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Abstract
Contamination by heavy metals including As, Cd, Co, Cu, Fe, Hg, Mn, Ni and Zn in agricultural fields is a global safety 
issue. Indeed, excessive accumulations of metals have detrimental effects on life by altering cell components such as lipids, 
proteins, enzymes and DNA. Phytoremediation appears as a solution to remove metals from contaminated sites, yet metal 
uptake is usually low in most common plants. Therefore, genetically engineered plants have been designed for higher effi-
ciency of metal accumulation. Here, we review metal phytoremediation by genetically engineered plants with focus on metal 
uptake and transport, mechanisms involving phytochelatin and metallothionein proteins, toxicity, plant species, methods of 
gene transfer and gene editing.
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Abbreviations
AtPCs1  Arabidopsis thaliana phytochelatin syn-

thase 1
AtACBP1  Arabidopsis thaliana acyl-CoA-binding 

domain-containing protein 1
bphC  Biphenyl-2,3-diol 1,2-dioxygenase
cad1–3  Arabidopsis thaliana knockout mutant 

for phytochelatin synthase 1
CarMT  Cicer arietinum metallothionein
CCoAOMT  Caffeoyl-CoA O-methyltransferase
CePCs  Caenorhabditis elegans phytochelatin 

synthase 1

chv  Chromosomal virulence
CKX2  Cytokinin dehydrogenase 2
COR15a  Cold regulated 15 a promoter
IlMT2b  Iris lactea var. chinensis metallothionein 

2b
Lm-SAP  Lobularia maritima stress-associated 

protein
MAN3  Endo-1,4-β-Mannanase 3
merC  Mercury transporter
Met  Metallothionein
MsYSL  Miscanthus sacchariflorus yellow 

stripe-like
OsARM1  Oryza sativa arsenite-responsive myelo-

blastosis 1
OsMyb4  Oryza sativa myeloblastosis 4
OsMT2c  Oryza sativa metallothionein 2c
PCs1  Phytochelatin synthase 1
PtoHMA5  Populus tomentosa heavy metal ATPase 

5
PtPCs  Populus tomentosa phytochelatin 

synthase
PjHMT  Prosopis juliflora heavy metal ATPase 

peptide
PtoEXPA12  Populus tomentosa alpha expansin 12
PtPCs  Populus tomentosa phytochelatin 

synthase
ricMT  Rice metallothionein
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SaCAD  Sedum alfredii cinnamyl alcohol 
dehydrogenase

SsMT2  Suaeda salsa metallothionein 2
VcPCs1  Vicia sativa phytochelatin synthase 1
vir  Virulence
VsCCoAOMT  Vicia sativa caffeoyl-CoA 

O-methyltransferase
XCD1  XVE system-induced cadmium-tolerance 
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Introduction

Pollution, especially since the beginning of industrial 
revolution (Akguc et  al. 2008), is  causing negative 
impacts on the biosphere, and altering the hydrological 
cycle and ecological balance (Gomes et al. 2016; Nana-
sato et al. 2016; Ozturk et al. 2017; Xia et al. 2018). 
The common anthropogenic sources causing widespread 
pollution are mining activities, consumption of fossil 
fuel, fertilizer and pesticide utilization in agriculture, 
discharges of various types of urban wastes, potential 
emerging pollutants (Dharupaneedi et  al. 2019) and 
productions of petroleum-based materials including 
petroleum hydrocarbons, polycyclic aromatic hydro-
carbons, polychlorinated biphenyls, halogenated hydro-
carbons, solvents (trichloroethylene) and explosives 
(Gerhardt et al. 2009; Osma et al. 2012; Gerhardt et al. 
2017). The strategies that comprise membrane-based 
filtration techniques including microfiltration, ultra-
filtration, nanofiltration, reverse osmosis and forward 
osmosis could be applied particularly to waste/surface 
water or groundwater for removing potential emerging 
pollutants (reviewed by Dharupaneedi et al. (2019). To 
remove potential emerging pollutants from wastewater, 
the methods involving using of nanomaterial-based fil-
tration including Fe-nanoparticle (Reddy et al. 2020), 
Zr-nanoparticle (Reddy et  al. 2019), Bi-nanoproduct 
(Koutavarapu et al. 2020), Ce-nanoproduct (Tavangar 
et al. 2020) photocatalytic activities have successful been 
applied. Many researchers meet on a common ground 
point that the above-mentioned contaminants adversely 
affect living organisms including human (Mudgal et al. 
2010; Sarwar et al. 2010; Ali et al. 2013; Kelishadi et al. 
2014; Ramasahayam et al. 2017). These contaminants 
are subdivided into two groups: organic contaminants, 
including pesticides, pharmaceuticals, petroleum com-
pounds such as polycyclic aromatic hydrocarbons, 
polychlorinated biphenyls and inorganic contaminants, 
including mostly heavy metals such as Cd, Co, Cr, Cu, 
Fe, Hg, Mn, Mo, Ni, Pb and Zn (Mudgal et al. 2010; 
Fasani et al. 2018; Ozyigit et al. 2018). As and U are also 

toxic elements causing pollution in environment. Some 
elements known as essential microelements including Cu, 
Fe, Mn, Mo, Ni and Zn required for optimum growth and 
development could cause toxicity because of disturbed 
biological processes in organisms if posed to excessive 
amounts via primarily soil and water-borne transporta-
tion. Each of these essential elements has unique and 
critical role-play in plants life cycle and therefore should 
be well supplied for regular growth and development. 
Accumulation of toxic and nonessential contaminants 
in different environmental layers (soil, air and ground-
water) is become continually growing major concern of 
modern world nowadays (Kang 2014; Tue et al. 2014; 
Pandey et al. 2015; Ozyigit et al. 2017). Recent estima-
tion showed that over 5 million hectares is contaminated 
worldwide by heavy metals (He et al. 2015). And more 
important than that beyond broad contamination, heavy 
metals cannot be decomposed by biological systems and 
many terrain organisms are constantly exposed to these 
heavy metals (Sarwar et al. 2010; Vijgen et al. 2011). 
Decontamination/removing or after being reduced form 
releases of contaminants spread over gains great impor-
tance for health of nature as well as humanity (Schnoor 
et al. 1995; Susarla et al. 2002).

Heavy metal entry into the food chain is of great concern 
due to threatening human health; therefore, there is a great 
worldwide effort to find out effective ways for removing of 
heavy metals from soil as well as from other contaminated 
layers of biosphere (Ghori et al. 2016). According to the 
recent literature, the most common and popular strategy 
for removing of heavy metals from contaminated areas is 
phytoremediation (Sun et al. 2018b; Nehnevajova et al. 
2019; Zhao et al. 2019a; Farid et al. 2020; Saleh et al. 2020; 
Zehra et al. 2020). Various types of remediation strategies 
bearing electrical, chemical, physical, biological and their 
integrated approaches are available for cleaning up contami-
nated sites. These cleanup strategies include: surface cap-
ping and encapsulation under context of physical approach; 
electro-kinetics and vitrification under the context of elec-
trical approach; soil flushing and immobilization under the 
context of chemical approach; and finally phytoremediation 
under the context of biological approach, respectively (Liu 
et al. 2018). A common concern about employing chemical 
and physical methods for cleaning up the contaminated areas 
is related to suitability due to economic consideration and 
estimation for being harmful due to chemical reagent utiliza-
tion causing further contamination in the soil (Heckenroth 
et al. 2016; Sarwar et al. 2017; Fasani et al. 2018; Sun et al. 
2018a). Therefore, phytoremediation as an in situ safe and 
cost-effective way of cleaning up these organic/inorganic 
contaminants primarily from soil using plants and some 
plant-associated microorganisms is the most convenient 
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choice nowadays (Arslan et al. 2017; Feng et al. 2017; Ger-
hardt et al. 2017). Some of trace elements and heavy metals, 
including Ag, As, Au, Bi, Cd, Ce, Co, Cr, Cu, Fe, Hg, Mn, 
Ni, Pb, Sb, Sn, Te, Tl, U, V and Zn, could be removed from 
contaminated area via application of phytoremediation pro-
cesses involving employing of certain plant species (Ozyigit 
and Dogan 2015).

Here we review the absorption and removal of heavy met-
als from the environment using various phytoremediation 
methods including the mechanisms, especially focusing on 
the explanation of the phytoremediation efficiency boosted 
by genetically modified plants. We discuss the use of trans-
genic plants, and we compare conventional and the cutting-
edge methods.

Mechanisms of phytoremediation

Phytoremediation is mainly divided into seven processes in 
which physiological mechanisms are phytoextraction, rhizo-
filtration, phytostabilization, phytodegradation, rhizodegra-
dation, phytovolatilization and hydraulic control, as shown 
in Fig. 1a (Ozyigit and Dogan 2015; Muthusaravanan et al. 
2018).

Phytoextraction allows ecological restoration of soils con-
taminated by toxic metals in a way of transportation of them 
from roots to above-ground parts of plants, resulting accu-
mulation of them in plants; thus, phytoextraction provides 
reducing of toxic metal concentrations in soils via harvest-
ing plant biomass and subsequent incineration for removing 
toxic metals permanently (Cherian and Oliveira 2005; Zhang 
et al. 2010; Ali et al. 2013; Ozyigit and Dogan 2015).

In general, phytoextraction is classified into two catego-
ries: chelate-assisted or induced phytoextraction and long-
term or continuous phytoextraction. First one is potentially 
more convenient in use and currently being utilized com-
mercially (Jan et al. 2015). Phytoextraction approach can 
be utilized to remove heavy metals, including Ag, Cd, Co, 
Cr, Cu, Hg, Mo, Ni, Pb and Zn from contaminated areas 
(DalCorso et al. 2019).

All soils contain heavy metals in different concentrations 
depending on the conditions and pollution status of soil. 
Plants showing ability to survive or accumulate heavy metals 
in large amounts are known as hyperaccumulators and com-
monly utilized in phytoextraction technology. Slow growth, 
a shallow root system and low biomass are the famous fea-
tures of hyperaccumulator plants (Surriya et al. 2015).

Some well-known plants used in phytoextraction tech-
nology are listed as: Brassica juncea (Salido et al. 2003), 
Lactuca sativa and Lolium perenne (Hernández et  al. 
2019), Mesembryanthemum criniflorum (Manzoor et al. 
2019), Nicotiana tabacum (Yang et al. 2019b), Pelargonium 

hortorum (Gul et al. 2019; Manzoor et al. 2019), Sedum 
alfredii (Ning et al. 2019), Solanum nigrum (He et al. 2019), 
Thlaspi caerulescens (Cosio et al. 2004), Xanthium strumar-
ium (Khalid et al. 2019) and Zea mays (Huang et al. 2019),

Based on rhizofiltration, contaminated aquatic environ-
ments (damp soils and ground and/or surface waters) due 
to mainly heavy metal exposure can be treated in purpose 
of removing pollutants via using the way of adsorption or 
precipitation onto roots or other submerged organs of metal 
tolerant aquatic plants (Kvesitadze et al. 2006; Jadia and 
Fulekar 2009). Experiments showed that efficient uptakes 
of radionuclides and heavy metals are being realized using 
aquatic hyperaccumulator plants through induction of hairy 
roots (Nedelkoska and Doran 2000; Eapen et al. 2003). 
There are reports about appearing successful results being 
employing rhizofiltration for extraction of Cd, Cr, Cu, Ni, 
Pb and Zn (Henry 2000; Surriya et al. 2015). Approaches 
in rhizofiltration can be performed as either floating rafts 
on ponds or tank systems. The main disadvantage of rhizo-
filtration is that the plants being used in rhizofiltration are 
grown in a greenhouse first and are then transferred to the 
remediation site (Surriya et al. 2015).

