiency and controlled-release of functional ingredients. Antimicrobial ingredients are among the most promising tools for
food preservation. The nanoencapsulated form of antimicrobial agents showed an increase in surface area, passive transport
and sustained release, which enhance the antimicrobial efficiency by comparison with the direct application of antimicrobial
agents. Here, we review lipid-based nanocarriers, nanoencapsulation of functional ingredients, and food application of lipid-

based nanocarriers as antimicrobial agents.

Keywords Encapsulation - Nanoemulsions - Nanoliposomes - Nanolipid carriers - Functional ingredients - Antimicrobial

agents

Introduction

The health awareness among consumers has increased the
demand for the development of functional or novel food
products containing bioactive compounds to impart certain
health benefits. However, the utilization of bioactive com-
pounds in food products has certain limitations in terms of
decomposition, low stability during food processing condi-
tions, which reduces their bioavailability as well as func-
tional properties (Saini et al. 2019a). Such drawbacks can
be overcome by a technique known as encapsulation to
encase these compounds in suitable matrices or a combi-
nation thereof, which not only enhances their stability but
also improves physicochemical properties (Lohith Kumar
and Sarkar 2017). This technique has significant applications
in the food as well as pharmaceutical industries and aims
at preserving the sensitive compounds against undesirable
circumstances until the controlled release of functional food
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ingredients. The most widely used technique is microen-
capsulation that increases the bioavailability of the compo-
nents, enables the modification of ingredients’ properties,
masks the undesirable aroma as well as taste and prevents
the interactions with other chemical structures (Barbosa-
Cénovas et al. 2005; Ting et al. 2014; Assadpour and Jafari
2018; Jafari 2017).

Microencapsulation is a broad category for the delivery
of functional food ingredients and is defined as the technique
to entrap the active components/agents such as antioxidant,
vitamins, minerals, fatty acids, phytosterols, lycopene and
living cells in another substance called wall material (Burey
et al. 2008; Champagne and Fustier 2007; McClements
et al. 2009a, b). These encapsulating/wall materials are also
known as shell, capsules, carrier material, coating, mem-
brane, matrix, or external phase (Wandrey et al. 2009; Fang
and Bhandari 2010). Microencapsulation techniques involve
the mechanical processes such as spray drying, fluidization
bed coating, spray cooling/chilling and extrusion as well as
chemical techniques such as molecular inclusion, interfacial
polymerization, coacervation and co-crystallization (Gibbs
et al. 1999; Zuidam and Shimoni 2009). Among different
mechanical processes, approximately 80-90% of encapsu-
lates are generally produced by spray drying (Porzio 2007,
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Milanovic et al. 2010). Spray cooling and chilling techniques
operate at different melting points of lipids to fabricate the
lipid-coated active agents, whereas in extrusion methods, the
dripping tools such as a syringe, pipette, a vibrating nozzle
or atomizing disk are used for releasing droplets of an aque-
ous solution of polymer into a gelling bath (Gouin 2004;
Zuidam and Shimoni 2009; Wandrey et al. 2009). The fluidi-
zation bed technique is generally applied on the lightweight
particles such as granules or powder particles either in dry-
ing or in encapsulation by fluid-bed coating (Dewettinck
and Huyghebaert 1999). However, remarkable interest has
been developed in nanoscale delivery systems owing to their
better functional properties including more encapsulation
efficiency, controlled release, improved stability, masking of
undesirable flavors and enhanced bioavailability of various
functional ingredients by reducing particle size as compared
to microencapsulation (Shishir et al. 2018).

With the advancements of nanotechnology in the food
sector, various other techniques are being devised to ensure
the safe delivery and bioavailability of different functional
compounds. At present, the traditional microencapsulation
systems are being replaced with nanoencapsulation systems
(having a size less than 1000 nm) that enhance bioavailabil-
ity by increasing the surface-to-volume ratio without affect-
ing the appearance of food products. These nanocarriers
have a high possibility of muco-adhesiveness and interaction
with metabolic factors and enzymes. Thus, these can easily
penetrate into target cells and release their cargos (Jafari
and McClements 2017; Katouzian et al. 2017; McClements
and Jafari 2017).

Nanocarriers can be classified as lipid-based (nanoe-
mulsions, nanostructured phospholipid carriers, nanolipid
carriers), nature-inspired (caseins, cyclodextrins, amylose),
special equipment-based (electrospinning, electrospraying,
nanospray dryer, micro-/nanofluidics) and biopolymers that
include single biopolymer nanoparticles, complex biopoly-
mer nanoparticles, nanogels, nanotubes/nanofibrils (Assad-
pour and Jafari 2018). This review encompasses the impor-
tant information regarding lipid-based nanocarriers for the
delivery of different functional ingredients and their food
application as antimicrobial agents.

