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Abstract
Chromite mining activities are indispensable for production of goods and services. Sukinda is a major mining site of Odisha, 
India, polluted by chromium, which is highly toxic in its hexavalent form. The Sukinda valley is a rich source of chromites, 
amounting to almost 95% of Cr available in India, and is the fourth most polluted site worldwide. Immediate solutions are 
needed to protect the health of biotic species of this region and their surroundings. Here we review chromite mining in India, 
impact of chromite pollution on plants and the environment, and phytoremediation of Cr-polluted soils.
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Introduction

The economic stability and advancement of a country are 
highly dependent on its rich mineral resources. The mining 
sector which involves the utilization of the minerals there-
fore can be assumed to play a crucial role in the economic 
growth of a nation (Groves et al. 2007). Mining comes under 
the primary sector of the Indian economy and is a bulky 
sector as far as employment and job creation is concerned. 
Mining activities although contribute 10–12% of GDP of 
the total industrial sector in India but are also quite infa-
mous for pollution of the environment. In about 3100 mines 
(both public and private) operating in India, approximately 
5,60,000 people are employed daily. The complete detail on 
the Indian mining sector synthesized from the reports from 
the Indian Bureau of Mines (IBM 2000, 2004) is listed in 
Table 1.

The vulnerability of the mine workers to various toxic 
pollutants present in the mining environment may lead to 
deleterious health impacts. Exposure of toxic heavy met-
als in and around the mining sites during the mining pro-
cess contributes largely to pollution of the air, water, and 
soil. Heavy metals being persistent in the environment are 
not only a major concern to public health but also affect 
other living organisms (Abdu et al. 2017) and the food chain 
(Malik et al. 2019; Sevgi et al. 2009).

Chromium (Cr) is an important mineral having world-
wide importance and widely used in industrial processes. 
However, it expresses its toxicity on the environment 
and human health (Peng and Guo 2020). It is unique 
than other metals in a way that its toxicity is depend-
ent on the available oxidation states—Cr(III) and Cr(VI), 
unlike other metals whose toxicities are based on their 
total available concentrations in the environment (Kim-
brough et al. 1999). The trivalent state or Cr(III) is con-
sidered to be benign and an essential micronutrient (Nie-
boer and Jusys 1988; Kahlon et al. 2018), whereas the 
hexavalent form, also denoted as Cr(VI), is listed as a 
Group-I human carcinogen (IARC 1990). The USEPA 
(United States Environmental Protection Agency) clas-
sifies materials as hazardous if they contain leachable 
Cr(VI). Chromium occurs naturally in the environment 
as Cr(III), whereas the Cr(VI) form arises from various 
industrial activities (Mudhoo et al. 2012). The first step 
in the industrial use of chromium begins with the chro-
mite mining process. Chromium is generally found to 
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be associated with iron (ferrous chromite) in the mining 
sites (Westbrook 1983; Hartford 1983). The problem with 
chromium lies in its two most stable states—Cr(III) and 
Cr(VI), which are inter-convertible among themselves in 
the environment. This inter-conversion mainly depends on 
the types of compounds present, pH of the environment, 
moisture, temperature, presence or absence of oxidizing 
and reducing agents, and many more. Chromium though 
is naturally found in the rocks in the benign Cr(III) form, 
but mining activities could expose the same to the envi-
ronment and create a chance of inter-conversion to the 
highly toxic Cr(VI) form (Gunkel-Grillon et al. 2014). 
Thus, chromite mining is considered to be a serious threat 
to the environment as well as public health. The paper 
aims to discuss the negative impact of chromite mining 
on the Indian environment, with special emphasis on the 
Sukinda chromite mines of Odisha.

The Indian chromite situation

The worldwide shipping grade chromite resources account 
for over 12 billion tonnes among which the majority of the 
resources (95%) are located in South Africa (84%), Zim-
bawe (6%), Kazakhstan (5%). India (2%) lies 4th in the list 
followed by other countries like Brazil, USA, Canada, Rus-
sia, Finland, and others which collectively account for the 
remaining 3% of the share (Fig. 1). However, as per the 2009 
statistics, India is the 2nd highest chromite ore producing 
country in the world (Das and Singh 2011).