Some plants used in rhizofiltration are: Azolla carolini-
ana (Favas et al. 2012), Eichhornia crassipes (Saleh 2012; 
Rai 2019), Lemna minor, L. gibba (Pratas et al. 2012) and 
L. valdiviana (Souza et al. 2019), Phleum pretense, Salix 
matsudana (Wang et al. 2019), Sagittaria montevidensis 
(Demarco et al. 2019) and Typha angustifolia (Chandra and 
Yadav 2010).

The application of phytostabilization (phytoimmobili-
zation) in alleviating heavy metal contamination is based 
on performing immobilization of contaminants in soils by 
sorption, precipitation and complexation using plants hav-
ing ability. Creating an environment supporting contaminant 
immobilization by these processes, leaching and ground-
water pollution can be prevented and also soil erosion and 
migration of sediments can be minimized (Kvesitadze et al. 
2006; Ali et al. 2013; Ozyigit and Dogan 2015). Although 
each having a different mechanism, toxic metal removal can 
be achieved by applying phytoremediative techniques other 
than phytostabilization, which involves using plants having 
ability to stabilize rather than remove metal contaminants 
from a site and this provides relatively safe environment and 
reduce the risk for human health. (Arthur et al. 2005; Jan 
et al. 2015). Additionally, plants can serve as natural barrier 
in some extent for the aeolian dispersion of metals into the 
environment due to the vegetative cover (Sabir et al. 2015). 
Phytostabilization is deployed successfully for remediation 
of soils contaminated with As, Cd, Cr Cu and Pb (Surriya 
et al. 2015).

Athyrium wardii (Zhan et  al. 2019), Cynodon dacty-
lon (Leung et al. 2007), Eucalyptus urophylla, E. saligna 
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(Magalhães et al. 2011), Eupatorium cannabinum (Gonzalez 
et al. 2019), Kosteletzkya pentacarpos (Zhou et al. 2019), 
Salix sp. (Yang et al. 2019a), Solanum nigrum (Ferraz et al. 

2012; Li et al. 2019), Sorghum sp. (Jadia and Fulekar 2008) 
and Vigna unguiculata (Kshirsagar and Aery 2007) have 
been employed in phytostabilization applications.

Fig. 1  A Main phytoremediation strategies, modified from Ozyigit 
and Dogan 2015, B transporter proteins used during the uptake of 
heavy metal into plant, NRAMP natural resistance-associated mac-
rophage protein, OPT oligopeptide transporters, MATE multidrug 
and toxic compound extrusion (MATE) family of transporters, ZIP 
ZTR/IRT-related proteins, HMA4 heavy metal ATPase 4 (copyrighted 

illustration from Prof. Ozyigit and Dr. Can), C detoxification of heavy 
metals taken into the plant, HM heavy metal, PC phytochelatins, MT 
metallothionein, GSH glutathione, PAL phenylalanine ammonia-
lyase, oxML oxy monolignol, LMWC low molecular weight com-
pounds (amino acid/organic acid) (copyrighted illustration from Prof. 
Ozyigit and Dr. Can)
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Efficient elimination of organic pollutants via phytodeg-
radation can be accomplished through access of organic 
pollutants into plant tissues or the rhizosphere and follow-
ing decomposition by internal or secreted plant enzymes 
or products (Pilon-Smits 2005; Peer et al. 2006; Ozyigit 
and Dogan 2015). Organic compounds degraded by use of 
this approach are included herbicides, insecticides, chlo-
rinated solvents and inorganic contaminants (Pivetz 2001). 
Dehalogenase, nitrilase, phosphalase, nitroreductase and 
oxidoreductase are the plant enzymes commonly involved 
in degradation of those organic contaminants (Kumar et al. 
2019).

Blumea malcolmii (Kagalkar et al. 2011), Chlorella pyr-
enoidosa (Headley et al. 2008), Datura innoxia (Lucero 
et al. 1999), Erythrina crista-galli (De Farias et al. 2009), 
Ipomoea carnea (Jha et al. 2016), Leucaena leucocephala 
(Doty et al. 2003), Lycopersicon peruvianum (Schnoor et al. 
1995), Phragmites australis (He et al. 2017), Pontederia 
crassipes (Gong et al. 2019) and Spirodela polyrhiza (Singh 
et al. 2019) are some plants utilized in phytodegradation 
processes.

Microorganisms-assisted degradation of organic pol-
lutants (e.g., xenobiotics) in the vicinity of rhizosphere is 
known as rhizodegradation (Sangeeta and Maiti 2010; Ali 
et al. 2013; Ozyigit and Dogan 2015). Degradation or trans-
formation for a compound involves in breakdown or altera-
tion of it into its smaller constituents or a metabolite; there-
fore, rhizodegradation is important in solving the pollution 
problem caused by organic toxics through the remediation 
process (Arthur et al. 2005).

Rhizodegradation comprises an association between 
plants and microorganisms so that remediation can be 
achieved, which requires the presence of a series of low 
molecular weight organic acids, carbon and nitrogen com-
pounds. Plants produce these compounds in order to nour-
ish microorganisms in the rhizosphere and this makes con-
taminants in the vicinity of rhizosphere more bioavailable 
and exudates released by plants also enhance degradation of 
contaminants through stimulation of biochemical pathways 
within microorganisms (Leigh et al. 2002; White et al. 2003; 
Jan et al. 2015). To achieve to have higher yield in degrada-
tion process, a two-step enrichment approach proposed by 
Kuiper et al. (2004) was realized through bacteria harvested 
from the roots of plants grown in contaminated sites have 
used to stimulate biodegradation potential by re-colonizing 
plant roots.

Bromus inermis, Dactylis glomerata, Desmanthus illi-
noensis, Festuca arundinacea, Lolium perenne, Panicum 
virgatum, Tripsacum dactyloides (Lin et al. 2011), Cyno-
don dactylon (Nguemte et al. 2018), Kandelia candel (Lu 
et al. 2011), Melia azedarach (Kotoky and Pandey 2019), 
Rubus fruticosus (Alagić et al. 2016), Salix nigra (Yifru 

and Nzengung 2008), Sesbania cannabina (Maqbool et al. 
2012), Triticum aestivum, Cucurbita ssp. (Ely and Smets 
2017) and Zea mays (Zamani et al. 2018) are some plants 
employed in rhizodegradation process.

By phytovolatilization, uptake of many environmental 
contaminants, including organics (tetrachloroethane, trichlo-
romethane and tetrachloromethane) and/or certain metals 
(As, Hg and Se), by plants can be carried out and they are 
released into the atmosphere through transpiration either in 
their original form or after metabolic modification (Susarla 
et al. 2002; Ali et al. 2013; Ozyigit and Dogan 2015). This 
technique is applicable for transforming the metal contami-
nants into less toxic elemental forms. For example, the spe-
cies of mercury are converted into other less toxic forms. 
Elimination of heavy metals and organic solvents is suc-
cessfully accomplished via using phytovolatilization tech-
nique, in which the use of transpiration on parts of plants is 
important for efficiency depending on climatic conditions 
(Surriya et al. 2015).

There is a major consideration for phytovolatilization. 
Though it is often thought to be beneficial, a risk assessment 
should be done for toxic volatile contaminants released into 
the atmosphere during the process. However, some reports 
say that despite exposure potential existing for volatile toxic 
contaminants due to substantial dispersion and dilution in 
the atmosphere they pose no environmental risk (Lin et al. 
2000).

Azolla sp., Oryza sativa, Polypogon monspeliensis, Sali-
cornia sp. (Hansen et al. 1998; Pilon-Smits et al. 1999; 
Lin et al. 2000; Hooda 2007; Ruppert et al. 2013), Jun-
cus effuses (Wiessner et al. 2013), Phragmites australis 
(San Miguel et al. 2013), Brassica juncea, Astragalus sp. 
(Bañuelos et al. 1997; Raskin et al. 1997), Juncus xiphi-
oides, Myriophyllum brasiliense, Scirpus robustus and 
Typha latifolia (Pilon-Smits et al. 1999; Arthur et al. 2005) 
are suitable plants for removing certain metals from the soil 
by this approach.

Due to nature of phytovolatilization, the process goes 
slowly. Therefore, optimization steps are put in practice as 
using novel plant species having high rates of transpiration 
and enzymes overexpressing (Van Huysen et al. 2003) and 
also technology is used to produce transgenic plants having 
efficient volatilization features (LeDuc et al. 2004; Malik 
et al. 2015).

Hydraulic control utilizes abilities of plants to absorb 
large amounts of contaminated water, and through transpi-
ration, contaminants are kept in the plant bodies preventing 
the spread of contaminants (Kvesitadze et al. 2006; Ozyigit 
and Dogan 2015). For the application of this approach, 
poplar, birch, willow and eucalyptus are the most suitable 
plant species (Gatliff 1994; Pivetz 2001; Kvesitadze et al. 
2006). Hydraulic control can affect movement of a plume of 
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contaminated groundwater, minimize or suppress infiltration 
and leaching, and stimulate upward water movement from 
the water table (Hoffman et al. 1982; Olson and Fletcher 
2000).

Uptake, transport and accumulation 
of heavy metal ions in plants

Released toxic agents are of having tendency for entering 
into the plants via various ways, commonly by soil (Cutillas-
Barreiro et al. 2016), groundwater (Abid et al. 2016) and air/
foliar (Bondada et al. 2004). Besides, soil-based entrance 
basically is the most pervasive and well-known way, irriga-
tion practices and air-based entrance into the plants shall not 
be ignored when compared with soil-based entrance (Akguc 
et al. 2010; Zhao et al. 2019b). When one of essential or 
nonessential metals reaches the certain level in soil, poten-
tial threats arise not only for plants but also for other living 
organisms. One dramatic instance showing negative effects 
on human health is of taking excessive amounts of one of 
essential or nonessential metals by consumption of edible 
parts of plants via the food chain (Gaur et al. 2014; Dixit 
et al. 2015). Heavy metal accumulation is a complex event 
consisting of several steps that allows transport of heavy 
metals into the root cells via membrane carrier proteins, 
loading of heavy metals into xylem and detoxification/com-
partmentalization of heavy metals in appropriate aerial parts 
of the plant (Lombi et al. 2002).