Different types of lipid-based nanocarriers

Lipid-based nanocarriers are one of the major classes of
nanoencapsulation for the delivery of polyphenols in dif-
ferent food systems. These are divided into three groups,
which include nanoemulsions, nanoliposomes (nanostruc-
tured phospholipid carriers) and nanolipid carriers (Fig. 1).
Lipid-based nanoemulsions are important nanocarriers for-
mulated by the oil, water and emulsifiers or biopolymers.
These systems are further divided into different subgroups
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such as single (oil-in-water (O/W)), water-in-oil (W/O),
double (oil-in-water-in-oil (O/W/O)), water-in-oil-in-water
(W/O/W), pickering and structural (single interface layer,
double interface layer) nanoemulsions (Jafari et al. 2017,
Akhavan et al. 2018). Another group of lipid-based nanocar-
riers involves nanoliposomes (nanostructured phospholipid
carriers), which are produced using oils, phospholipids and
different solvents. Moreover, this group can be a monolayer,
multilayer or in combination with coating as in the case
of structured nanoliposomes/phytosomes (Demirci et al.
2017). Finally, the last group in lipid-based nanocarriers is
nanolipid carriers, subgrouped into solid lipid nanoparti-
cles, nanostructured lipid carriers and smart lipid nanocar-
riers that can be formulated by solid lipids or oils and solid
lipids (Pyo et al. 2017; Katouzian et al. 2017). The overall
classification of lipid-based nanocarriers along with their
fabrication methods is shown in Table 1.

Nanoencapsulation of different functional
ingredients

Functional ingredients such as antioxidants are the com-
pounds that inhibit the oxidation for the prevention of
cellular damage. These are classified as enzymatic and
non-enzymatic antioxidants. The enzymatic class of anti-
oxidants generally includes primary (catalase, superoxide
dismutase, glutathione peroxidase) and secondary (glu-
tathione reductase, glucose-6-phosphate) antioxidants.
Non-enzymatic antioxidants involve vitamins, minerals,
carotenoids and plant polyphenols. However, among these,
polyphenols are considered as the main subgroup of non-
enzymatic antioxidants (Esfanjani and Jafari 2017). These
non-enzymatic antioxidants (hydrophobic and hydrophilic)
are nanoencapsulated using different approaches to protect
them from adverse environmental conditions, to facilitate
gastrointestinal absorption and to enhance the bioavailability
(Paroha et al. 2020). In the last few years, numerous stud-
ies have been reported on nanoencapsulation that observed
this technique is very useful in the pharmaceutical, food and
nutraceutical sectors where proper protection and controlled
release of functional compounds are required (Sarkar et al.
2017). Different lipid-based nanocarriers used for the encap-
sulation of functional food ingredients have been discussed
in subsequent sections.

Nanoemulsions

Nanoemulsions are nanosized emulsions that are produced
using high and low energy approaches. Firstly, functional
ingredients are dissolved in oil (oil phase), which is gen-
erally followed by mixing them with aqueous phase using
blenders and/or high-speed homogenizers to obtain the
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Nanoemulsion (oil-in-water)

(©)

Solid lipid nanoparticles

. Aqueous phase

Oil phase

* Surfactant

Fig. 1 Lipid-based nanocarriers for the delivery of functional ingredi-
ents. a Nanoemulsions indicating the formational ingredients such as
surfactant, oil and aqueous phase with lipophilic or hydrophilic func-

coarse emulsions. Finally, the formed coarse emulsions are
further treated using high-energy approaches such as ultra-
sonication, high-pressure homogenization and high-speed
homogenization. These nanoemulsions are used to encap-
sulate different functional compounds such as lutein (Surh
et al. 2017), p-carotene (Teixé-Roig et al. 2020), lycopene
(Li et al. 2018) and curcumin (Li et al. 2016a) as shown in
Table 2. Also, these are used to improve the stability, texture,
nutritive and sensorial attributes of different food products
(Dasgupta et al. 2019a). Extensive studies have been reported
on the O/W nanoemulsions for encapsulating the lipophilic
compounds, in contrast to W/O nanoemulsions owing to
their significant benefits in various commercial applications.

Nanoemulsion (water-in-oil)

Nano-structured lipid carriers

Functional ingredient (Lipophilic)

Functional ingredient (Hydrophilic)

B s

(b)

Liposomes

Smart lipid nanocarriers

‘ Liquid lipid
z Liquid lipid
“.  Liquid lipid

tional ingredients. b Liposomes encapsulating the lipophilic as well
as hydrophilic functional ingredients. ¢ Various nanolipid carriers
consisting of solid lipid, liquid lipid and functional ingredients

A recent study revealed that the presence of multilayers in
nanoemulsions leads to an increase in hydrodynamic diam-
eter along with loading capacity (0.53 +£0.03%, w/w) and
encapsulation efficiency of 99.8 +0.8%, when the multilay-
ered nanoemulsions are formed by electrostatic technique
(layer-by-layer) to encapsulate the lipophilic compound
(e.g., curcumin). Hence, these nanosystems have great
potential to protect the functional properties of lipophilic
compounds and are used in different applications (Silva
et al. 2020). In another study, nanoemulsions loaded with
limonene and carvone can be a propitious approach to pro-
tect the tissues from cadmium-induced oxidative damage
(Shafaei et al. 2020). Some studies focused on the increase
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Table 2 Examples of lipid-
based nanocarriers loaded with
functional ingredients