Indian chromite deposits account for 2% of the total 
resources of the world. Approximately 98.6% of chromite 
resources of the country are located in Odisha out of which 
95% are found in the Sukinda valley, situated in Cuttack 
and Jajpur districts of the state. The remaining percentage 
of the resources are found in Jharkhand, Karnataka, Goa, 
Maharashtra, Tamil Nadu, and Andhra Pradesh, while very 
few in Manipur, Nagaland, Jammu and Kashmir, and the 
Andaman and Nicobar islands. Deposits of chromite in vari-
ous states of India (Fig. 2) are found to be scattered over 
certain regions also referred to as ‘belts’. The major chromite 
belts are the Sukinda, Bhalukasuni—Nilgiri and Ramagiri in 
Odisha, Jojohatu—Roroburu in Jharkhand, Bhandara—Nag-
pur, Chandrapur and Sindhudurg in Maharashtra, Janaram 
block, Konayyapalem block, Linganapetta block, Sriramgiri 
block and Kondapalli block in Andhra Pradesh, Nuggihali 
and Sindhuvalli—Talur in Karnataka, Karunglapatti, Sitam-
pundi, and Solavanur-Mallanayakkanpalaiyam–Karapaddi in 
Tamil Nadu (Table 2).

Table 1  Division of employment in the Indian mining sector

Total 
number of 
mines

Number 
of mines 
in the 
public 
sector

Number 
of mines 
in the 
private 
sector

Average 
daily 
employ-
ment in 
the public 
sector

Average 
daily 
employ-
ment 
in the 
private 
sector

Total 
employ-
ment

3100 800 2300 4,90,000
(87%)

70, 000
(13%)

5,60,000

Fig. 1  Distribution of ship-
ping grade chromite resources 
in the world. South Africa has 
the largest reserves of shipping 
grade chromite ores in the world 
followed by Zimbawe (6%), 
Kazakhstan (5%), and India 
(2%)
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The large exploitation and utilization of chromium 
resources in India, although have benefitted the nation eco-
nomically, in the process have also dealt with heavy damage 
to the environment and the people. Most of the chromium-
related pollution occurring in India mainly arises from min-
ing sites and certain specific industries (especially tanneries, 
dye, and other chemical manufacturing industries and steel 
manufacturing plants). Tata Environmental Research Insti-
tute reported that out of the 7.2 million tons of hazardous 
wastes generated from Indian industries each year, approxi-
mately around 72% are disposed of in an improper fashion 
(TERI 2003). We infer that the chromite mining industry 
is largely responsible for maximum contamination of the 
environment, due to improper disposal of wastes containing 
Cr(VI) as the major contaminant.

Chromite mining at Sukinda Valley

The most dreaded example of hexavalent chromium (Cr(VI)) 
pollution in India lies in the Sukinda valley located in the 
Jajpur district of Odisha. It accounts for approximately 
95% of the total chromite reserves of the country. The 
south Kaliapani mining area situated in the Sukinda valley 
accounts for approximately 97% of the chromite reserves 
of the state (IBM 2010). The valley contains around 183 
million tons of deposits (Tiwary et al. 2005) and produces 
around 3.8 million tons of chromite ore per year (Das and 
Mishra 2010; Dhal et al. 2011). Widespread contamination 
of the valley due to excessive mining of chromite ores has 
made it to be considered as the fourth most polluted place in 
the world (Blacksmith Institute report 2007). The chromite 

mine of TISCO in the Sukinda valley is the largest open 
cast mine in India. Some of the other open cast mines in 
the region are operated by companies like Orissa Mining 
Corporation Ltd (OMC), M/s Indian Metals & Ferro Alloys 
Ltd (IMFAL), FACOR, and Balasore alloys (IBM 2013). A 
huge amount of wastes (in million tons) are generated by 
the mines operating in the valley and thus spread to nearby 
water bodies and leach into the groundwater, contaminating 
the water used for drinking purposes in the locality. The 
contamination mainly occurs due to Cr(VI), which is con-
sidered a major environmental carcinogen and is highly toxic 
(Mishra and Sahu 2013). Lack of adequate space for disposal 
of generated wastes is also a major problem and needs to 
be looked upon seriously. The Bhimtanagar chromite mine 
operated by M/S TISCO consists of dumps reaching to an 
abnormal height of 80 m due to the same problem of space 
adequacy. High concentrations of Cr(VI) and Cr(III) have 
been detected in the waters of the Damsala nallah that drains 
the Sukinda valley and also in the downstream of the river 
Brahmani and the Dhamra estuary, though in lesser quan-
tity. Water samples collected from the wells falling within 
the chromite belt region of Sukinda have also been found to 
be contaminated (OPCB 2000). Analysis of surface water 
samples used for drinking purposes in the area revealed a 
much higher concentration of Cr(VI) than the maximum 
permissible limit of 0.1 mg/l. At one of the sampling points 
in the effluent channel of the chromite beneficiation plant of 
TISCO, the Cr(VI) concentration was found to be as high as 
52 mg/l (Dubey et al. 2001).