This complex phenomenon can be better followed by 
explaining issues related to bioavailability and transporta-
tion of heavy metals to the root active sorbing zone. Metal 
accumulation having beneficial or toxic effects in plants 
starts with metals existing in bioavailable ionic forms in 
the soil (Jabeen et al. 2009; Maestri et al. 2010). Excret-
ing of protons  (H+) from organic acids (phytochelatins), 
amino acids and enzymes (known as acidification) present 
in the root rhizosphere environment increases bioavail-
ability or mobility of metal ions whether being beneficial 
or toxic (Yang et al. 2005b). Metal ions (heavy or other 
beneficial ones) move throughout root active sorbing zone 
via the way of mass flow of soil liquid phase driven by 
transpiration force and ion diffusion pace of root surface 
cell (Barber 1962). In connection therewith: (1) soil-based 
entrance of metal ions into the root cells is catalyzed by 
a group of membrane transporter proteins (Fig. 1b) (Bax-
ter et al. 2003). The excess amounts of nonessential ele-
ments in soils have potential for entering into the plants in 
terms of their similarities to the essential microelements 
(Zhou et al. 2012) and the membrane transporter proteins 
having weak target specificities (Schaaf et al. 2006) for 

nonessential and essential elements. Examples are: Ca and 
Cd intakes are catalyzed by the same calcium transporter 
(Perfus-Barbeoch et al. 2002) and iron-regulated trans-
porter proteins (Korshunova et al. 1999); natural resist-
ance-associated macrophage protein, copper transporter 
and zinc/iron transporter-related proteins generate major 
driving force for the entrance of metalloids into the cells in 
association with some of aquaporin transporters (nodulin 
26-like intrinsic proteins and aquaglyceroporin) (Yin et al. 
2016); natural resistance-associated macrophage protein 
and zinc-iron permease membrane transporter protein fam-
ilies have tendency for transportations of divalent cations 
between the inner and outer parts of the plant cells (Dal-
Corso et al. 2013); low-affinity cation transporter conduct 
transportation of divalent heavy metals simultaneously 
with Ca in wheat (Clemens et al. 1998) and heavy metal 
chelate complexes are catalyzed by multidrug-resistance 
protein for transportation into the vacuoles (Tommasini 
et al. 1998); some other transporter proteins for carrying 
out heavy metal transportation into plant cells have also 
been shown by recent studies, e.g., cyclic nucleotide-gated 
(Moon et al. 2019); and a casket of phosphate transporter 
also allows As transportation into the plant cells (Kumar 
and Trivedi 2016). (2) When heavy metals are transported 
inside, they move from one place to another in the cell 
by exploiting of non-specific for essential or nonessential 
metal  P1B-type transporters, also known as heavy metal-
transporting ATPases. Organelles having intracellular 
membranes, such as Golgi apparatus, vacuole and endo-
plasmic reticulum also bear  P1B-type of transporters for 
the selective compartmentalization (Williams et al. 2000). 
Besides, there are protein families, including natural resist-
ance-associated macrophage protein (Belouchi et al. 1997), 
cation diffusion facilitator (Maser et al. 2001), zinc–iron 
permease (Van der Zaal et al. 1999), multidrug and toxin 
efflux (Kramer et al. 2007) and oligopeptide transporters 
(DalCorso et al. 2013) responsible for translocating heavy 
metals from root to shoot cells in plants (Singh et al. 2016). 
(3) Detoxification of metals/metalloids can be mediated by: 
metal binding agents, including metallothioneins, phyto-
chelatins, involving chelation by organic acids and amino 
acids (Kumar et al. 2016); glutathione function and subse-
quently production of phosphate derivatives (Hernández 
et al. 2015); activation of reactive oxygen species enzyme 
production (Hossain et al. 2012); accumulation via com-
partmentalization (Sharma et al. 2016); and binding by the 
cell walls (Fig. 1c) (Mari and Lebrun 2006; Krzesłowska 
2011). Under stress circumstances, the plant cell wall 
structure plays a role, acting as a storage reservoir for 
heavy metals (Le Gall et al. 2015) and re-organize itself 
for lignification (Loix et al. 2018).
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Physiological aspects of heavy metal toxicity 
in plants

Physiologically, over excessive amounts of essential and 
nonessential metal intakes by the plant cells cause detri-
mental effects arising on various pathways that are extremely 
critical for the continuity of life. The most emergent symp-
toms due to excessive metal (Cd, Cu, Ni and Pb) accumu-
lation by plants are losses of biomass and limited growth 
activities (Meyer et al. 2015; Krzeslowska et al. 2016; Asgari 
Lajayer et al. 2017; Roy et al. 2017; Dubey et al. 2018). Dis-
ruptions on photosynthetic machinery due to the negative 
influences affecting carbon management are the main rea-
son not to seize normal biomass production and growth rate 
(Myśliwa-Kurdziel et al. 2004; Ozyigit et al. 2016; Sorren-
tino et al. 2018). Besides malfunctioning of photosynthetic 
mechanism, germination, plant growth, water-electrolyte 
balance, stomatal conductance, transpiration rate, leaf rela-
tive water contents, nutritional status of plant, carbon-based 
primary metabolite mechanism, genotoxicity and integrities 
of key enzymes/biomolecules related events are gradually 
collapsed due to the presence of excessive amounts of met-
als (DalCorso et al. 2013; Latef 2013; Choppala et al. 2014; 
Sarwar et al. 2017; Yadav et al. 2019). There are 4 levels in 
sense of execute evaluation for occurrences of disruptive 
effects of metalloids in plants. Some metalloids, arsenate 
 (AsO4

3−), have great competition with phosphate  (PO4
3−), 

selenate  (SeO4
2−) and chromate  (CrO4

2−) as well as with 
sulfate  (SO4

2−) anions because of relatedness between their 
chemical properties. (1) Because of the chemical similarities 
between heavy metals and basic macronutrients, firstly plant 
nutrition-related metabolism is hampered as a result of this 
competition (Vetterlein et al. 2007; Schiavon et al. 2012). 
(2) Another type of competition exists between enzymes 
consisting of sulfhydryl and carboxyl groups. In particular, 
cysteine-rich sites in enzymes are important for the second-
ary, tertiary and quaternary folding and structure stabiliza-
tion via folding creates centers playing important roles in 
terms of catalyzing state of existence-based reactions in 
enzymes. The binding of heavy metals, including As, Cd, Hg 
and Pb, to these stabilization centers leads to appearances 
of restrictions on enzyme activities; hence, the reactions are 
catalyzed in low volumes (Van Assche and Clijsters 1990; 
Quig 1998; Sharma and Dubey 2005). (3) The third event 
interrupting regular plant growth and development in plants 
is the productions of direct or indirect reactive oxygen spe-
cies. Superoxide radicals  (O2−), hydrogen peroxide  (H2O2) 
and hydroxyl radicals  (OH−) are common forms of reactive 
oxygen species produced in response to oxidative stress aris-
ing from many normal/impaired cellular reactions follow-
ing expression of stress genes and pose danger for biomol-
ecules, including lipids, proteins and nucleic acids (Ghori 

et al. 2019). Active metals in redox reactions, including Cu, 
Fe and Zn can produce reactive oxygen species directly as 
a result of Haber–Weiss/Fenton reactions. Also, reactive 
oxygen species can be generated indirectly by stimulation 
of nicotinamide adenine dinucleotide phosphate oxidases 
having suppressive ability on enzymes related to detoxifica-
tion of reactive oxygen species in the presence of some of 
nonessential metals, including Cd, Hg and Pb in cells (Dal-
Corso 2012; Shahid et al. 2014). (4) And finally, essential 
macro- and microelements (Fe, Mg, Mn, P and Zn) that play 
important roles in biological processes can be replaced by 
some nonessential elements (As, Cd, Cr and Pb) in terms of 
occurrences of interactions between elements and biomol-
ecules based on affinity. Those kinds of metallic exchanges 
cause: altered enzymatic activities and gene expressions in 
some cases (Sanita di Toppi and Gabbrielli 1999); inter-
ruptions of signal transduction pathways (calcium depend-
ent cellular signal transduction) (DalCorso et al. 2008); and 
blockages on chlorophyll production (Sharma and Sharma 
1996; Yusuf et al. 2011). Under circumstances of exceeding 
acceptable limits of detoxification capacity of cells having, 
the reactive oxygen species cause cells to fall into the oxida-
tive stress (Yuan et al. 2013) and first sing for measurable 
oxidative stress damage comes from DNA, lipid and protein 
monitoring (Berni et al. 2018). The reactive oxygen species 
are of key players of some physiological processes within 
the cellular acceptable limits (Yuan et al. 2013).

Phytochelatins

In biological systems, converting heavy metals into less dan-
gerous and more mobile forms accompanying with binding 
to cysteine-rich polypeptides is the most frequent way of 
detoxification process following compartmentalization aris-
ing right after loading of the complexes into the vacuoles 
(Fig. 2a) (Liu et al. 2015c). Metal chelation agents consist of 
functional groups bearing thiol, amino, or hydroxyl groups 
in their structures having strong affinity for heavy metals 
(Rea et al. 2004). Phytochelatin is defined as s-rich, thiolate 
peptides and formulated as [γ-glutamyl-cysteinyl]n-X where 
n stands for numbers between 2 and 11 depending on organ-
ism and X stands for amino acids, including glycine, serine, 
β-alanine, glutamate or glutamine (Cobbett and Goldsbrough 
2002). It is categorized according to having how many -Glu-
Cys units such as  PC2,  PC3,  PC4,  PC5 (Rauser 1995). Phyto-
chelatins are synthesized enzymatically in the presence of 
heavy metals from glutathione via phytochelatin synthases 
activity (Zenk 1996; Vatamaniuk et al. 2004; Filiz et al. 
2019b). They are only found in plants and certain micro-
organisms (Hanikenne 2003; Chaurasia et al. 2008), and 
their synthesis also is initiated/transformed in the entity of 
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anionic (Ag, Au, Cd, Cu, Hg, Pb and Zn) and cationic (As) 
metal(loid)s (Shukla et al. 2016). Among these metal(loid)s, 
particularly As and Cd are major inducers of phytochelatin 
gene activity (Verkleij et al. 2003). Glutathione is a kind 

of precursor and is considered playing role together with 
chelating agents in detoxification of free radicals existing 
in the cells because of heavy metal activities (Anjum et al. 
2014).