Food ingredients Encapsulated materials References

Nanoemulsions

Phenolic compounds

Natural food colorants

Food flavors

Essential oils

Vitamins

f-carotene

Lycopene

f-carotene
Tocopherol
Carotenoids (Paprika)
Capsanthin
Resveratrol
Curcumin

Eugenol

Quercetin

Curcumin

Rutin and anthocynin
Olive leaf extract
Resveratrol

Crocin

f-carotene
Peppermint
D-limonene

Thyme oil

Eugenol

Kirill oil

Ricinus communis L. oil
Borage seed oil
D-limonene

Thyme oil

Bunium persicum Boiss & Zataria
Multiflora Boiss oil

Araucaria heterophylla resin oil

Nanostructured phospholipid carriers

Phenolic compounds

Mineral ions/salts

Essential oils

Curcumin

Luteolin

Quercetin & resveratrol
Epigallocatechin gallate

Rutin

Quercetin

Phenolic compounds of tea
Catechin & epigallocatechin gallate
Hesperetin

FeSO,.7H,0

Anethum graveolens essential oil
Rose essential oil

Cinnamon essential oil

Perilla oil

Chen et al. (2020a, b)
Zhao et al. (2020)

Chen et al. (2020a, b)
Feng et al. (2020b)
Jimenez-Escobar et al. (2020)
Kulkarni et al. (2020)
Shehzad et al. (2019)
Pinheiro et al. (2016)
Majeed et al. (2016)

Ni et al. (2017)

Liu et al. (2020a)

Akhtar (2014)
Mohammadi et al. (2016)
Davidov-Pardo and McClements (2015)
Mehrnia et al. (2016)
Barman et al. (2020)
Liang et al. (2012)

Jafari et al. (2007)

Wu et al. (2014)

Ma et al. (2016)
El-Messery et al. (2020)
Javanshir et al. (2020)
Rehman et al. (2020)
Feng et al. (2020a)

Guo et al. (2020)
Keykhosravy et al. (2020)

Elshamy et al. (2020)
Schoener et al. (2019)
Dasgupta et al. (2016)
Guttoff et al. (2015)
Ozturk et al. (2015)
Assadpour et al. (2017)
Bou et al. (2014)

Mourtas et al. (2014)

Wu et al. (2018)

Cadena et al. (2013)

Zou et al. (2014b)
Babazadeh et al. (2017)
Frenzel et al. (2015)

Zou et al. (2014a)
Rashidinejad et al. (2016)
Mukherjee et al. (2008)
Kosaraju et al. (2005)
Ortan et al. (2009)

Wen et al. (2011)

Wu et al. (2015)
Zamani-Ghaleshahi et al. (2020)

@ Springer



1112

Environmental Chemistry Letters (2021) 19:1107-1134

Table 2 (continued) Food ingredients

Encapsulated materials

References

Antimicrobial agents

Vitamins

Nanolipid carriers

Phenolic compounds

Natural food colorants

Essential oils

Vitamins

Nisin
Daptomycin
f-carotene
B,

A palmitate
E&C

A

E. By D,
C

C

Curcumin

Resveratrol

Quercetin

Myricetin

Ferulic acid
Epigallocatechin gallate
Hesperetin

Curcumin

Quercetin

B-carotene

Rutin

Curcumin & genistein
a-tocopherol

Lutein

f-carotene
Astaxanthin
Cardamom essential oil
Pomegranate seed oil
B,

E

D;

Taylor et al. (2008)

Liet al. (2013)

Tan et al. (2016)
Fathima et al. (2016)
Pezeshky et al. (2016)
Marsanasco et al. (2011)
Pezeshky et al. (2016)
Bochicchio et al. (2016)
Liu et al. (2017)
Hamadou et al. (2020b)

Mulik et al. (2010)

Pandita et al. (2014)

Liu et al. (2014)

Gaber et al. (2017)
Hassanzadeh et al. (2018)
Radhakrishnan et al. (2016)
Fathi and Varshosaz (2013)
Righeschi et al. (2016)
Huang et al. (2017)
Oliveira et al. (2016)
Babazadeh et al. (2016)
Aditya et al. (2013)

de Carvalho et al. (2013)
Lacatusu et al. (2013)
Zhang et al. (2013)

Li et al. (2016b)

Nahr et al. (2018)
Soleimanian et al. (2018)
Couto et al. (2016)
Uraiwan and Satirapipathkul (2016)
Mohammadi et al. (2017)

in shelf life of perishable products such as strawberry, meat
and fish sausages through nanoemulsion-based films and
coatings (Xiong et al. 2020; Chu et al. 2020; Feng et al.
2020b) as shown in Table 3. Chu et al. (2020) revealed that
the pullulan—cinnamon essential oil nanoemulsions coat-
ing enhanced the shelf life of strawberry at room storage.
Moreover, the better preservation (i.e., maintaining ten-
derness, minimizing the color and pH change, inhibiting
the microbial growth and retarding the protein and lipid
oxidation) of fresh pork loin under high oxygen-modified
atmosphere packaging was reported using nanoemulsions of
oregano essential oil and resveratrol loaded pectin edible
coating (Xiong et al. 2020). The tocopherol-loaded nanoe-
mulsions were formulated and added in fish sausages. The
results indicated better fish sausage quality was obtained
when nanoemulsions were incorporated at the concentration
of 250 mg/kg (Feng et al. 2020b). In a study, Huang et al.