Indian Bureau of Mines in collaboration with BRGM, 
France, carried out a project titled ‘Development of Applica-
tion Techniques in relation to Environmental Management 

Fig. 2  Chromite deposits in various states of India. Among all states, Odisha leads the queue as the largest producer of chromite ores in the 
country. The Sukinda valley located in the Jajpur district of Odisha accounts for approximately 95% of India’s chrome reserves
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of Mines and Waste Recoveries’ and prepared a Regional 
Environmental Impact Assessment (REA) report. The moni-
toring report generated by REA observed that the surface 
water quality exceeded the drinking water standards in the 
Damsala nallah. Most of the groundwater samples investi-
gated were found to have water quality exceeding the quality 
standards for drinking purposes. The fauna and flora of the 
region were also found to be highly contaminated. In all the 
sampling points, Cr(VI) was found to be present at a higher 
concentration (IBM 2013) (Table 3). We attribute the release 
of high loads of Cr(VI) to intensive mining activities in the 
region. It leads to environmental deformation.

Impacts of chromite mining 
on the environment

Reports portray the metal mining process as one of the major 
contributors to the pollution of the natural environment, 
especially the water bodies (Moncur et al. 2005). The fine 

heavy metal particles have all the chances of being adsorbed 
to the ground surface, flow off to nearby lakes and rivers, 
and as well as leach into the groundwater (Mulligan et al. 
2001). Chromium is regarded as a very important metal 

Table 2  Deposits and the average grade of chromite available in India. Source: IBM (2013)

State Mining belt Location Topography Average grade of  Cr2O3 (%)

Odisha Sukinda Jajpur district 20° 53′ 00″ N–85° 53′ 00″ E 35.35–50.06
Bhalukasuni—Nilgiri Balasore district 21° 29′ 30″ N–86° 42′ 00″ E 25.77–54.76
Ramagiri Koraput district 18° 46′ 00″ N–82° 15′ 00″ E 24.07–27.49

Jharkhand Jojohatu—Roroburu Anjadbera and Sahadeva reserve 
forest area, Chaibasa

21° 31′ 00″ N–85° 38′ 00″ E 46.0–51.6

Maharashtra Bhandara—Nagpur Pauni, Bhandara district 20° 47′ 00″ N–79° 39′ 00″ E 52.0
Chandrapur Taka, Nagpur district 20° 40′ 00″ N–79° 24′ 55″ E 23.50–35.28

Ballarpur, Chandrapur district 20° 40′ 15″ N–79° 23′ 15″ E Data unavailable
Dhamangaon—Puyardand, Nag-

pur and Chandrapur district
20° 38′ 30″ N–76° 26′ 00″ E 22.81–35.15

Pitechua, Chandrapur district 20° 38′ 30″ N–76° 23′ 00″ E Data unavailable
Sindhudurg Kankavali 16° 16′ 00″ N–73° 45′ 00″ E 30.88–31.04

Janoli 16° 17′ 00″ N–73° 42′ 00″ E Data unavailable
Vagda 16° 14′ 00″ N–73° 45′ 00″ E 34.21
Gosaviwadi 16° 13′ 00″ N–73° 42′ 15″ E 39.07

Andhra Pradesh Janaram block Khammam district 17°18′ 00″ N–80° 24′ 00″ E 39.26
Konayyapalem block Khammam district 17° 10′ 00″ N– 80° 25′ 00″ E 39.55
Linganapetta block Khammam district 17° 15′ 00″ N– 80° 25′ 00″ E 27.22–36.84
Sriramgiri block Khammam district 17° 20′ 00″ N–80° 24′ 00″ E 38.12
Kondapalli block Krishna district 16° 37′ 00″ N–80° 32′ 00″ E 22.81–51.94

Karnataka Nuggihali Hassan district 13° 06′ 00″ N–76° 25′ 00″ E 22.78–49.09
Sindhuvalli—Talur Sindhuvalli block in Mysore 

district
12° 11′ 30″ N–76° 38′ 00″ E 37.5–46.95

Dodkatur block in Mysore district 12° 10′ 40″ N–76° 36′ 30″ E 38.64
Talur block in Mysore district 12° 11′ 30″ N–76° 36′ 30″ E 19.92–40.05

Tamil Nadu Karunglapatti and Sitampundi Salem district and Namakkal 
district

11° 14′ 10″ N–78° 00′ 00″ E 9.75–27.16

Solavanur-Mallanayakkan-
palaiyam—Karapaddi

Coimbatore district 11° 24′ 30″ N–78° 13′ 40″ E 21.79–27.87

Table 3  Concentration of Cr(VI) at various sampling point in the 
Sukinda valley. Source: IBM (2013)