Fig. 2  A Detoxifying heavy metals by phytochelatins (copyrighted 
illustration from Prof. Ozyigit and Dr. Can), (Cys cysteine, GSH glu-
tathione, Glu glutamate, GSH1 gamma-glutamylcysteine synthetase, 
GSH2 glutathione synthetase, JA jasmonic acid, LMWPC-HM low 
molecular weight phytochelatin-heavy metal, HMWPC-HM high 
molecular weight phytochelatin-heavy metal, PC phytochelatin, ɣ-EC 

gamma-glutamylcysteine), B detoxifying heavy metals by metal-
lothioneins (apoMTF1 metal-responsive transcription factor 1, Zn-
MTF1 zinc-metal-responsive transcription factor 1, CAT  catalase, 
GPX glutathione peroxidase, MT metallothionein, SOD superoxide 
dismutase) (copyrighted illustration from Prof. Ozyigit and Dr. Can)



677Environmental Chemistry Letters (2021) 19:669–698 

1 3

Cysteine residues of phytochelatin consisting of thiols 
or sulfonyl groups have great potential for occurrences of 
interactions with heavy metals, and phytochelatin–metal 
stability depends on intracellular deposition of metals (Le 
Faucheur et al. 2005; Filiz et al. 2019a). After formation 
of the phytochelatin–metal complex, shipping of it into the 
plant cellular vacuole is conducted immediately via activity 
of an ATP-binding cassette transporter family or an organic 
solute transporter family (Pal and Rai 2010; Solanki and 
Dhankhar 2011; Ghori et al. 2019). Specific transporter 
families (cation diffusion facilitator and natural resistance-
associated macrophage protein) also are involved in seques-
tration process of heavy metals from cytosol to vacuole 
(Singh et al. 2016). This is not the only way plants cope 
with detoxification of heavy metals simultaneous escalation 
in phytochelatins activity enhances antioxidant production in 
Brassica chinensis under Cd stress (Chen et al. 2008). Phyto-
chelatins stimulate antioxidant enzyme formations (superox-
ide dismutase, ascorbate peroxidase, glutathione peroxidase, 
glutathione and glutathione reductase) and might also com-
pensate reactive oxygen species generation resulting from 
heavy metal stress in plants (Mishra et al. 2006; Filiz et al. 
2019a) (Fig. 2-A).

Brassicaceae species are widely preferred in using trans-
genic phytoremediation strategies for the following reasons: 
(1) multiple cultivation practices can be executed within a 
season due to their rapid growth and development properties; 
(2) they have wide adaptation capabilities for particular envi-
ronmental conditions; (3) they also have tolerance against 
heavy metal accumulation; therefore, they are suitable for 
different transformation approaches for efficient heavy metal 
remediation from soils (Agnihotri and Seth 2019).

Some following influential cases are exemplified along 
with the species belonging to Brassicaceae family and some 
other species (Table 1). A phytochelatin synthase gene from 
Brassica napus was cloned and transformed into Arabidop-
sis thaliana AtPCs1 mutant cad1–3 via Agrobacterium-
mediated transformation floral dip method after generation 
of three genetically engineered lines, a morphological and 
physiological evaluation was done for these transgene lines 
and A. thaliana AtPCs1 mutant under excessive level of Cd 
treatment. In this work, the transgenic lines were found to be 
highly efficient in remediation (Bai et al. 2019).

Despite being in many plants, not all phytochelatin 
synthase genes have been identified and characterized at 
functional and molecular levels. Fan et al. (2018) identi-
fied two phytochelatin synthase genes from Morus alba 
and transformed them into Arabidopsis and tobacco plants 
via employing Agrobacterium-mediated floral dip method 
for validating their heavy metal accumulation capabilities. 
When transgenic Arabidopsis and tobacco plants reached the 
seedling stage, their gaining biomass and Zn/Cd accumula-
tion capability rates were analyzed using total root length 

and fresh weight readings and atomic absorption spectro-
photometry data. According to their results, identified phyto-
chelatin synthase genes were classified as promising genetic 
resources for phytoremediation of heavy metals.

Vicia sativa phytochelatin synthase genes 1 homolog and 
its functionality under Cd stress have been investigated after 
transforming it into the A. thaliana. Amplified PCs1 gene 
from total RNA was inserted into the pCAMBIA1304 vector 
under control of cauliflower mosaic virus 35 promoter. After 
insertion, Agrobacterium-mediated floral dip method was 
utilized for transformation of PCs1 gene. Besides atomic 
absorption spectrophotometer that was employed for deter-
mining Cd concentrations, cysteine, glutathione and phyto-
chelatin measurements were also taken via determining thi-
ols using ultra-performance liquid chromatography system 
for analyses of functionality and expression levels. The exact 
intracellular Cd localization was shown using Cd-sensing 
fluorescent dyes and ultraview vox confocal microscope. At 
the end of this work, an inference was made as VcPCs1, 
upgraded of our understanding of phytochelatin-mediated 
heavy metal tolerance in higher plants (Zhang et al. 2018).

During the generation of new genetically modified plants, 
the new genes discovered from different types of organisms 
(animals, plants and bacteria) are exploited in possible 
manipulation of accumulating or degrading heavy metals 
(Seth 2012). An interesting transgenic research by Kühnlenz 
et al. (2015) was carried out using phytochelatin synthase 
genes originally from Caenorhabditis elegans (Vatamaniuk 
et al. 2001) and Schizosaccharomyces pombe (Clemens et al. 
1999) for detoxification of heavy metals in Arabidopsis uti-
lized as study material. In that research, AtPCs1 mutant line 
was transformed with CePCs genes to perform investiga-
tion on Cd accumulation/CePCs transcript/phytochelatin 
contents.

Besides the members of brassicaceae family, poplar 
(Populus tomentosa) is another widely distributed model 
plant species actively used in phytoremediation of heavy 
metals. After transferring PtPCs gene to tobacco using Agro-
bacterium-mediated leaf disk method, wild and transgenic 
types were used to conduct investigation for Cd stress in 
terms of determination of morphological and physiological 
indices (leaf relative electrolyte leakage, malondialdehyde 
content, total superoxide dismutase activity, chlorophyll 
content and root activity) and Cd tolerance rate. At the end, 
the authors pointed out that PtPCs may involve in Cd toler-
ance and accumulation but not in Cd transport (Chen et al. 
2015b).

In transgenics, glutathione-dependent phytochelatin pro-
duction is not achieved only by transferring phytochelatin 
synthase genes but also gained by induction of transferred 
genes that are dependent on glutathione. After cloning of a 
kind of inducer gene, XCD1 also known as MAN3 from A. 
thaliana Heynh columbia-0 was transferred to Arabidopsis 
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mutant genotypes and tested for Cd accumulation and toler-
ance. Gene transcripts and protein expressions, Cd accumu-
lation, glutathione and phytochelatin contents were analyzed 
in transgenic and mutant Arabidopsis lines. XCD1 has a 
regulatory function on glutathione-dependent phytochelatin 
production by cross-talking with related genes (Chen et al. 
2015a).

Metallothioneins

Once one of the heavy metals enters through the plant cell, 
firstly productions of kinds of glutathione-based thiol deriva-
tives, such as malic acid, citric acid and malonic acid, called 
phytochelatins are stimulated to prevent possible damages 
via binding to heavy metals resulting in compensation of 

Table 1  Selected inorganic phytoremediation case studies involving transgenic plants, with focus on phytochelatins and metallothionein trans-
genic lines

All abbreviations in the table are explained in the text and in the abbreviations section

Target plant Gene(s) Source Degradation References

Arabidopsis thaliana MerC Bacteria Hg Uraguchi et al. (2019)
A. thaliana AdPCs1-2-3 Arundo donax Cd Li et al. (2019a)
Brassica napus CKX2 Arabidopsis thaliana Cd, Zn Nehnevajova et al. (2019)
– OsPCs5/OsPCs15 Oryza sativa Cd Park et al. (2019)
A. thaliana ZmUBP15-16-19 Zea mays Cd Kong et al. (2019)
A. thaliana PCs1 Brassica napus Cd Bai et al. (2019)
A. thaliana CarMT Cicer arietinum HMs, Drought Dubey et al. (2019)
Sedum plumbizincicola SpHMA1 Sedum alfredii Cd Zhao et al. (2019a)
Nicotiana tabacum LmSAP Lobularia maritima Cd, Cu, Mn, Zn Saad et al. (2018)
A. thaliana PCs1 Vicia sativa Cd Zhang et al. (2018)
N. tabacum PtoEXPA12 Populus tomentosa Cd Zhang et al. (2018)
B. napus OsMyb4 Oryza sativa Cu, Zn Raldugina et al. (2018)
A. thaliana VsCCoAOMT Vicia sativa Cd Xia et al. (2018)
N. tabacum PtoHMA5 Populus tomentosa Cd Wang et al. (2018)
A. thaliana
N. tabacum

PCs Morus alba Cd, Zn Fan et al. (2018)

A. thaliana YSL Miscanthus sacchariflorus Cd Chen et al. (2018)
A. thaliana Populus tomentosa PtABCC1 Populus trichocarpa Hg Sun et al. (2018b)
A. thaliana SaCAD Sedum alfredii Qiu et al. (2018)
Wild-type rice OsARM1 Oryza sativa As Wang et al. (2017)
A. thaliana SsMT2 Suaeda salsa Cd, Na Jin et al. (2017)
N. tabacum AtACR2 Arabidopsis thaliana As Nahar et al. (2017)
Urtica dioica CUP Bacillus shackletonii

Streptomyces badius
Cd, Pb, Zn Viktorova et al. (2017)

A. thaliana SaNramp6 Sedum alfredii Cd Chen et al. (2017)
N. tabacum PjHMT Prosopis juliflora Cd Keeran et al. (2017)
O. sativa ricMT Oryza sativa Cd, Cu Zhang et al. (2017)
N. tabacum OsMTP1 Oryza sativa As, Cd Das et al. (2016)
A. thaliana IlMT2b Iris lactea Cu Gu et al. (2015)
A. thaliana OsMT2c Oryza sativa Cu Liu et al. (2015b)
A. thaliana MAN3 Arabidopsis thaliana Cd Chen et al. (2015a)
A. thaliana CePCs1 Caenorhabditis elegans Cd Kühnlenz et al. (2015)
Beta vulgaris StGCS-GS Streptococcus thermophilus Cd, Cu, Zn Liu et al. (2015a)
N. tabacum PtPCs Populus tomentosa Cd Chen et al. (2015b)
P. tremula X P. alba γ-glutamylcysteine synthetase Escherichia coli Cd Jiali et al. (2015)
Brassica juncea AtACBP1 AtACBP4 Arabidopsis thaliana Pb Du et al. (2015)
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their effects and increasing of metal tolerance in plants 
(Filiz et al. 2019a; Pandey et al. 2019). Metallothioneins 
are classified as low molecular weight, cysteine-rich pro-
teins/polypeptides, and they have ability to bind essential or 
nonessential metals; thereby, they maintain cellular homeo-
stasis (Fasani et al. 2018). Metallothionein genes are found 
in a wide variety of organisms, including fungi, inverte-
brates, mammals, plants and some prokaryotes (Du et al. 
2012). Metallothioneins having mercaptide bonds arising 
between metallothioneins and metal(loid)s are produced as 
low-weight biomolecules (4–14 kDa) from transcription-
ally gene encoded mRNAs, which are relatively different 
from enzymatically synthesized phytochelatins (Cobbett and 
Goldsbrough 2002). The stimulation of transcript produc-
tions from metallothionein genes is realized via releasing of 
plant hormones due to existing abiotic stress factors, includ-
ing cytotoxic agents and heavy metals such as Ag, Au, Bi, 
Cd, Co, Cu, Hg, Ni and Zn (Yang et al. 2005a) (Fig. 2b). 
Metallothioneins, a group of chelators, carry out various 
tasks, which involved in homeostasis of essential metals, 
compartmentalization of nonessential metals and detoxifi-
cation of reactive oxygen species (Gasic and Korban 2006; 
Hossain et al. 2012). Also, metallothioneins actively par-
ticipate in restoring of existing functional and structural 
cellular damages such as those related to membrane, cell 
division, growth and developmental events (Mishra and 
Dubey 2006) and DNA (Grennan 2011). Metallothioneins 
are divided into three main classes (Zhou et al. 2006), and 
four distinct subgroups are defined for plant metallothioneins 
according to conformations of cysteine residues (Huang and 
Wang 2009). The arrangements of three types of cysteine 
motifs are shown as cysteine–cysteine, cysteine–X–cysteine 
and cysteine–X–X–cysteine used for classification of metal-
lothioneins where X indicates one of 20 amino acids (Cob-
bett and Goldsbrough 2002; Hossain et al. 2012). Plants, 
fungi and invertebrate metallothioneins are generally evalu-
ated as under the context of class II (Robinson et al. 1993). 
Types of plant metallothioneins genes show tissue-specific 
expression profiles as in roots, leaves, shoots, fruits and 
seeds (Shukla et al. 2016).