@ Springer

(2020) enhanced the shelf life of carbonado chicken (ready-
to-eat) with nanoemulsion-based edible coating loaded with
e-poly-l-lysine and rosemary extract. Also, an improvement
was observed in the shelf life of Yao meat products (ready-
to-eat) through nanoemulsions-based coating containing
the mixture of nisin, star anise essential oil and polylysine
(Liu et al. 2020b). In addition, the nanoemulsions coat-
ing formed with Zataria multiflora Boiss essential oil and
alginate (coating material) was used to increase the shelf
life of fish fillets and inhibit the microbial flora than coarse
emulsion (Khanzadi et al. 2020). Furthermore, the shelf life
of edible oils could be enhanced by biopolymer nanoemul-
sions of Orchis mascula and Lepidium perfoliatum loaded
with Hyssopus officinalis L. plant extract (Savadkouhi et al.
2020). However, in one study the authors reported that active
films loaded with pickering emulsion of Marjoram essen-
tial oil showed strong antimicrobial and antioxidant activity
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than loaded nanoemulsion-based films (Almasi et al. 2020).
Moreover, functional food ingredients like omega-3 fatty
acids are very susceptible to oxidation and have poor water
solubility, although physical stability was maintained at 4
°C storage temperature through nanoemulsions formulated
using lactoferrin concentrations higher than 2% (Nunes et al.
2020). Besides that, multiple nanoemulsions (e.g., W/O/W)
that encapsulate both hydrophilic (caffeic acid) and hydro-
phobic (tocotrienols) bioactive ingredients were formulated
using the microfluidizer and ultrasound technique. The
results revealed that the ultrasound technique used lesser
energy (~ 12 times) than the microfluidizer to produce the
droplet size of ~235 nm (Raviadaran et al. 2020).

Valorization of various food industry wastes was done for
the extraction of bioactive compounds (Saini et al. 2019b;
Saini and Panesar 2020; Panwar et al. 2019) such as lutein
(Saini et al. 2020) and p-carotene (Barman et al. 2020) and
their use in the formation of nanoemulsions, which have
better functional properties in food systems (Dasgupta et al.
2019b). The phenolic extracts of grape and apple pomace
used for the formation of nanocapsules can be used as edi-
ble materials with improved antioxidant properties (Ahmed
et al. 2020). In another research, 3-carotene was extracted
from orange (Citrus reticulata) peel waste and encapsulated
in nanoemulsion-based delivery system. It was also reported
that B-carotene-loaded nanoemulsion improved the color and
enhanced the bioaccessibility of f-carotene when it was
added in fruit juice (Barman et al. 2020).

Vitamins are lipophilic (vitamins A, E, K and D) and
hydrophilic (vitamins C and B vitamins) in nature, and dif-
ferent nanocarriers are used for their improved delivery.
These include nanoemulsions (Vit-D), nanodouble emulsion
(folic acid), nanoliposomes (Vit-B,,), biopolymer nanoparti-
cles (D3), solid lipid nanoparticles (Vit-D,), nanohydrogels
(Vit-Bg) and nano-organogels (Vit-C) (Almajwal et al. 2016;
Assadpour et al. 2017; Bochicchio et al. 2016; Lee et al.
2016; Patel and San Martin-Gonzalez 2012; Tsuchido et al.
2015; Lo Nostro et al. 2007). Vitamins are susceptible to
different conditions such as temperature, oxygen and light
and can be oxidized during processing and storage depend-
ing upon their types (Katouzian and Jafari 2016). Herein,
vitamins usage in food supplements indicates shortcomings
(e.g., low stability and poor bioavailability) in the gastroin-
testinal tract situations (Walia et al. 2019). However, these
undesirable conditions can be circumvented using differ-
ent encapsulation techniques, which can be further used in
numerous food applications. O/W nanoemulsions of vita-
min D; were formulated by quillaja saponin as a natural
surfactant using different oils such as corn and fish oil,
medium-chain triglycerides, orange and mineral oil where
the highest bioaccessibility levels for vitamin D; were found
in nanoemulsions prepared from corn and fish oil as com-
pared to other oil phases (Ozturk et al. 2015). In another

study, vitamin D nanoemulsions were successfully prepared
and fed to different groups of healthy male albino rats.
Noticeable changes were reported in the levels of phospho-
rus, parathyroid hormone, calcium and alkaline phosphatase
(Almajwal et al. 2016). The formation of nanoemulsions
loaded with vitamin D5 and calcium citrate revealed that the
presence of vitamin Dj affects the size of oil core (dispersed
oil phase), whereas the calcium ions showed the impact on
the stability of nanoemulsions loaded with both oil- and
water-soluble micronutrients in the aqueous phase (Demisli
et al. 2020). Moreover, pea protein-stabilized nanoemulsions
loaded with vitamin D were formulated and reported that
transport efficiency of nanoencapsulated vitamin D across
Caco-2 cells was~5.3 times greater than the free form of
vitamin D suspension (Walia and Chen 2020). These loaded
nanoemulsions can be used for vitamin D fortifications in
nondairy foods. In another study, the formation of vitamin
D-encapsulated nanoemulsions by soya lecithin and Tween
80 reported that the mixed-surfactant-based nanoemulsions
of vitamin D can be used in the food and beverage industry
to overcome the deficiency of vitamin D (Mehmood and
Ahmed 2020).

Various studies have been conducted on the fabrication of
nanoemulsions for food colorants such as -carotene (Qian
et al. 2012) and lycopene (Li et al. 2018). Generally, most
of the food colorants, which include flavonoids, carotenoids,
betalains and chlorophylls, are unstable, hydrophobic and
susceptible to degradation in nature (Akhavan and Jafari
2017) making their encapsulation desirable using suitable
delivery systems such as nanoemulsions.