Samples Cr(VI) concentration

Sediment of Damsala nallah 30–104 mg/kg
Sediment of paddy fields 6–190 mg/kg
Leachate of nallah sediment 2–12 mg/l
Leachate of paddy field sediments 0.7 mg/l
Surface water Up to 3.4 mg/l
Groundwater Up to 0.6 mg/l
Dust 0.01–0.08%
Paddy < 0.001–142 mg/kg
Fruits 5–28 mg/kg
Fish 14–115 mg/kg
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having uses in various industrial processes, thus leading to 
its increased demand. Excessive demand for the metal has 
also led to an increase in the mining activities of chromite 
ores. Though chromium is present in the non-toxic trivalent 
form in the earth’s surface, due to open cast mining activi-
ties the trivalent Cr(III) comes in contact with atmospheric 
air and water and has maximum chances of oxidizing to the 
toxic hexavalent(Cr(VI)) form. Separation of chromite ores 
from hard rocky surfaces involves techniques like blasting 
and drilling followed by crushing. A huge amount of fine ore 
particles and dust generated get blown away through the air 
to nearby localities, thus posing chances of causing Cr(VI) 
contamination through atmospheric deposition (Rosas et al. 
1989). Mines also use water to control dust during drilling 
and other mining operations. These mine wash water can 
seep into the groundwater or flow to the nearby water bod-
ies thereby contaminating them (Das 2018). Accumulation 
of rainwater in the open mining pits and drainage from such 
pits also bear the same consequences. Dewatering of open 
pits during the rainy season to enable continuous mining 
activities may also heavily contaminate nearby places or 
water bodies into which the excess water is discarded. The 
chromite mining process is largely related to the genera-
tion of a huge amount of wastes and rocks in the form of 
overburden (Dhakate and Singh 2008). Drainage from such 
overburdens may also bear the possibility of leaching out a 
large number of heavy metals into the soil and nearby water 
systems. High levels of Cr(VI) in the soil and water bodies 
may result in the toxic heavy metal being accumulated in 
the plants and crops, thus easily getting transferred through 
the food chain. Some of the beneficial microflora of the soil 
may get affected due to the presence of Cr(VI), thus leading 
to loss of soil fertility. Humans are also equally or even to 
a longer extent victimized upon exposure to the Cr(VI) via 
various media. Humans are exposed to Cr(VI) via inhala-
tion, oral intake as well as dermal contact (Das and Singh 
2011). Inhalation of air dispersed with Cr(VI) particulates 
that arise from mining activities is a serious threat to human 
health and may lead to several ailments of the lungs and 
the respiratory tract. Consumption of contaminated water or 
food crops also possesses the chances of various diseases of 
the stomach and the alimentary canal. Several other human 
activities like the use of the Cr(VI)-contaminated water of 
rivers and ponds present nearby the mining localities for 
purposes like bathing, cleaning, and washing may also lead 
to various skin diseases.

Chromite mining activities expose the heavy metal Cr(VI) 
to the surrounding environment. Cr(VI) being a proven envi-
ronmental carcinogen, expresses its toxicity on the biologi-
cal entities. Several pieces of research have been carried 
out to study the toxicological impact of this heavy metal on 
plants, animals, microbes, and humans. In the following sec-
tion, we discuss in brief about the toxicological implications 

of Cr(VI) on the living biota residing in and near the mining 
sites.

Hexavalent chromium (Cr(VI)) has been reported to 
impart its toxicity on various parameters related to plant 
growth and development (Table 4) like germination (Lopez-
Luna et al. 2009; Dey et al. 2009), radical growth (Corradi 
et al. 1995), growth of roots (Sundaramoorthy et al. 2010; 
Rout et al. 1997; Samantary 2002; Barcelo et al. 1985), 
shoot length (Mallick et al. 2010; Lopez-Luna et al.2009), 
leaf growth (Dube et al. 2003) and yield (Sundaramoorthy 
et al. 2010). Cr(VI) has also been reported to impact vari-
ous physiological processes in plants like photosynthesis 
(Panda and Choudhury 2005; Paiva et al. 2009; Liu et al. 
2008), mineral uptake (Singh et al. 2013; Sundaramoorthy 
et al. 2010; Liu et al. 2008; Gopal et al. 2009; Gupta et al. 
2000), enzymatic activities (Samantary 2002; Zaimoglu 
et al. 2011), protein activities (Vajpayee et al. 1999, 2000), 
electron transport (Dixit et al. 2002; Vranova et al. 2002). 
The toxicity of Cr(VI) affects the overall health of the plants, 
thereby leading to plant death. Loss of plants due to Cr(VI) 
toxicity at industrial and mining sites largely contributes 
toward biodiversity loss and may bring about a perturbance 
in the environmental homeostasis. High levels of Cr(VI) 
concentration in the soil also lead to poor crop growth and 
reduced crop yield which may affect overall crop production 
of a place. Crop loss may further prove to be a deterrent 
toward the financial and economic growth of farmers of the 
region.