Metallothioneins are effective not only for elimination 
of metal stress but also for suppression of drought stress 
in plants. Metallothionein gene from chickpea was trans-
ferred to Arabidopsis using Agrobacterium-mediated floral 
dip method and expression of its product (30-fold higher), 
and some physiological properties, enzymatic and non-enzy-
matic antioxidant productions were found to be better than 
wild-type Arabidopsis (Dubey et al. 2019).

A study performed for determining of heavy metal toler-
ance rates of transgenic tobacco, of which Lm-SAP gene 
(a member of the stress-associated protein gene family) 
from Lobularia maritima transformed and their findings 
from physiological (total shoot biomass and root length), 

biochemical (oxidative stress markers and antioxidant 
enzyme activities) and transcript (real time polymerase chain 
reaction) analyzes showed that under Cd, Cu, Mn and Zn 
stresses, the expressions of metallothionein genes (Met1, 
Met2, Met3, Met4, and Met5) as well as the expression of 
other stress-related genes in transgenic tobacco were stimu-
lated (Saad et al. 2018).

After cloning a metallothionein gene (SsMT2) from 
Suaeda salsa which was grown commonly in saline/alka-
line soils, the characterization of its product was done in 
transgenic Saccharomyces cerevisiae and Arabidopsis thali-
ana showing distribution nearly in all organs and tissues, 
except flowers. And also, induced levels for its product were 
observed after applications of different stress conditions 
generated using  CdCl2, NaCl,  NaHCO3 and  H2O2. SsMT2-
transgenic S. cerevisiae and A. thaliana showed significant 
resistance to metal, salt and oxidant stresses. Results were 
as follows: high accumulation for Cd and low accumulation 
for Na, and maintaining low level of  H2O2 in comparison 
with wild non-transgenic types. The results encourage the 
utilization of these transgenics in phytoremedial cases (Jin 
et al. 2017).

An investigation was carried out by Zhang et al. (2017) 
dealing with Cd and Cu stresses in point of applications of 
 CuSO4 and  CdCl2 at cellular level with respect to compari-
sons between the generated transgenic cell line from rice 
cultivar Nipponbare by in use of Agrobacterium-mediated 
transformation and wild type in terms of measuring  H2O2 
levels and cell death rates. Descended cell death rate and 
 H2O2 level in the transgenic cell line were observed by 
means of expression of ricMT gene. Low  H2O2 level via 
expression of ricMT gene plays a crucial role for having 
tolerance for Cd and Cu stresses.

Transformation of the metallothionein gene (OsMT2c) 
from Oryza sativa to Arabidopsis carried out by Liu et al. 
(2015b) provided tolerance for Cu stress. Expression prod-
uct of OsMT2c (a kind of type II metallothionein gene) is 
usually seen in the leaves and roots of plants. Transcription 
of the gene is stimulated by the presence of  H2O2 and Cu. 
OsMT2c gene was introduced to Arabidopsis by Liu et al. 
(2015b). After its transformation, its efficiency was tested 
for Cu stress and the results showed that tolerance for Cu 
stress and efficient neutralization for ROS were observed in 
the transgenic Arabidopsis in comparison with wild type.

IlMT2b, a metallothionein gene from Iris lactea var. 
chinensis, was cloned by Gu et al. (2015) and introduced 
to A. thaliana ecotype columbia-0 using floral dip method. 
Real-time polymerase chain reaction was used for valida-
tion of transformation for IlMT2b gene. Cu contents and 
 H2O2 levels were analyzed in transgenic and wild types after 
application of Cu stress. Besides scale-up Cu accumulation 
and scale-down  H2O2 level observations, significant root 
elongation (in ranges of 1.5–3-fold increase in comparison 
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with wild type) was noticed under Cu stress; therefore, this 
feature might be useful for remediation of copper-rich soils.

Plant species for optimum phytoremediation

Although plant species having high tolerance ability to met-
als and hyper-accumulation capacity can likely be found 
naturally in soils bearing rich metal contents, plant species 
living in such soils almost all are not suitable for use in 
phytoremediation because of usually being in small size 
and biomass, whereas plant species showing large growth 
capabilities generally exhibit weak metal deposition abil-
ity and low tolerance to heavy metals. For high capacity 
accumulation of heavy metals, the following features borne 
by a plant are: exhibiting fast growth ability and building 
eminent biomass; having ability and high toleration capacity 
for accumulation of heavy metal(s); and being easily han-
dle for harvest (Karenlampi et al. 2000). Therefore, creat-
ing transgenic plants carrying specific features for phytore-
mediation is perhaps inevitable. In general sense, new or 
improved phenotypic characters in plants can be brought 
into existence through genetic engineering in terms of trans-
ferring genes from other organisms (Clemens et al. 2002; 
Shah and Nongkynrih 2007). Heterotrophic organisms, 
bacteria and mammals, have metabolic pathways consisting 
of unique enzymes for complete digestion of organic sub-
stances; hence, these enzymes can be employed in plants for 
improvements of their degradation capabilities (Eapen et al. 
2007; Van Aken 2008).

First attempts were historically related to providing 
enhance tolerance to plants for heavy metals in connection 
with phytoremedial practices, including transgenic tobacco 
and Arabidopsis thaliana created by introducing a yeast 
metallothionein gene and a mercuric ion reductase gene 
for higher tolerance to Cd and Hg, respectively (Misra and 
Gedamu 1989; Rugh et al. 1996). Though they produced sat-
isfactory results at laboratory scale, because of their compe-
tence at field applications they were not found to be suitable. 
Alternatively, poplars (Populus sp.) are considered as good 
choice for phytoremediation due to fast growing ability and 
producing eminent biomass (Misra and Gedamu 1989; Rugh 
et al. 1996). Although, in years, Agrobacterium tumefaciens 
with tumor-inducing (Ti) plasmid has been recognized as 
a favorite vector system, effectively used for introducing 
genes to plants, challenges for A. tumefaciens-mediated 
transformation of forest trees arise. That is why only a few 
studies have been reported about the genetic innovations 
of poplars (Han et al. 2000). The first transgenic poplars 
developed for phytoremedial practices were realized for 
treating chloroacetanilide herbicides by the overexpression 
of a gamma-glutamylcysteine synthetase involving in glu-
tathione synthesis (Gullner et al. 2001). Since there may be 

a specific mechanism for uptake of a heavy metal into plants, 
it is important for considering appropriate strategies for each 
heavy metal when developing transgenic plants (Eapen and 
D’Souza 2005).

The plant species having capabilities of accumulating 
large amounts of heavy metals show extraordinary storage 
abilities in their epidermal cells. Accordingly, feasibility for 
improving tolerance and accumulation capacity to heavy 
metals in plants can be met through productions of metal-
lothioneins, phytochelatins and metal chelators in terms of 
inserting and/or overexpressing of the genes playing roles 
in tolerance and accumulation of heavy metals as mentioned 
above (Eapen and D’Souza 2005; Hassan and Aarts 2011). 
Also, improving heavy metal tolerance and accumulation 
capacities in plants could be accomplished by modification 
of metal transporter genes. The translocations of heavy met-
als from root to shoot are an important step in accumulator 
plants, and the way of stimulating translocation from root 
to shoot can be managed by intense metal driven in shoots, 
improved xylem loading and repressed metal sequestration 
in root vacuoles (Hassan and Aarts 2011; Soleimani et al. 
2011). In the following section, some information about 
direct and indirect gene transfer techniques widely used as 
well as the cutting-edge gene transfer approaches is given.

Effective gene transfer methods 
for phytoremediation

Conventional gene transfer methods

Agrobacterium‑mediated transformation

Agrobacterium-mediated genetic transformation is the most 
common technique used for the development of transgenic 
plants (Ozyigit et al. 2013). The species from genus Agro-
bacterium cause different types of neoplastic diseases, 
including crown gall (A. tumefaciens and A. vitis), hairy root 
(A. rhizogenes) and cane gall (A. rubi) by inserting T-DNA 
into a large group of plant species, including dicotyledons 
and monocotyledons (Ozyigit 2012). Agrobacterium strains 
containing native T-DNA allow us to produce an efficient 
mechanism for creating transgenic plants in terms of intro-
ducing and stabilizing of foreign gene(s) in plants. For this 
reason, Agrobacterium-mediated transformation as a genetic 
engineering tool has been utilized for constructions of new 
plasmids and strains throughout of exploring new ways for 
developing different transgenic plants (Ahmad et al. 2017).

Tumor-inducing plasmid found in the soil bacterium A. 
tumefaciens used as a vector for transferring functional for-
eign genes to plants is a powerful tool developed so far. 
The wild-type plasmid carrying oncogenic genes encode 
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the enzymes playing roles in biosynthesis of auxins and 
cytokines. Opines secreted in plant crown gall cells as a 
result of condensation of amino acid and sugars through in 
related biosynthetic pathway catalyzed by specific enzymes 
encoded by genes of tumor-inducing plasmid are exploited 
by pathogenic bacteria of the genus Agrobacterium as carbon 
and nitrogen sources (Vladimirov et al. 2015). The 25-bp 
repeat sequences known as the left and right borders (LB 
and RB, respectively) are located on T-DNA region defining 
the boundaries. Virulence (vir) genes, virA, virB, virC, virD, 
virE, virF, virG, and virH positioned outside the T-DNA 
region within plasmid and chvA, chvB, and chvF positioned 
on bacterial chromosome in the forms of operons are crucial 
for T-DNA transfer (Zupan et al. 2000; Barampuram and 
Zhang 2011). The regulation mechanism of T-DNA transfer 
and integration is carried out via the proteins encoded by 
the vir genes found as 8 operons located on vir region of 
the tumor-inducing plasmid (Subramoni et al. 2014; Alok 
et al. 2017).