Food flavors such as allypyrazine, methoxypyrazines,
2-isobutyl-3-methoxypyrazine, acetyl-L-pyrazine, alde-
hydes, phenolics and terpenoids are important food ingre-
dients, which improve the organoleptic properties of food to
attract consumers (Asghari et al. 2017). Many of food flavor
structures show instability due to different processing and
environmental conditions. Therefore, it is a logical means
that these compounds are encapsulated by nanoemulsions
to preserve the functional and structural properties. Several
studies have been reported for the formation of nanoemul-
sions containing food flavors such as peppermint, citral,
B-carotene and D-limonene using different wall materials,
which include the medium-chain triacylglycerol (MCT)-
starch, MCT-buffer solution and maltodextrin (Liang et al.
2012; Zhao et al. 2013; Jafari et al. 2007).

Minerals are valuable food ingredients, which cannot be
synthesized by animals. Fruit and vegetables are the main
sources of these nutrient ions that play a major role in the
proper metabolic and biological activities to perform differ-
ent functions in the body (Gharibzahedi and Jafari 2017b).
These minerals are divided into two classes: macro-minerals
(Ca, Mg, Na, K, P, Cl, S) and microminerals (Fe, Mn, Cu, I,
Zn, Co, Mo, F, Se, Cr, B). Owing to their lack of solubility,
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stability and liability to oxidative degradation, it is required
to encapsulate these nutrient ions and salts in different nano-
carriers and protect them from undesirable reactions with
other components, thereby decreasing the sensory score of
the food product (Gharibzahedi and Jafari 2017a). Numer-
ous research studies for the nanoencapsulation of mineral
ions and salts have been successfully reported. For exam-
ple, Fe ions and C,H,FeO, were loaded in nanoemulsions
using cholesterol, phosphatidylcholine and gelatin as wall
materials (Tang and Sivakumar 2013; Naveen and Kanum
2014). Fe-loaded nanoemulsions showed the enhancement
in bioavailability under in vivo studies when compared with
the direct addition of Fe for milk enrichment (Naveen and
Kanum 2014). These different functional ingredient-loaded
nanoemulsions are characterized by various techniques such
as physical (dynamic light scattering, zeta potential, nuclear
magnetic resonance, X-ray diffraction, small-angle X-ray
scattering), separation (chromatography, field flow frac-
tionation) and imaging (transmission electron microscopy,
scanning electron microscopy, atomic force microscopy)
(Silva et al. 2012). Apart from enhancing the antioxidant
properties of these functional food ingredients, various
studies have also been reported on the nanoencapsulation
of antimicrobial agents and essential oils to increase their
antimicrobial properties (Ma et al. 2016; Xue et al. 2015).
This application of loaded nanoemulsions is most suitable
for the food industry. Some of the examples related to anti-
microbial agents/essential oils containing nanoemulsions
include peppermint oil (Liang et al. 2012), thyme oil (Xue
et al. 2015) and sago oil (Moghimi et al. 2016). Moreo-
ver, nanoemulsions have a wide scope to modify the texture
of food products. For example, a reduction in fat content
from 16 to 1% of ice cream has been successfully done by
food industries like Unilever through nanoemulsions. The
phenomenon of gelation is possible in nanoemulsions at a
low concentration of fat when compared with the emulsion.
This functional property can be useful in food industries
for producing products such as dressings, mayonnaise along
with the desired texture and flavor. Numerous patents have
been developed on the use of nanoemulsions for different
applications such as the manufacturing of clear beverages
(US20150030748, WO2011119228) and improved delivery
of active ingredients (US20170246303) (Schultz and Mon-
nier 2013; Bromley 2011; Wooster et al. 2017).

Nanostructured phospholipid carriers

At the nanoscale, nanoliposomes are colloidal structures,
which are formed by the right combinations of phospho-
lipids, oil and various solvents along with efficient energy
input. These nanolipid vesicles are being used in numer-
ous industries such as food, pharmaceutical and cosmetics
(Mozafari et al. 2008). Various research studies have been

@ Springer

conducted on nanoliposomes for encapsulation of functional
ingredients such as antioxidants, phenolic compounds,
antimicrobial agents, food colorants, essential oils, mineral
ions and salts. The synthesis of nanoliposomes loaded with
B-carotene was done using egg and marine phospholipids as
compositional ingredients. It was reported that marine phos-
pholipids exhibit lower polydispersity index and mean size,
inhibit lipid peroxidation, higher encapsulation efficiency
and better stability at 4 °C for 70 days than egg phospho-
lipids (Hamadou et al. 2020a). Different techniques have
been used for the preparation of liposomes such as thin-
film hydration, sonication and homogenization. Moreover,
these techniques also have been used in combinations such
as thin-film hydration & sonication for the fabrication of
nanoliposomes containing epigallocatechin-3-gallate (de
Pace et al. 2013). In addition, the combination of sonica-
tion and homogenization has been successfully used for the
preparation of nanoliposomes containing curcumin (Hasan
et al. 2014). In a recent study, the nanoliposomes loaded
with oleic palm oil were formed using different homoge-
nization techniques like ultrasonication, microfluidization
and high shear homogenization (rotor—stator); the results
showed that microfluidization provided better physical sta-
bility in terms of minimum polydispersity index and particle
size (Beltran et al. 2020). However, in another study, the
nanoliposomes containing shrimp oil were synthesized by
ultrasonication and microfluidization techniques. It revealed
that ultrasonication technique showed better results regard-
ing nanoencapsulation efficiency (93.64%), better retention
(e.g., docosahexaenoic acid & eicosapentaenoic acid) and
prevention from oxidation during storage (Gulzar and Ben-
jakul 2020).