Besides causing severe plant toxicity, Cr(VI) is found to 
have an impounding effect on humans (Fig. 3) either through 
inhalation, oral intake, or dermal contact (Das and Singh 
2011).

Laborers working in the chromite mines are always at 
a high risk of being affected by Cr(VI) contamination and 
its toxic effects. Cr(VI) is a proven sensitizer of the skin 
as well as the respiratory tract. It induces nasal irritation 
and upon continuous exposure may lead to the formation of 
nasal perforations (Menezes et al. 2004; Holland and Avery 
2009). Cr(VI) also leads to skin ulcers only when there is 
an existing cut or abrasion on the skin and may even further 
lead to the formation of ‘chromium holes’ (Beyersmann 
and Hartwig 2008; Zhitkovich 2005). Cr(VI) has also been 
reported to cause cancer of the lungs in humans and animals. 
The probable mechanism behind the carcinogenesis has been 
discussed herein.

The rapid uptake of Cr(VI) has been reported to occur 
in human and animal cells via the sulfate carriers (Sugiy-
ama 1992). The Cr(VI) further gets reduced to Cr(III) by 
the action of several cellular reductants, thus causing geno-
toxicity (Bianchi et al. 1983). The reduction process of 
Cr(VI) to Cr(III) generates several intermediates like Cr(V), 
Cr(IV), and reactive oxygen species (ROS). The interme-
diates, especially Cr(V), lead to the formation of bulky 
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DNA adducts in the  p53 gene of human lung cells. The ROS 
formed also induce oxidative damage to the DNA of the 
 p53 gene (Arakawa et al. 2012). Being a tumor suppressor 
gene,  p53 works to regulate the expression of several target 
genes under various cellular stress conditions and helps in 
DNA repair. Any damage to this particular gene implies a 
failure of the DNA repair mechanism, leading to mutations 
and uncontrolled cell divisions, thus leading to lung cancer. 
Inhalation of Cr(VI) concentration exceeding 0.001 mg/m3 
through the mouth may also cause stomach ulcers (Lindberg 
and Hestidania 1983). Cr(VI) negatively affects myocardial 
activity. This may occur either by directly affecting the blood 
vessels or indirectly by reducing the pulmonary functions 
(Kleiner et al. 1970). Shmitova reported that transfer of 
Cr(VI) can occur to the fetus from the placenta of a preg-
nant woman being exposed occupationally to the toxic heavy 
metal (Shmitova 1980). We therefore conclude that upon 
regular and prolonged exposure, Cr(VI) may impart toxic 
effects and even at worse prove lethal to humans.

Chromium in small quantities is also required by the 
microorganisms as a nutrient. However, an excessive amount 
of chromium in the environment has been found to pose det-
rimental effect on these microorganisms (Silver et al. 2001). 
Cr(VI) has been found to impart toxic and mutagenic effects 
on most of the bacteria. Cr(VI) has been found to inhibit 
bacterial cell growth by causing elongation and enlarge-
ment of the bacterial cell as well as by inhibiting the cell 
division (Coleman 1988). Exposure to Cr(VI) has also been 
found to bring about morphological changes (Bondarenko 
and Ctarodoobova 1981) and a reduction in pathogenicity 
(Yamini et al. 2004) among the bacteria. Cr(VI) may bring 
about alterations in the cytoskeleton of algae, thus leading 
to loss of motility (Bassi and Donini 1984). Green algae 
have been found to be affected by Cr(VI), which inhibits the 

photosynthesis process (Corradi et al. 1995). The toxicity 
of chromium in microbes is also highly dependent on the 
oxidation states. Cr(VI) being highly soluble and mobile 
can easily penetrate through the bacterial cell membrane 
and into the cytoplasm, thus exerting toxic effects (Katz 
and Salem 1993). Microbes being an essential part of the 
biotic environment, we raise the concern that Cr(VI) pollu-
tion may disturb the microbial biodiversity that will further 
create environmental imbalance.