Agrobacterium-mediated transformation used for genetic 
modification of plants relies on five essential steps: (1) incit-
ing of vir genes expression; (2) generation of T-DNA com-
plex; (3) introducing of T-DNA from Agrobacterium to the 
plant cell nucleus; (4) integration of T-DNA into the plant 
genome; and (5) expression of T-DNA genes (Pitzschke and 
Hirt 2010; Gelvin 2012; Alok et al. 2017). virB/D4 type 
IV secretion system is involved in transportation of T-DNA 
complex and several vir proteins into the plant cell, and the 
following last step is integration of T-DNA into the plant 
chromosome (Christie 2004; Alok et al. 2017).

Ti plasmid being responsible for formation of crown 
gall disease in plants is adapted by scientists in purposes of 
introduction of foreign gene(s) to plants and of constructing 
stable plants providing expression of the gene(s) in heritable 
fashion in non-tumorous individuals (Ozyigit 2012). Adap-
tation includes modification of tumor-inducing plasmid in 
way of the elimination of its tumor-promoting properties in 
order to be able to regenerate plants from cells transformed 
with T-DNA in culture. Expression of introduced foreign 
gene(s) can be turn on under the control of their own normal 
regulatory signals (Kado 2014).

As a neoplastic disease, hairy root arising due to root-
inducing plasmid found in A. rhizogenes is the second com-
monly employed bacterium through using Agrobacterium-
mediated gene transfer. As tumor-inducing plasmid found 
in A. tumefaciens, root-inducing (Ri) plasmid found in A. 
rhizogenes consists T-DNA having oncogenic and opine 
catabolism genes (Ozyigit 2012). Relying on hairy root 
induction, culturing of some plant species through employ-
ing A. rhizogenes-mediated transformation is very practical 
in productions of some secondary metabolites and/or recom-
binant proteins, generally utilized in phytoremediation and 

healthcare industry (Fig. 3a) (Makhzoum et al. 2013; Pala 
et al. 2016; Alok et al. 2017).

Particle bombardment

As an alternative to Agrobacterium-mediated gene transfor-
mation method, the particle bombardment is an accepted 
major gene transfer method, commonly used for the transfor-
mation of plant species. Due to recalcitrancy for some plant 
species in use of Agrobacterium-mediated transformation, 
biolistic is utilized to transform these species at the nuclear 
level although having some disadvantages including multi-
ple foreign gene insertions frequently seen and difficulties 
for defining of the DNA segment inserted in the host. First 
drawback is being causing silencing events, and the latter 
one leads to obliging for detailed screening of the transfor-
mants to rescue those having the full-length DNA of interest 
(Kikkert et al. 2004).

Biolistics is a technique based on a mechanism involving 
propelling DNA-coated metal beads (tungsten or gold parti-
cles, 1–2 μm sized) at high speed into the target plant mate-
rial by firing an explosive in terms of releasing the genetic 
load within the cells and integrating the genetic load into the 
genome (Slater et al. 2008). The important step in this tech-
nique is ensuring proper coating of the metal beads with the 
DNA of interest being carried out under following circum-
stances: in the beginning, DNA of interest is precipitated 
with calcium chloride  (CaCl2) in order to provide a positive 
charged surface in terms of the adhering of the DNA to the 
metal bead; and finally, a cationic polyamine, spermidine, 
is added in purpose of protecting DNA from degradation 
of cellular nucleases and allowing DNA adsorption onto 
the metal beads (Brune et al. 1991; Thomas et al. 1996; 
Márquez-Escobar et al. 2018) (Fig. 3b).

For DNA delivery to plant cells using biolistic process, 
the plant tissue, used in transformation, is positioned in an 
evacuated chamber below a retaining plate for stopping 
particles. The metal beads coated with vector DNA on a 
macroprojectile are placed above the retaining plate. And, 
a firing disk is found above them. Acceleration of metal 
beads coated with DNA of interest is gained by a shock 
wave driven via pressure of helium (He). After application 
of driving force to propel the macroprojectile with metal 
beads coated with DNA of interest, the chamber goes down 
and stops at the retaining plate, while the metal beads coated 
with DNA of interest pass through hitting the plant tissue 
(Bradshaw 2016). Primary explants as tissues, cell suspen-
sions, or callus cultures from plants are used for bombard-
ment. Metal beads loaded with the DNA of interest are 
driven into the plant cell and then integration of the DNA 
of interest into host genome occurs (Kikkert et al. 2004; 
Thakur and Shankar 2017). Biolistics is generally employed 
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Fig. 3  A Agrobacterium-mediated transformation (left) (modified 
from Ozyigit 2012; Yuksek 2018), crown galls by A. tumefaciens 
(right up) (copyrighted picture from Prof. Ozyigit), hairy root forma-
tions by A. rhizogenes (right down) (with the permission of Prof. Dr. 
Sule Ari and Assoc. Prof. Dr. Semra Hasancebi), B particle bombard-
ment (Biolistic)-Helios® Gene Gun System (with the permission of 
Bio-Rad Laboratories, Inc.) and particle bombardment treatment 
(illustrated by Prof. Ozyigit), C Electroporation-Gene Pulser Xcell™ 

Electroporation Systems (with the permission of Bio-Rad Labora-
tories, Inc.) (right) and 1-Membrane before electric pulse, 2-Elec-
tropore formations during the pulse and transferring of DNA, RNA, 
enzyme, antibody, and some chemicals from cell membrane, 3-trans-
ferred chemicals and resealing-recovering after the pulse (left) (modi-
fied from Ozyigit 2020), D 1-zinc-finger nucleotide (ZFN), 2-TALEN 
and 3-CRISPRCas/9 mediated transformation (from Prof. Ozyigit)
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for introducing foreign genetic material into the nuclear 
genome, but also through transformation, it can be used 
for introducing foreign genetic material into chloroplast for 
providing high levels of gene expressions and synthesis of 
active proteins (Bradshaw 2016).

Electroporation

Transformation of prokaryotic and eukaryotic cells by apply-
ing electroporation is a highly efficient system using electri-
cal field for creating transient microscopic pores in plasma 
membranes of cells allowing integration of DNA of interest 
into the host genome following the passage of it into cells 
(Khan 2010; Kotnik et al. 2015; Thakur and Shankar 2017; 
Ozyigit 2020). After electroporation application using opti-
mized electric pulse, created microscopic pores on the mem-
branes of cells can be sealed and the cells can be recovered. 
However, deviating from application of suitable electrical 
current, one important dynamic of electroporation could 
cause the cell deaths due to extreme overheat leading to dete-
rioration of structure and permeabilization of the membranes 
(Kotnik et al. 2019).

By stimulation of an electrical stress, in vitro electro-
phoretic DNA transfer into cells is a fast process done 
through employing electroporation. At the beginning, the 
procedure was set up for protoplast change but was also 
approved to be applicable for plant cells too for DNA trans-
fer (Ozyigit 2020). A general setting for electroporation 
is for voltage at 25 mV and for amperage at 0.5 mA for 
15 min, but the other parameters including DNA concen-
tration at cell surface and strengths of cells to membrane 
permeation can have impacts on electroporation perfor-
mance (Kotnik et al. 2015, 2019). Transforming protoplast 
of both monocotyledonous and dicotyledonous plants using 
the electroporation approach, remarkable improvements 
have been gained (Ahmad et al. 2017). Transgenic rice 
plants produced by electroporation-mediated DNA inser-
tion were first reported to be used into embryogenic proto-
plasts (Zhang et al. 1988) (Fig. 3c).

Other direct and indirect techniques

For carrying out genetic transformation of plants, there are 
direct and indirect approaches other than mentioned above. 
They are: dextran-mediated transformation, liposome-
mediated, pollen-mediated, polyethylene glycol-mediated, 
and silicon carbide fiber-mediated genetic transformations; 
genetic transformations by microinjection and macroinjec-
tion; genetic manipulation by laser microbeam; sonication-
assisted; and desiccation and virus-induced gene transfers 
(Subramanyam et al. 2011; Ahmad et al. 2017; Mendel and 
Hänsch 2017; Gosal and Wani 2018).

Target‑specific genome editing

Introducing targeted mutagenesis, precise gene editing and 
site-specific gene insertion can be done by genome-editing 
techniques using chimeric mega nucleases, including zinc-
finger nucleases (ZFN), transcription activator-like effector 
nucleases (TALEN), and RNA-guided DNA endonucleases 
found in clustered regularly interspaced short palindromic 
repeat (CRISPR)/Cas (CRISPR-associated) systems. After 
inducing of double-strand DNA breakages at specific sites 
by participations of these tools, plant DNA repair mecha-
nism is mobilized for repairing DNA double-strand breaks 
created. Either involving homologous recombination or non-
homologous end joining, the broken DNAs are joined again 
(Chen and Gao 2014). Generating transgene-free genetically 
modified plants by using these tools, not needed for seeking 
permissions for regulatory issues is the main advantage for 
this type of works (Zhang et al. 2016; Alok et al. 2017).

Zinc‑finger nucleases

The  cysteine2-histidine2-type zinc-finger domains as DNA-
binding motifs distributed among eukaryotes are found to 
be involved in sequence-specific DNA binding and medi-
ate targeted genetic modification in many plants; therefore, 
over last two decades, due to application potentials, this 
type of nucleases has received attention for genetic modifi-
cations (Lee and Ezura 2016). Each of zinc finger consisting 
approximately 30 amino acids exists in ββα configuration 
and is stabilized by a zinc ion. The zinc finger has feature for 
recognizing and binding to a specific 3-bp DNA sequence 
through interaction occurring between α-helix structure of 
zinc finger and the major groove of the DNA double helix 
(Pabo et al. 2001). A DNA-binding domain having a tan-
dem array of zinc fingers and the non-specific DNA cleavage 
domain of the FokI restriction endonuclease are fused for 
building of zinc-finger nucleases (Durai et al. 2005; Alok 
et al. 2017) (Fig. 3d-1).