These nanoliposomes when loaded with antioxidants and
phenolic compounds are improved the functional properties
such as antioxidant capabilities and solubility. For instance,
nanoliposomes loaded with quercetin and resveratrol (flavo-
noids) showed an increment in their antioxidant capabilities
(Cadena et al. 2013). In one study, fish oil was encapsulated
in nanoliposome, which was further incorporated in yogurt.
That indicated a higher content of eicosapentaenoic acid and
docosahexaenoic acid present in fortified yogurt. Also, forti-
fied yogurt showed closer results in terms of sensory evalu-
ation as compared to the control sample (Ghorbanzade et al.
2017). In a similar study, the olive leaf extract was loaded in
nanoliposomes and added in yogurt. The results observed the
enhanced antioxidant properties and no significant changes
in sensory characteristics and minimized the syneresis rate
in fortified yogurt. Therefore, these loaded nanoliposomes
can be used in different food systems to increase their nutri-
tive value and shelf life (Tavakoli et al. 2018).

Several studies also focused on the coating/films based on
the nanoliposomes and used in various food applications. In
a recent study, nanoliposomes doped with flaxseed—peptide
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fractions were formed and coated with chitosan (0.4%) and
showed an increase in encapsulation efficiency, antioxidant
activity and physical stability after the reconstitution process
of powder (Sarabandi and Jafari 2020).

Different coloring compounds such as f-carotene and
astaxanthin loaded in nanoliposomes showed high solubility,
high retention (>90%) of encased p-carotene and high resist-
ance against the thermal processing and UV rays (Moraes
et al. 2013; Yoo et al. 2010). Furthermore, the incorporation
of different carotenoids (e.g., lutein, f-carotene, lycopene,
canthaxanthin) through nanoliposomes also improved their
bioaccessibility (Tan et al. 2014).

Mineral ions/salts that include FeSO, and ferrous glyci-
nate were encapsulated using different wall materials such as
chitosan, soybean phosphatidylcholine, cholesterol, hydro-
genated phosphatidylcholine, cationic phospholipids and
egg-phosphatidylcholine (Ding et al. 2011a; Hermida et al.
2011). These nanoliposomes exhibited high barrier proper-
ties against the oxidative reactions, high stability, acceptable
encapsulation efficiency (69.6-76.2%) and decreased defi-
ciency of iron in rats more significantly than two free forms
of iron (Ding et al. 2011a, 2011b; Hermida et al. 2011).

Nanoliposomes have a high potential for nanoencapsula-
tion of essential oils and antimicrobial agents due to their
high loading capacity, high penetration ability into cells and
decreased potential toxicity of antimicrobial agents (Tham-
phiwatana et al. 2013; Halwani et al. 2008; Mugabe et al.
2006). Several studies have been done on nanoliposomes
loaded with nisin (Taylor et al. 2008), daptomycin (Li et al.
2013), Anethum graveolens essential oil (Ortan et al. 2009),
and it was revealed that these nanocarriers successfully
improved the functional properties of antimicrobial agents
and essential oils. Another study conducted on the encap-
sulation of rose essential oil in nanoliposomes reported the
entrapment efficiency of 89.46% along with an average size
of 94 nm (Wen et al. 2011).

Nanolipid carriers

The last group of lipid-based nanocarriers is nanolipid car-
riers. It is claimed that nanolipid carriers perform various
functions more efficiently than classical nanoemulsions,
for example, better control on release process, particle size
and less leakage of encased functional compounds (Pyo
et al. 2017; Katouzian et al. 2017). Various studies have
been done on both subgroups of nanolipid carriers, which
include solid lipid nanoparticles and nanostructured lipid
carriers. These are formulated using different techniques
such as hot homogenization, ultrasonication, emulsification-
evaporation and cold homogenization or the combinations
thereof. Solid lipid nanoparticles loaded with different phe-
nolic compounds such as curcumin (Wang et al. 2015), res-
veratrol (Jose et al. 2014) and nanostructured lipid carriers

loaded with quercetin (Sun et al. 2014), curcumin (Aditya
et al. 2014) and silymarin (Shangguan et al. 2014) have also
been studied. It has been reported that solid lipid nanoparti-
cles loaded with resveratrol formulated using Tween 80 or a
combination of polyvinyl alcohol and Tween 80 sustainably
release the compound and were found effective in the treat-
ment of neoplastic diseases (Jose et al. 2014). As compared
to solid lipid nanoparticles, nanostructured lipid carriers
formed a combination of oil and fat having an 18% higher
loading capacity for dermal applications (Gokce et al. 2012).