Phytoremediation for decontamination 
of Cr(VI) mining sites

The rise in population coupled with large-scale urbanization 
and industrialization has led to severe pollution of the soil. 
Improper disposal of wastes generated from various indus-
tries and mines enriched with heavy metals is the main fac-
tor behind soil pollution (Ye et al. 2017; Kumar et al. 2019; 
Bali et al. 2020). Soil is a very precious natural resource and 
forms the base for several agricultural activities. Hence, its 
contamination by heavy metals like hexavalent chromium 
(Cr(VI)) must be prevented. Taking into consideration the 
several serious consequences posed by heavy metals like 
Cr(VI) on the soil, several remediation techniques have been 
developed and applied (Liu et al. 2018). These include vari-
ous physicochemical methods and some biological methods 
like bioremediation and phytoremediation. The physico-
chemical methods are although sometimes effective, but in 
the process affect several soil parameters like fertility and 
biodiversity (Khalid et al. 2017). Biological techniques are 
advantageous over other techniques in being cost-effective, 
and eco-friendly in their approach (Megharaj and Naidu 
2017). The use of microorganisms (bioremediation) to 

Fig. 3  Exposure routes, mode of intake and associated health issues 
of Cr(VI) in humans. Cr(VI) or hexavalent chromium released from 
the chromite mines is exposed to the aerial, water, and soil environ-
ment by leaching or as dust particles. Humans come in contact with 

the toxic heavy metal either through breathing, consumption of pol-
luted water, or by penetration through skin. Unintended intake of the 
toxic heavy metal in humans leads to occurrence of several health 
issues
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clean-up contaminated soil is although a quick method, but 
it is still a daunting task as far as its feasibility is concerned 
when applied on a large scale. Hence, the current paper 
argues in favor of using plants (phytoremediation) for the 
decontamination of Cr(VI) polluted soils at mining areas. 
Phytoremediation is a widely accepted technique for its 
feasibility and eco-friendly nature (Muthusaravanan et al. 
2018). In the process of phytoremediation, plants are used to 
remove pollutants from the environment or to contain them 
within their system, thus reducing those pollutants (Jensen 
and Gujarathi 2016; Vamerali et al. 2010). Plants having the 
ability to withstand the toxicity and grow in high concen-
trations of Cr(VI)-polluted mining sites should be selected 
for the remediation (Das et al. 2017). Therefore, we highly 
suggest proper selection of plant species for successful reme-
diation of Cr(VI) contaminated soils.

The most interesting and important thing about phytore-
mediation is that it not only uses plants but also takes into 
account other parameters like soil characteristics, nature of 
the heavy metal, and microorganisms present in the soil (Das 
et al. 2018) (Fig. 4).

Hyperaccumulators in the translocation of Cr(VI)

To reduce the availability of toxic hexavalent chromium 
(Cr(VI)) at off-site environmental components is one of the 
emerging fields of soil remediation. It includes the stabi-
lization of this toxic element in the soil rhizosphere and/
or its accumulation in foliar tissues of plants employed for 
remediation purposes. In this context, the role played by 
translocation is gaining importance. Translocation is a vital 
physiological process for plants to collect macro- and micro-
nutrients from the soil along with water. The used xylem 
tissues for this purpose have the potential to extract Cr(VI) 
from the contaminated soils of industrial and mining belts. 
The functioning of these xylem tissues in conducting strands 
ultimately loads Cr(VI) in the intracellular vacuoles of foliar 
regions in addition to its deposit in the root and stem cells.

Plants uptake hexavalent chromium (Cr(VI)) from the 
soil via the root system and translocate to the aerial parts. 
Cr(VI) uptake by plant roots can either occur by apoplastic 
transport system or the symplastic transport system. In the 
case of apoplastic transportation, Cr(VI) is carried through 
the intercellular spaces of the roots. Symplastic transpor-
tation involves specific ion channels or carriers like sul-
fate or phosphate for the uptake (Chaudhary et al. 2018). 
Unlike non-hyperaccumulating plants that store metals in 
the vacuoles, the hyperaccumulator plants efficiently trans-
locate these metals from the roots to shoots through xylem 
using the symplastic pathway. Transfer through the xylem 
is facilitated by several membrane proteins like P-ATPase 
(P-type ATPase), HMT-ATPase (Helminthosporium may-
dis T ATPase), MATE (Multi-antimicrobial extrusion), and 

oligopeptide transport proteins (Chandra et al. 2018). Upon 
translocation, the hyperaccumulator plants sequester the 
toxic metals in the vacuoles of the leaf cells (Sharma et al. 
2016). In this mechanism, the toxic metals are chelated with 
specific ligands and these metal–ligand complexes are then 
sequestered in the vacuoles by various families of trans-
porter proteins like CAX (cation exchangers), HMA (heavy 
metal ATPases), ABC (ATP-binding cassette), NRAMP 
(natural resistance-associated macrophage protein), CDF 
(cation diffusion facilitator), ZAT (zinc transporters) and 
many more (Chandra et al. 2018). We hereby underline the 
importance of different pathways and the involvement of 
various proteins and ligands for efficient translocation of 
Cr(VI) into plants.