5-GNN-3, 5-ANN-3 and 5-TNN-3 are the triplets, mostly 
recognized and bond by each nuclease domain of zinc finger 
(Dreier et al. 2001; Segal 2002). Mainly ZFN (zinc-finger 
nucleotide) pairs are able to work precisely in targeting the 
binding sites when the binding sites are 6 bp apart from 
each other (Bibikova et al. 2001). In case of having a ZFN 
recognition sequence, it could be used only 5-GNN-3 tri-
plets, and it also could be made up of the following frame 
5-NNCNNCNNC(N5-6)GNNGNNGNN-3. Possible DNA 
target sites are seemingly available in every 0.5–1.0 kb for 
the published zinc-finger domain, resulting in being able to 
target most plant genes (Segal 2002; Lee and Ezura 2016). 
The ascending outcome is an enzyme having ability for 
recognizing a unique DNA sequence and ability to induce 
targeted DNA double stranded breaks (Alok et al. 2017).
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Transcription activator‑like effector nucleases

Engineered transcription activator-like effector nucleases 
having a transcription activator-like effector DNA-binding 
domain and a DNA cleavage domain deployed for cre-
ating double-strand DNA breaks in a non-specific man-
ner are hybrid nucleases (Joung and Sander 2013). After 
deploying first strategies using transcription activator-like 
effector nucleases for achieving genomic modifications, 
successful demonstrations have been increased rapidly in 
this field (Christian et al. 2012). Recognitions of specific 
DNA sites by zinc-finger nucleases and transcription acti-
vator-like effector nucleases are carried through in similar 
fashion; however, each motif in transcription activator-
like effector nucleases recognizes a single nucleotide, 
while each motif in zinc-finger nucleases recognizes 3–4 
nucleotides (Deng et al. 2014). Plant pathogen effector 
proteins, transcription activator-like effectors, can turn 
on transcription activator-like effector-specific host genes 
involved in disease formation following binding of the 
promoters of these genes after entering the nucleus of host 
cell (Marois et al. 2002; Kay et al. 2007; Lee and Ezura 
2016) (Fig. 3d-2).

Transcription activator-like effectors have translocation 
signal at the N-terminus and nuclear localization signal and 
transcription activator domain at the C-terminus and interact 
with DNA sequences specific to binding domains referred 
to as the repeat domains found in the central part of tran-
scription activator-like effectors, in which each includes a 
number of tandem 33–34 amino acid repeats except repeats 
in positions 12 and 13 that are highly variable and are, there-
fore, referred to as repeat-variable di-residues exhibiting 
nucleotide preference (Yang et al. 2000; Marois et al. 2002; 
Gurlebeck et al. 2006; Kay et al. 2007; Boch et al. 2009). 
It allows the allowance of targeting any sequence through 
the assembly of repeat-variable di-residues on specific DNA 
sequences (Lee and Ezura 2016).

Clustered regularly interspaced short palindromic 
repeats‑associated nuclease 9

Lately, the RNA-guided CRISPR/Cas9-mediated genome 
editing as a tool for the manipulations of genomes of organ-
isms has brought promises in the field. This applied sys-
tem is required at least two components for the site-specific 
cleavage of DNA, identified as a Cas9 endonuclease protein 
and a chimeric RNA (chiRNA) comprising CRISPR RNA 
(crRNA) and trans-activating crRNA (tracrRNA) (Lee and 
Ezura 2016). The CRISPR/Cas system as part of an adaptive 
defense system is identified in bacteria and archaea functions 
so as to cope with invading nucleic acids by targeting them 
and leading them for degradation (Wiedenheft et al. 2012; 
Bradshaw 2016).

CRISPR/Cas systems are classified mainly into three 
groups, but among them type II appears to be the sim-
plest one (Bhaya et al. 2011; Alok et al. 2017). The type II 
CRISPR system consisting of crRNA and tracrRNA gener-
ated by insertion of short DNA fragments into a CRISPR 
locus forms ribonucleoprotein complexes along with cas 
proteins (Cong et al. 2013). The crRNA-tracrRNA fusion 
part of the complex called the guide RNA (gRNA) and 
the Cas9 endonuclease from Streptococcus pyogenes are 
integrated to form a structure capable of recognizing the 
specific sequences on the target site in the presence of a 
downstream protospacer adjacent motif with the sequence 
5′-NGG-3′ (Jinek et al. 2012). By the presence of the proto-
spacer adjacent motif serving as targeting component, the 
recognition and subsequent cleavage of invading DNA can 
be accomplished through distinguishing self from non-self-
DNA (Raina et al. 2018). A single guide RNA (sgRNA) 
can be designed, and instead of the tracrRNA:crRNA het-
eroduplex, it can be replaced for reprogramming the Cas9/
sgRNA system to a specific complementary target site (Mali 
et al. 2013; Sardesai and Subramanyam 2018). By target-
ing the first 20 nucleotides in the sgRNA, specific sgRNA 
variants can be purposefully generated for various genome-
editing applications (Sander and Joung 2014). Also, due to 
frequent protospacer adjacent motif occurrences in genomes, 
nearly any gene bearing a protospacer adjacent motif could 
be targeted by a Cas9/sgRNA complex (Sardesai and Sub-
ramanyam 2018). After introduction of Cas9 nuclease with 
appropriate gRNAs into a cell, targeted modifications can 
be accomplished as cutting DNA at specific locations within 
genome under guidance of appropriate gRNAs and removal 
of that existing DNA piece from genome and/or integration 
of a new DNA piece into genome via homologous recombi-
nation (Cetintas et al. 2017; Pandotra et al. 2018). Activity 
of the system depends upon cell type and the approach used 
in introduction. Introduction of gRNA and Cas9 nuclease 
into cells can be executed via relying on direct insertion 
or transforming as transgenes on a separate chromosome 
to the targeted locus by cloning. The effects of unintended 
outcomes appear to be rare and by well-designed specific 
gRNA sequences in terms of on target accuracy should mini-
mize the risk of off-target genome modifications (Bradshaw 
2016) (Fig. 3-d-3).

The power of CRISPR/Cas9 system comes from its sim-
plicity, efficiency and versatility. After target specifies are 
designated for organisms in terms of Cas9 optimization, 
the suitable constructs can be generated using cloning tech-
niques (Jiang et al. 2013; Feng et al. 2014; Shan et al. 2014). 
Zinc-finger nucleases, transcription activator-like effector 
nucleases and CRISPR/Cas9 as powerful genome-editing 
tools similarly target specific sites in genome, and the last 
system has an attractive advantage over the first two systems 
in generating targeted genetic elements; hence; CRISPR/
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Cas9 has rapidly become a widely used choice in laborato-
ries (Lee and Ezura 2016).

Heavy metal phytoremediation 
by genetically engineered plants

Remediation researches are getting great attention recently 
and offer worthy strategies for cleaning up soils from con-
taminants. In particular, using transgenic plants for this 
purpose is a promising approach in this section. Exploiting 
of transgenic approach is not only limited to transforma-
tion of functional genes but also certain defined promoters 
that elevate existed gene functions related to accumulation/
translocation/detoxification mechanisms of heavy metals 
can be introduced to the target plants. Here, some examples 
related to detoxification of heavy metal contaminants involv-
ing transgenics are given in table.

In one such case, transgenic canola varieties were gener-
ated from wild-type spring canola (Brassica napus L. cv. 
Westar) using a rice gene, OsMyb4, consisting Arabidop-
sis thaliana COR15a stress-inducible promoter (Raldu-
gina et al. 2018). Singh et al. (2002) reported that under 
different stress conditions, myeloblastosis protein family 
members provide confers for continuity of plant develop-
ment and protecting plants. Transgenic spring canola plants 
grown under high levels of Cu (as 150 μM  CuSO4) and Zn 
(as 5000 μM  ZnSO4) concentrations were shown to have 
extended surviving ability (more than 15 days) compared 
with wild types. It means that OsMyb4 gene plays a crucial 
role in survival mechanism related to free radical elimina-
tion in plants exposed excessive levels of Cu and Zn. Con-
sequently, Raldugina et al. (2018) suggested that OsMyb4 
may play a role as a positive regulator of phenylpropanoid 
pathway and proline synthesis and may also have potential 
in phytoremedial applications.

As stated by Boudet (2007), lignin builds up the first line 
of defense against biotic and abiotic stresses as a result of 
interaction between non-cellulosic polysaccharides that give 
strength to plant cell wall structures. Zhang et al. (2014) 
revealed that lignin biosynthesis was enhanced via overex-
pression of CCoAOMT and also Rui et al. (2016) concluded 
that application of Cd stress in Vicia sativa caused stimu-
lated lignin production. These above-mentioned results were 
used for generation of a transgenic A. thaliana by cloning 
and transferring of VsCCoAOMT gene analog from V. sativa 
for the phytoremediation applications in terms of enhancing 
lignin biosynthesis (Xia et al. 2018). At the end of this work, 
the products of VsCCoAOMT gene were found to be play-
ing crucial roles related to providing enhanced tolerance in 
transgenic A. thaliana for Cd stress. Increased biomass pro-
duction and enhanced loading and transportation processes 

for Cd, and especially accumulation of Cd in cell wall struc-
tures were observed as results herein that study giving prom-
ise in phytoremedial applications (Xia et al. 2018).

Heavy metal ATPases were exploited in a research for 
improving Cd tolerance in transgenic tobacco created by 
Wang et al. (2018) as model organism. Heavy metal ATPase 
is a kind of plant-based P1B-type ATPase protein, defined 
as Cd exchanger between root and shoot cells (Takahashi 
et al. 2012). Heavy metal ATPases were discovered in vari-
ous plants, including Oryza sativa L. (Takahashi et al. 2012), 
Hordeum vulgare L. (Williams and Mills 2005), Thlaspi 
caerulescens L. (Papoyan and Kochian 2004) and Populus 
tomentosa Carr. (Wang et al. 2018). Using information from 
Populus trichocarpa genome, degenerate primer pairs were 
designed and used for screening/cloning of heavy metal 
ATPase cDNA. After validation of heavy metal ATPase gene, 
PtoHMA5, it was cloned, sequenced and then transformed 
into N. tobaccum. After that, the transgenic N. tabacum was 
tested by application of Cd stress and a 25.05% increase in 
Cd accumulation was detected in leaves of the plant. Wang 
et al. (2018) concluded that PtoHMA5 and PtPCs were found 
to be as useful gene sources for phytoremediation.

Certain types of genes isolated from endophytic bacteria 
are occasionally used in transformations of target plants done 
for scaling up phytoremediation capabilities. A research was 
carried out using nettle (Urtica dioica) seeds as research 
material and seedlings generated from the seeds after sow-
ing stage were grown in As, Cd, Pb and Zn contaminated 
soils (Viktorova et al. (2017) and thereafter, Bacillus shack-
letonii and Streptomyces badius, endophytic bacteria, were 
isolated from these plants using appropriate protocols. Such 
endophytic bacteria are valuable sources for genes related 
to detoxification pathways of heavy metals for their various 
types of energy source practices (Uhlik et al. 2012). And, the 
transgenic plants containing the genes derived from endo-
phytic bacteria are very useful tools for removing of heavy 
metals from soils. CUP and bphC genes under control of 
cauliflower mosaic virus 35 promoter were introduced to the 
nettle plants to increase heavy metal accumulation perfor-
mance and after transformation, heavy metal accumulation 
capabilities of these transgenics grown in contaminated soils 
were evaluated. By this work, first transgenic nettle plants 
were developed by Viktorova et al. (2017) for phytoremedial 
purposes and tested in polychlorinated biphenyls contami-
nated soils. According to their results, the declination rate of 
polychlorinated biphenyls in soils was up to 33% and the rate 
of heavy metal cleanup in soils reached up to 8%.