Recent studies related to nanolipid carriers were con-
ducted to enhance various properties for extended shelf life
of food products. For example, lipid carriers loaded with
cinnamon essential oil and coated by chitosan showed stabil-
ity against oxidation, when these nanocarriers were added
into the milk (Bashiri et al. 2020). Besides, the nanostruc-
tured lipid carriers and solid lipid nanoparticles loaded with
lycopene were formed using high shear homogenization and
ultrasonication technique to incorporate in orange juice. It
was reported that these nanocarriers can be used in liquid
food samples after improving their solubility and homo-
geneity (Zardini et al. 2017). Therefore, these nanocarrier
systems can be used in different food products like yogurt,
fruit juices, etc., to extend their shelf life due to retardation
in oxidation. In a recent study, a snack bar was formulated
with sesame paste, date syrup and thymol-loaded nanostruc-
tured lipid carriers. It revealed that the addition of 100 ppm
of thymol-loaded nanostructured lipid carriers showed bet-
ter results in terms of oxidation stability of sesame paste/
date syrup mixture as compared to butylated hydroxytoluene
(Bageri et al. 2020). Furthermore, the effects of different
emulsifiers and pH conditions on the stability of nanostruc-
tured lipid carriers containing wheat germ oil were also stud-
ied. It was observed that poloxamer (nonionic surfactant)
showed high oxidative stability at high pH, whereas sodium
dodecyl sulfate (ionic surfactant) indicated at low pH (Mir-
talebi et al. 2020).

Various food colorants like a-tocopherol (de Carvalho
et al. 2013), astaxanthin (Li et al. 2016b) and anthocyanins
(Ravanfar et al. 2016) have been successfully entrapped
in solid lipid nanoparticles and nanostructured lipid carri-
ers. Solid lipid nanoparticles containing anthocyanins have
shown the 89.2% encapsulation efficiency, and the average
size of the particle was 455 nm (Ravanfar et al. 2016). Also,
nanostructured lipid carriers loaded with lutein was reported
89% entrapment efficiency along with a particle size of
200 nm (Lacatusu et al. 2013). Therefore, these loaded col-
orants in nanocarriers show better functional and structural
properties as compared to their free form.

The study on the fabrication of solid lipid nanoparticles
containing FeSO, was conducted using encapsulating mate-
rial such as Compritol 888 ATO and lecithin, reported the
encapsulation efficiency of 92.3% (Hosny et al. 2015). In
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another study, FeSO,-loaded solid lipid nanoparticles were
formulated using chitosan-HCL, stearic acid and polyvinyl
alcohol as compositional ingredients (Zariwala et al. 2013).
These nanocarriers have also been used for the entrapment
of nisin in solid lipid nanoparticles and inhibit the growth of
Lactobacillus plantarum and Listeria monocytogenes over
at least 15-20 days (Prombutara et al. 2012). Figure 2 shows
the outcomes of these nanoencapsulated functional food
ingredients in different lipid-based nanocarriers as shown
in Fig. 1.

Application of lipid-based nanocarriers
as antimicrobial agents

Nanoencapsulation of different functional ingredients is one
of the most effective approaches used to enhance their func-
tional properties such as antioxidant activity, thermal and
storage stability, bioaccessibility, antimicrobial effect, anti-
carcinogenic activity and to improve the intestinal absorp-
tion. Lipid-based nanocarriers are currently used for a wide

Fig.2 Benefits of nanoencapsu-
lation of functional ingredients
through lipid-based nanocarri-
ers which are used in food and
pharmaceutical industries
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range of applications as shown in Fig. 2. However, much
focus is being recently given on the antimicrobial studies
using different antimicrobial agents, which is used directly
into the food systems required to ensure food safety. How-
ever, the direct use of antimicrobial agents in food systems
has some disadvantages owing to the low solubility, low
chemical stability and negative impact on the organoleptic
properties of food. Therefore, the utilization of lipid-based
nanocarriers as the delivery systems for the encapsulation of
different antimicrobial ingredients is considered a promising
tool for their improved properties in the food sector (Fig. 3).
Various studies have been conducted on the antibacterial
effect of functional food ingredients in their pure as well as
encapsulated forms (nanocarriers) that were compared and
analyzed based on three criteria such as minimum bacte-
rial concentration, minimum inhibition concentration and
inhibition zone as shown in Table 4. The majority of stud-
ies showed that values of minimum bacterial concentration
and minimum inhibition concentration were lower in the
case of encapsulated compounds as compared to their pure
form. For example, Allium sativum essential oil encapsulated
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Fig.3 Delivery of food antimicrobial agents through lipid-based nanocarriers (e.g., liposome) for improved antimicrobial effect on bacterial cell

via better fusion, penetration and solubility
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Table 4 (continued)

References

Target microorganisms Antimicrobial effects Remarks

Preparation techniques

Antimicrobial agents

Encapsulated

Pure

MIC: 5 mg/mL MIC: 30 mg/mL
MIC: 20 mg/mL
Pseudomonas aeruginosa MIC: 40 mg/mL

Streptococcus mutans

MIC: 7.5 mg/mL
MIC: 30 mg/mL

Acinetobacter juni

MIC: 20 mg/mL MIC: 40 mg/mL

Candida albicans

through nanoliposomes exhibited the antibacterial effect
against Escherichia coli at low concentration, whereas the
pure form of essential oils produced an antibacterial effect
at higher concentration (Zabihi et al. 2017). A recent study
observed that the nanoemulsions containing cumin essen-
tial oil show a significant effect on Staphylococcus aureus.
These nanoemulsions have been explored for their antibacte-
rial and anticancer properties of the cumin seed oil (Nirmala
et al. 2020). In another study, nanoemulsions prepared using
Citrofortunella microcarpa essential oil were most effective
against Staphylococcus aureus (Inhibition zone: 9.98 mm),
Escherichia coli (Inhibition zone: 8.34) and Salmonella spp.
(Inhibition zone: 7.71) as compared to other nanoemulsions
formed by lime essential oil from Citrus aurantifolia and
Citrus hystrix (Liew et al. 2020). However, in some studies,
the pure form and encapsulated form of bioactive ingredients
showed a similar additive effect. For example, the copaiba
resin oil and its nanoemulsion along with amphotericin B
showed the additive effect with a decrease in the values
of minimum inhibition concentration (~ 50%) against the
Paracoccidioides genus (Silva et al. 2020). Furthermore, the
antibacterial activity was more effective toward the gram-
positive than gram-negative strains using the nanoemulsions
doped with quercetin (Das et al. 2020).