The hexavalent chromium (Cr(VI)) toxicity in the soil 
is reduced with the possible transformation of highly toxic 
Cr(VI) to trivalent chromium (Cr(III)) using the metabolism 
of selective groups of hyperaccumulators. The response of 
chromium to membrane transporters of plants used for trans-
port of inorganic phosphates from the soil depends upon 
its chemical speciation and expressed through genetic or 
non-genetic alterations. The acceptance of the toxic Cr(VI) 
by those membrane transporters is possibly decided by the 

Fig. 4  Factors responsible for increasing phytoextraction of Cr(VI) 
from the soil. Organic amendments lead to release of organic acids 
that donates proton  (H+) to the soil. The released proton helps 
in intake of anionic inorganic phosphate (Pi) through an energy 
driven active process leading to alkalinization of soil. This possibly 
increases the accumulation of Cr(VI), a structural analogue of Pi, in 
hyperaccumulators. Microbes referred to as plant growth promoting 
rhizobacteria have been found to enhance the phytoremediation pro-
cess by several means like methylation, alteration of soil pH, favoring 
redox reactions, and by secreting siderophores, biosurfactants, and 
several organic acids. The size of soil particles (fine particles) also 
positively influences the phytoavailability of Cr(VI) and its transloca-
tion into plants
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anionic structures of orthophosphate and chromate. After 
the intake, it may be channelized inside the cells, utiliz-
ing the biochemical machinery responsible for phosphate 
metabolism. The mobility of Cr species is variable and alters 
with the variation in the redox state. The high mobility of 
Cr(VI) is possibly linked with its chemical structure at the 
oxidation state. Contrary to it, the structural changes occur 
at the reduced state, Cr(III) changes its docking pattern, and 
mostly impermeable to move across the cell membrane. The 
quick transformation of Cr(VI) to Cr(III) is pH dependent. 
We have noticed the importance of chemical speciation and 
its behavior during sequestration of the toxic elements dur-
ing phytoremediation.

Rhizospheric soil chemistry

The chemistry of rhizospheric soil also plays an important 
role in the phytoavailability of heavy metals like hexavalent 
chromium(Cr(VI)). Soil properties like pH, organic content, 
and texture greatly influence the availability of metals for 
phytoremediation (Shah and Daverey 2020). Cr(VI) mostly 
occurs as an oxyanion (CrO4

−2) and at low soil pH (< 5.0) 
remains adsorbed in the soil, thereby reducing its uptake in 
plants. However, at high pH (> 5.0), Cr(VI) remains highly 
mobile and thereby demonstrates high phytoavailability. The 
reaction of metals with organic matter to form an organo-
metallic complex in the soil is also a pH-dependent process. 
At alkaline pH, the free metal ions in the soil form hydroxyl 
products that intensify organometallic complex formation, 
thereby reducing their toxicity. The low soil pH limits the 
availability of anionic inorganic phosphates in the soil. Its 
intake from the soil by the hyperaccumulators is influenced 
by proton mediated co-transport mechanism (Ullrich and 
Novacky 1990). The Pht1 phosphate transporters present in 
the cellular membranes of hyperaccumulators are possibly 
guiding this movement of inorganic phosphate from the 
soil to plants parts through the soil–root interface (Rausch 
and Bucher 2002; Bucher 2007). The intake of inorganic 
phosphates from the soil is a proton-dependent active pro-
cess (Ullrich and Novacky 1990). It leads to the alkaliniza-
tion of the soil. Possibly, a similar mechanism is utilized 
by the hyperaccumulating plants to intake structural analog 
Cr(VI) from the contaminated mining and industrial sites of 
Sukinda. The release of organic acids from the supplemented 
materials can be used as a source of proton streaming to 
boost up the remediation of Cr(VI) from the contaminated 
sites.

The texture of the soil also plays an important role in 
the phytoavailability of heavy metals, thereby directly relat-
ing to the phytoextraction efficiency of the plants (Złoch 
et al. 2017). Fine soil particles having a size of less than 
100 µm have higher reactivity and surface area as compared 
to coarse soil particles. Therefore, finer particles tend to 

have higher concentrations of heavy metals like Cr(VI) in 
them. Lotfy and Mostafa (2014) observed that fine-textured 
soils exhibited high bioavailability of heavy metals like Cr 
and enhance its translocation in plants. Hence, we consider 
that the physical and chemical properties of soil also have a 
major role to play in enhancing the translocation of Cr(VI) 
from soil to different plant tissues.