The cells of eukaryotic organisms have various detoxi-
fication mechanisms for metal stresses; one of them is glu-
tathione synthesis (Filiz et al. 2019a). Glutathione involves 
in homeostasis of redox reactions in plant cells by two ways: 
participate in core redox reactions or establish a cross-con-
nections between bioenergetic-signaling pathways in plants 
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(Foyer and Noctor 2011). Glutathione is synthesized gen-
erally via γ-glutamylcysteine synthetase and glutathione 
synthetase activities (Li et al. 2004). Recently, a new glu-
tathione synthetase enzyme, γ-glutamylcysteine synthetase-
glutathione synthetase gene (StGCS-GS), was discovered 
in Streptococcus thermophiles (Liedschulte et al. 2010). 
StGCS-GS exhibits high tolerance capability for heavy met-
als and ability for considerable amounts of accumulations 
of Cd, Cu and Zn in E. coli (Liu et al. 2013). Because of 
the given data, the coding sequence of StGCS-GS gene was 
inserted into the appropriate vector by Liu et al. (2015a) and 
then cloned into sugar beet (Beta vulgaris) for determining 
a possible increase in heavy metal accumulation capability 
and also defining specifications of expression patterns of 
inserted genes. Transgenic sugar beets demonstrated domi-
nant ability to retain Cd, Cu and Zn ions and also exhibited 
enhanced glutathione and phytochelatin activities under the 
applications of heavy metal stresses compared with wild-
type sugar beets. Liu et al. (2015a) stated that the created 
transgenic as a promising tool for phytoremediation could 
work fairly well.

Besides phytochelatin and metallothionein, nicotian-
amine also is another and alternative metal binding com-
plex, produced from S-adenosylmethionine via the activity 
of nicotianamine synthetase (Higuchi et al. 1994). Yellow 
stripe-like family members are metal transporter proteins 
responsible for uptake and transportation of various met-
als in the plants (Curie et al. 2009). They exploit phytosi-
derophores- and nicotianamine–metal complexes as their 
substrates for either up-taking or translocating of these 
complexes from one place to another in plants. A yellow 
stripe-like gene from Miscanthus sacchariflorus was trans-
ferred into Arabidopsis by Chen et al. (2018). Analyses 
were conducted for transgenic Arabidopsis for the follow-
ing parameters: phenotypic characteristics, biochemical 
features and metal accumulation/transportation ability. 
Chen et al. (2018) concluded that MsYSL gene specifically 
involved in translocation of Cd from root to shoot and in 
detoxification of Cd in the above parts of the plant. Some 
plants have ability to accumulate heavy metals in their 
roots. Translocating of accumulated heavy metals from 
roots to above parts can serve to enhance the capacity of 
phytoremediation in plants.

In a recent study done by Sun et al. (2018b), poplar was 
utilized in aiming of remediation of Hg from soils via using 
a class of ATP-binding cassette transporter gene. To achieve 
this goal, the transformation of ATP-binding cassette trans-
porter gene (PtABCC1) from Populus trichocarpa to wild-
type Arabidopsis was realized. The rates of Hg accumula-
tion were found to be as 26–72% and 7–160% for transgenic 
Arabidopsis and poplar compared with wild types, respec-
tively. Metal transporters have always been an important part 
of phytoremediation studies, and PtABCC1 gene playing a 

key role in enhancing green cleaning technology is given as 
an example for this.

In addition to metal transporter proteins, there are also 
some other functional genes related to remediation capabili-
ties. Arsenic reductase 2 gene from A. thaliana was cloned 
by Nahar et al. (2017) for phytoremediation purposes in 
their study. Transformation of previously defined 1356 bp 
AtACR2 open reading frame was done via A. tumefaciens 
using Nicotiana tabacum var. Samsun leaf disks. Transgen-
ics were grown for a 45-day period in arsenic containing 
medium. After harvesting of transgenics and non-transgenic, 
As contents were determined using inductively coupled 
plasma-mass spectroscopy. As levels in the roots of trans-
genic tobacco were found to be significantly higher in com-
parison with wild types. On the other hand, As levels in the 
shoots of transgenic tobacco were determined as quite low 
compared with As levels found in roots suggesting transfor-
mation of ACR2 gene could be profitable choice for phytore-
medial purposes.

Scientists working in phytoremedial research are eager 
to use CRISPR-mediated gene expressions to increase the 
volumes for the synthesis of various molecules, including 
metal ligands (metallothioneins and phytochelatins), metal 
transport proteins (cation diffusion facilitator, heavy metal 
ATPases, multidrug efflux transporters, yellow stripe-like 
and zinc-regulated transporter families), plant growth hor-
mones (auxins, cytokinins, and gibberellic acid) and root 
exudates (particularly low molecular weight organic acid 
and siderophores) (Basharat et al. 2018).

Environmental implications

In field applications, the most important prerequisite in phy-
toremediation for the effectiveness relies on the usability 
of experimental works. Without using in field applications, 
no matter how good and effective a method developed with 
employing a genetically modified organism it remains exper-
imental and it is the greatest limitation for it. For removing 
heavy metals from the soil effectively, the priority should 
be given to the species used in remediation. The well-docu-
mented experimental studies utilizing transgenic plants were 
described in the previous section. The studies given below 
not experimental but rather include practical examples.

Anh et al. (2017) reported that plant species including 
some grass types and Pteris vittata, Pityrogramma calo-
melanos, and Vetiveria zizanioides were used to remove 
heavy metals from soil in Vietnam and some local species 
were found to be applicable for field conditions. Another 
phytoremedial application for wastewater treatment was 
successfully done using agricultural species including 
Medicago sativa, Zea mays, Helianthus annus and Sorghum 
bicolor (Atia et al. 2019). Cameselle et al. (2019) revealed 
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promising results from the large-scale phytoremedial field 
applications using Brassica rapa subsp rapa and Lolium 
perenne. Also, phytoremedial applications were performed 
using Elodea canadensis for Co removal from wastewater 
(Mosoarca et al. 2018) and Plantago lanceolate for removal 
of Cd and As from the environment. Furthermore, Salvia 
sclarea (Chand et al. (2015), Sedum plumbizincicola (Deng 
et al. (2016), and S. alfredii and P. vittata Wan et al. (2016) 
were used for large-scale remediation of numerous heavy 
metals. These studies are the examples of eco-compatible 
environmental applications using wild-type plant species 
and these species bear great potential for removal of heavy 
metal accumulations via modification of their genetic struc-
tures with the genes having phytoremedial features.

Despite many plant species including Alyssum sp., 
Thlaspi sp., Brassica juncea, Viola calaminaria used in 
remediation of heavy metal removing strategies, new hyper-
accumulator plants should be identified and used for creating 
genetically modified ones having better heavy metal accu-
mulation capabilities. Based on the relevant studies, one of 
the most effective plants in this regard is the plants produced 
for energy (Shah and Pathak 2019). Plants used in bioenergy 
production should be genetically modified and grown in soils 
with high heavy metal content to make phytoremediation 
feasible. Also, to increase biomass of existing transgenic, 
hyperaccumulator or bioenergy plants, they should also be 
cultivated with microorganisms including Agrobacterium 
sp., Alcaligenes sp., Arthrobacter sp., Azospirillum sp., 
Bacillus sp., Burkholderia sp., Pseudomonas sp. Rhizobium 
sp. and Serretia sp., in these soils in considering mycorrhizal 
relationships. Aromatic plants, native wild plants or invasive 
plants could be considered as targets for creating transgenic 
plants in purpose of using in remediation of heavy metals, 
and also research on these targets should be carried out for 
identifying new genes related to heavy metal accumulation 
and detoxification processes. There are few studies published 
regarding this subject. There are plants that are well adapted 
to such contaminated environments and are used in trans-
genic and phytoremedial research because of their ability to 
produce photosynthesis and biomass in large scales.

The basis for creating transgenic involves the transfer of 
a gene, being not in its genome, from a different species to 
an organism or modifying genetic material of that organism 
without any genetic material transfer for some purposes. For 
latter, DNA shuffling approach is used for generating new 
chimeric genes without any gene transfer from a foreign 
organism, and after that, step examination for phytoremedial 
features of these chimeric genes is performed. In order to 
make development in this area, having extensive knowledge 
about the working dynamics of genes is a necessity. Also 
synthetic promoter designing could be an alternative strategy 
in an effort to enhance activity of a gene, which is related to 

phytoremediation. Designing a promoter region would be 
easier than that of shuffling approach.

Another method for escalating the removal of heavy 
metal accumulation in the environment is to modify plants 
genetically to gain ability to absorb heavy metals from both 
the soil and air. Phylloremediation is the name for the strat-
egy for air phytoremediation (Wei et al. 2017). The crops 
genetically modified for the absorption of heavy metals from 
both air and soil are used in agricultural areas by the ways 
of intercropping or mixed cropping practising in terms of 
using plant growth regulators to increase the effectiveness of 
phytoremediation (Vamerali et al. 2010). Using genetically 
engineered organisms at appropriate distances in crops in 
agricultural farming areas will reduce heavy metal entry into 
the food chain and will help to remove heavy metals from 
soil. Here, the important point is that transgenic species to 
be used have not to make competition with those agricultural 
plants and should be easily removed from the farming land 
after their missions are completed. These features should be 
considered in the intercropping approach. From the agricul-
tural lands left to fallowing, heavy metals can be removed 
via cultivating genetically modified organisms (especially 
showing growing ability with given low amounts of nutri-
ents) without disturbing the soil. Finally, genetically modi-
fied organisms make contributions to research on phytore-
mediation with applications of many different approaches 
and provide promoting force for the effectiveness of research 
in this field.

Despite having all the advantages explained here, there 
are some serious concerns about the environmental appli-
cations of transgenic plants. The one is that the genetically 
modified plants could become dominant species in the appli-
cation area due to their adaptation and competition capabili-
ties, provided by having the gene or genes introduced com-
pared to the native plant species (Ellstrand and Schierenbeck 
2006; Auer 2008). Compared to the corresponding native 
species, they have potential for spreading out largely and 
due to this fact that they are considered as invasive species. 
Another serious concern is about the gene flow from the 
genetically modified plants to the corresponding wild types 
(Gunarathne et al. 2019). Thus, in some extent, deteriora-
tion on ecosystem as well as biodiversity present is also seen 
by these types of applications. For these reasons, creating 
transgenic plants is highly sensitive subject and after very 
careful analyzing and considering the region and biodiver-
sity can be realized.

As a result, heavy metals pose threats for human health, 
primarily by consumption of drinking water and foods con-
taminated. While nanomaterial-based filtration systems are 
used effectively for cleaning drinking water contaminated or 
wastewater, phytoremediation remains as an environmentally 
friendly and effective method for removing heavy metals 
from the areas used for the productions of foods. In this 
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review, a summary including the experimental and practical 
applications is presented related to how phytoremediation 
approaches developed involve phytochelatins and metal-
lothioneins for the removing of heavy metals.
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