Several studies were also conducted on the nanoli-
posomes and their function as antimicrobial agents. A study
developed surface-modified nanoliposomes doped with
cationic peptides (peptide +2 & peptide +5). It revealed
that polymer-coated nanoliposomes loaded with peptides,
increased the antimicrobial activity approximately 2000-
fold against the Listeria monocytogenes (Cantor et al.
2019). Furthermore, the solid lipid nanoparticles loaded
with Eugenia caryophyllata essential oil showed the lower
values of minimum bacterial concentration and minimum
inhibition concentration as compared to the pure form of oil
alone against the Salmonella typhi, Staphylococcus aureus,
Pseudomonas aeruginosa and Candida albicans (Fazly Baz-
zaz et al. 2018).

On the other hand, another important group of improved
delivery systems is nanolipid carriers, which have some
major advantages like high stability, high loading capac-
ity with sustained release of functional ingredients. These
functional properties were advantageous to overcome the
limitations of nanoliposomes and nanoemulsions. Solid
lipid nanoparticles and nanostructured lipid carriers are
produced by similar techniques, but nanostructured lipid
carriers have better functional properties along with the
properties of solid lipid nanoparticles. The nanostructured
lipid carriers revealed the lower crystallinity index, slower
particle growth and polymorphic transition as compared to
solid lipid nanoparticles (Gordillo-Galeano and Mora-Huer-
tas 2018). Therefore, lipid-based nanocarriers improve the
bioactivity of the various antibacterial agents like essential

@ Springer
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oils, natural extracts from plant sources, natural, synthetic
antibiotics, etc.

Among all the nanocarriers (nanoliposomes, nanoemul-
sions and nanolipid carriers), the utilization of nanoemul-
sions for encapsulation of antibacterial ingredients is max-
imum, which could be exploited in the food sector. This
effect of nanoemulsions as antimicrobial agents have been
explored mainly in three aspects, which include the utiliza-
tion of nanoemulsions: a) in its pure form, i.e., nanoemul-
sions without incorporation of any functional compound,
b) loaded with essential oils, ¢) loaded with a combination
of one or more functional ingredients. For example, encap-
sulation of trans-cinnamic acid along with medium-chain
triglycerides, Tween 80 & phosphate-buffered saline acetone
as compositional ingredients were used against Salmonella
typhimurium which reported the lower value of minimum
inhibition concentration and minimum bacterial concentra-
tion (1.5 & 3.1 mg/mL) as compared to pure antibacterial
type (12.5 & 25 mg/mL) (Letsididi et al. 2018). Moreover,
nanoemulsions are known for several advantages such as
targetability, large-scale production and encapsulation of
both hydrophobic and hydrophilic compounds. However,
nanoemulsions offer only one major limitation of the rapid
release of functional ingredients due to their liquid nature.
More studies on the antimicrobial effects of nanoemul-
sions containing soybean oil, black pepper oil, Piper betle
L. essential oil have also been investigated against Bacillus
subtilis, Pseudomonas aeruginosa, Klebsiella pneumonia,
respectively (Benjemaa et al. 2018; Swathy et al. 2018; Roy
and Guha 2018).

Conclusion

Among all the lipid-based nanocarriers, extensive research
has been done on nanoliposomes due to their ability to carry
hydrophilic, lipophilic and amphiphilic functional food
ingredients. In contrast to all lipid-based nanoencapsula-
tion techniques, nanolipid carriers (solid lipid nanoparticles,
nanostructured lipid carriers and smart lipid nanocarriers)
are one of the most predominant techniques in terms of load-
ing capacity, sustained release and high stability (quality of
functional compound over time). Further, nanolipid carriers
showed the best results for the delivery of functional com-
pounds due to their flexibility for the selection of compo-
sitional ingredients (solid lipid or solid lipid and oils) and
increasing the capacity for holding functional ingredients.
Besides, these are also considered as one of the most prom-
ising delivery systems to improve the solubility, physical
stability, bioavailability as well as functionality of bioac-
tive compounds along with high loading capacity. These
nanocarriers can be used in the food industry for texture
modification, improved food product quality, extended shelf

@ Springer

life of food products and as coloring and antioxidant agents.
Despite this, further research is required on the process opti-
mization and engineering aspects to enhance different prop-
erties such as structural, physical and mass transfer to obtain
productive results at the commercial level. Moreover, these
can be loaded with polyphenolic compounds extracted from
different natural sources and due to the increase in surface to
volume ratio at nanoscale, these loaded nanocarriers can be
used as effective preservatives at low concentrations. More
in-depth research is also necessary for the safety concerns
of these nanocarriers in the human body. Further, the focus
should be given on the cost-effective processing operations
for the synthesis of nanocarriers to be used in food industries
at large scale.
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