The plant–microbes interaction

Plant–microbes interaction plays a crucial role in the phy-
toremediation of heavy metals. These microorganisms are 
referred to as plant growth promoting rhizobacteria (Khan 
et al. 2009) and can efficiently enhance the phytoreme-
diation process by several means like methylation, altera-
tion of soil pH, favoring redox reactions, by secreting 
siderophores, biosurfactants, and several organic acids 
(Table 5). Microorganisms can produce several acids that 
increase the availability of metals for phytoextraction by 
bringing about a change in the soil pH (Yang et al. 2018). 
A study demonstrated the role of citric and oxalic acids 
in enhancing the chromium phytoremedial ability of the 
Suaedavera plant (Gómez-Garrido et al. 2018). Microbes 
also oxidize or reduce metals directly or via the action 
of oxidizing or reducing agents produced by them. The 
redox reactions bring about a reduction in heavy metal 
phytotoxicity by stabilizing these metals in the soil and 
also by transforming them into non-toxic forms (Ma et al. 
2016). A study on Cellulosimicrobium cellulans revealed 
its ability to reduce hexavalent chromium (Cr(VI)) to less 
mobile and comparatively non-toxic trivalent chromium 
(Cr(III)) in the soil (Chatterjee et al. 2009). Nayak et al. 
(2018) reported a Bacillus cereus strain that was found to 
be highly efficient in the reduction of Cr(VI) and a few 
other metals. The strain efficiently improved the phytore-
medial ability of Vetiveria zizanioides. The adept ability 
of microorganisms in biosorption of heavy metals also 
assists the plants to a greater extent in the process of phy-
toremediation. The sorption of metals by microorganisms 
can take place by either the passive or active mechanism. 
Passive sorption occurs via an interaction between the 
metals and the functional groups present on the surface of 
dead microbial cells (Fomina and Gadd 2014). The active 
sorption process involves the uptake of metals from the 
soil by living microbial cells employing different mecha-
nisms. The metallothioneins present inside the microbial 
cells bind to the metals and facilitate their sequestration 
in particular intracellular organelles. Certain microorgan-
isms have been found to produce amphiphilic substances 
known as ‘biosurfactants’. The biosurfactants can des-
orp metals from the soil and in turn increase their solu-
bility and mobility, making the metals bioavailable for 
plant uptake (Lal et al. 2018). Bacillus subtilis SHB13, 



1378 Environmental Chemistry Letters (2021) 19:1369–1381

1 3

isolated from the marine source, was found to produce 
the biosurfactant ‘surfactin’, which efficiently reduced 
98% of 100 ppm chromium and 74% of Cr(VI) within 
72 h of action (Swapna et  al. 2016). Microorganisms 
present in the plant rhizosphere produce several organic 
acids reportedly enhancing the phytoremedial ability of 
plants by increasing heavy metals and nutrients uptake 
(Yang et al. 2018). Gómez-Garrido et al.(2018) reported 
the active involvement of citric and oxalic acid toward 
enhanced phytoremediation of chromium in Suaedavera 
plant. Rhizospheric microorganisms especially bacteria 
secrete low molecular weight compounds called sidero-
phores that act as an iron chelator and supply iron to 
plants under metal stress soil conditions. The supply of a 
sufficient quantity of iron ensures in alleviating chloro-
phyll biosynthesis that remains suppressed in plants due 
to heavy metal-induced iron deficiency. Siderophores via 
chelation bring about a reduction in the formation of free 
radicals around the zone of plant roots and shields the 
microbial phytohormones from oxidative damage induced 
by the heavy metals. This not only ensures enhanced 
phytoextraction efficiency in plants but also protects the 
plant from pathogenic microorganisms in the soil (Ahe-
mad 2015). We the authors acknowledge the importance 
of microbes and their involvement as a facilitator in the 
Cr(VI) remediation process. Besides, we hereby pro-
foundly state that the microbial populations act as a first 
line of defense for the plant against various pathogens and 
stress as reviewed from several literature sources.

Conclusion

Chromium is an important metal that finds wide applica-
bility in several industrial sectors. Chromite mines provide 
raw materials for several industrial establishments and are 
important as far as the economic growth of a country like 
India is concerned. However, economic growth should 
not be at the cost of the environment. Cr(VI), the toxic 
form of the element and a proven carcinogen, imparts 
adverse effects on the environment and its living entities. 
The widespread contamination of areas like Sukinda val-
ley in India due to excessive chromite mining activities in 
the region has drawn the attention of several researchers 
toward possible clean-up efforts. In this context, phytore-
mediation appeals to be the most sustainable measure for 
cleaning the contaminated sites. Proper selection of plants 
along with physicochemical soil parameters and the study 
of plant–microbe interaction could help in devising effi-
cient remediation strategies for the mining areas.
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